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Determine fin Efficiency of Convective Straight Fins in Solar Air

Collector

I. Tabet ∗a,b , M. Kezzar∗c , K. Touafeka , N. Bellelb, S. Gheriebc, A. Khelifa a and M.

Adouanea
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Abstract.In this paper, the nonlinear differential equation for the convection of the temper-
ature distribution of a straight fin with the thermal conductivity depends on the temperature
is solved using Adomian Decomposition Method and Pad approximation (PADM) for bound-
ary problems. Actual results are then compared with results obtained previously using digital
solution by RungeKutta method and a differential transformation method (DTM) in order to
verify the accuracy of the proposed method.
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1. Introduction

Fins are employed in solar air collector to enhance the heat transfer between the
plate absorber. The nonlinear fin problem has received a significant attention in
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recent years in view of its practical applications in semiconductors, heat exchang-
ers, solar thermal collector ,power generators and electronic components[4]. Several
researchers have applied well-known numerical techniques to solve the nonlinear
fin equation. Some of the pertinent research works include. A.Joneidi [1] used Dif-
ferential Transformation Method to determine fin efficiency of convective straight
fins with temperature dependent thermal conductivity, and he compared to exact
solution and fourth order Runge-Kutta numerical solution. and showed that the
method provides high accuracy DTM to solve the problems of heat transfer in en-
gineering. Jun-Sheng Duan [2] treated a temperature distribution parameterized
of a convective straight fin with temperature-dependent thermal conductivity has
been obtained by using a new modified decomposition method MDM.He Also we
express the efficiency of the straight fin as a function of the two fin parameters.
These results greatly facilitate the parameter analysis for the heat transfer model.
As a comparison we also investigate the method of undetermined coefficients in the
ADM, by which we find it is difficult to obtain the temperature distribution with
any of the parameters β and Ψ . Safa Bozkurt Coskun [3] used variation iteration
method VIM to analyze the efficiency of convective straight fins with tempera-
ture dependent thermal conductivity and he compared to Adomian decomposition
method ADM and the results from finite element analysis, he concluded that, VIM
is an advantageous method when compared to ADM in view of formulation and so-
lution process and the results obtained from both methods and variation iteration
method VIM gives good results with reasonable nonlinearity in the governing equa-
tion. However, with a highly nonlinear equation, a high-order expression may be
needed, D.B. Kulkarni,[4] proposed a digital technique based on the minimization
of residue to solve the same physical problem. The near-exact solution obtained
thus is used to calculate the effectiveness of aileron. In the case of constant thermal
conductivity, the results obtained are validated with analytical solutions, while in
the case of variable thermal conductivity; obtained results are corroborated with
those previously published in the literature. An excellent agreement in each case
consolidates the proposed numerical technique.

2. Problem description

Consider a straight fin with a temperature-dependent thermal conductivity k (T),
arbitrary constant cross-sectional area S, perimeter P and length L. The fin is
attached to a base surface of uniform temperature Tb and its tip is insulated. Under
steady-state conditions, the face of fin is exposed to a convective environment,
where the temperature Ta and the heat transfer coefficient h are assumed to be
uniform. That we shows in Figure 1 .The one-dimensional energy balance equation
is given [1,2]

s
d

dx

[
K (T )

dt

dx

]
− Ph (T − Ta) = 0 (1)

Where T is the temperature distribution on the fin and the thermal conductivity
of the fin material is assumed to be a linear function of temperature according to

K (T ) = Ka [1 + λ(T − Ta)] (2)

And where ka is the thermal conductivity at the ambient temperature and λ is
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Figure 1. Geometry of a straight fin in solar air collector.

the parameter describing the variation of the thermal conductivity. Employing the
following dimensionless variables and parameters.

θ = T−Ta

Tb−Ta
, ξ = X

l , β = λ (Tb − Ta)

Ψ2 = hPL2

kaS
θ = T−Ta

Tb−Ta

ξ = X
l ,= (Tb − Ta) ,Ψ

2 = hPL2

kaS

(3)

Equation 4 is the governing nonlinear differential equation for the temperature
distribution along the length of the fin and the nonlinearity is due to the term β
.For β=0 (case of constant thermal conductivity), Equation 4 reduces to a linear
differential equation, for which an analytical solution is available. With reference
to the nonlinearity in the governing differential equation, it is difficult to arrive at
an exact solution to the temperature distribution and researchers often resort to
various numerical techniques in order to arrive at approximate solutions.

d2θ
dξ2 + βθ d

2θ
dξ2 + β

(
dθ
dξ

)2
−Ψ2θ (4)

Subject to the boundary conditions

dθ

dξ
= 0, xi = 0 (5)

θ = 1, xi = 1 (6)

3. Fin Efficiency

The efficiency of convective fins is defined as the ratio of actual heat transfer to
the maximum heat transfer which occurs if the base temperature Tb is maintained
throughout the length of the fin. In such an ideal case, the maximum temperature
difference can be realized along the entire length of the fin. A highly efficient fin
would therefore be; smaller in length, has a high value of thermal conductivity and
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operates in a small value of convective heat transfer coefficient. All such Parameters
help in maintaining the temperature along the fin as close to the base temperature
as possible. Mathematically the efficiency is [1-4].

η = Q
Qideal

= ∫ l
0 P (T−Ta)dx
Pb(Tb−Ta)

=
1
∫
ξ=0

θ (ξ) dξ (7)

We consider the ranges of the two dimensionless fin parameters:

0 < Ψ ≤ 1.5and0 ≤ β ≤ 1

4. Fundamentals of Adomian Decomposition Method

Consider the differential equation

Lu+Ru+Nu = g (t) (8)

Where: N is a nonlinear operator, L is the highest ordered derivative and R
represents the remainder of linear operator L.
By considering as an n-fold integration for an nth order of L, the principles of
method consists on applying the operator L−1 to the expression (6). Indeed, we

L−1Lu = L−1g − L−1Ru− L−1Nu (9)

The solution of Eq.(9) is given

u = φ+ L−1g − L−1Ru− L1Nu (10)

Where φ is determined from the boundary or initial conditions. For the standard
Adomian decomposition method, the solution u can be determined as the infinite
series with the components given by:

u =
∞∑
n=0

un (11)

And the nonlinear term Nu is given as following:

Nu =
+∞∑
n=0

An (u0, u1, . . . ., un) (12)

Where A′
ns , called Adomian polynomials has been introduced by George

An(u0, u1, ..., un) = 1/n!

[
dn/(dλn)

[
N

( ∞∑
n=0

λiui

)]]
(λ=0)

, n = 0, 1, 2, ..., n (13)
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By substituting the given series (11), (12) into both sides of (13), we obtain the
following expressions:

∞∑
n=0

un = φ+ L−1g − L−1R
∞∑
n=0

un − L−1
+∞∑
n=0

An (14)

According to Eq. (14), the recursive expression which defines the ADM compo-
nents un is given as:

u0 = φ+ L−1g, un+1 = −L−1 (Run +An) (15)

Finally after some iterations, the solution of the studied equation can be given s
an infinite series by :

u = u0 + u1 + u2 + u3 + . . .+ un (16)

5. Application of ADM-Pad to the Nonlinear Problem

Considering the Eq. (9), Eq. (4) can be written as:

Lθ = −βθθ′′ − βθ′2 + φ2θ (17)

Where the differential operator L given by L = d2

dη2 The inverse of operator L is

expressed by L−1 and can be represented as:

L−1 =
η

∫
0

η

∫
0
•dηdη (18)

The application of Eq. (10) on Eq. (4) and considering the boundary conditions
(5,6), we obtain:

θ(η) = θ(0) + θ
′
(0)η + L−1(Nu) (19)

Where:

Nu = −βθθ′′ − βθ′2 + φ2θ (20)

The values of(0) and θ′(0) depend on boundary condition. The boundary conditions
are expressed as following:

θ
′
(0) = 0 (21)

θ (0) = c (22)
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By applying the boundary conditions (5) and consideringθ (0) = c , we obtain:

θ(η) =

∞∑
n=0

θ0 = θ0 + L−1 (Nu) (23)

Where:θ0 = c The terms of Adomian polynomials, are defined by applying Ado-
mian decomposition method as following:

A0 = cϕ2 (24)

A1 = −βc2ϕ2 + 1

2
cx2ϕ4 − 3

2
βc2x2ϕ4 (25)

A2 = β2c3ϕ2 − 1
2βc

2ϕ2η2ϕ2 − 1
2βc

2η2ϕ4

+9
2β

2c3η2ϕ4

−3
2β

3c4η2ϕ4 + 1
24cϕ

2η4ϕ4 − 1
8βc

2ϕ2η4ϕ4

−5
8βc

2η4ϕ6

+5
2B

2c3η4ϕ6 − 15
8 β

3c4η4ϕ6 − 7
144βc

2η6ϕ8

+ 7
24β

2c3η6ϕ8

− 7
16β

3c4η6ϕ8

(26)

By using algorithm (15), the first few components of the solution are:

θ1 =
1

2
cη2ϕ2 (27)

θ2 = −1

2
βc2η2ϕ2 +

1

24
cη4ϕ4 − 1

8
βc2η4ϕ4 (28)

θ3 = 1
2β

2c3η2ϕ2 − 1
24βc

2ϕ2η4ϕ2 − 1
24βc

2η4ϕ4 + 3
8β

2c3η4ϕ4−
1
8β

3c4η4ϕ4 + 1
720cϕ

2η6ϕ4 − 1
240βc

2ϕ2η6ϕ4 − 1
48βc

2η6ϕ6 + 1
12β

2c3η6ϕ6

− 1
16β

3c4η6ϕ6 − βc2x8ϕ8

1152 + 1
192β

2c3η8ϕ8 − 1
128β

3c4η8ϕ8
(29)

Finally, the solution for convergent channel is given by Adomian decomposition
method as:

θ (η) = θ0+θ1+θ2+ ....+θn = c+
1

2
cη2ϕ2− 1

2
βc2η2ϕ2+

1

24
cη4ϕ4− 1

8
βc2η4ϕ4 + . . .

(30)
The value of constant c is obtained by solving Eq. (30) using Eq. (7).
We apply Laplace transformation to θ (η) = θ0 + θ1 + θ2 + θ3, which yields
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−35βc2ϕ8

s9 + 210β2c3ϕ8

s9 − 315β3c4ϕ8

s9 + cϕ6

s7 − 18βc2ϕ6

s7 + 60β2c3ϕ6

s7 − 45β3c4ϕ6

s7 +
cϕ4

s5 − 5βc2ϕ4

s5 + 9β2c3ϕ4

s5 − 3β3c4ϕ4

s5 + cϕ2

s3 − βc2ϕ2

s3 + β2c3ϕ2

s3 + c
s

For the sake of simplicity, lets = 1
η , then

−35βc2ϕ8η9 + 210β2c3ϕ8η9 − 315β3c4ϕ8η9 + cϕ6η7 − 18βc2ϕ6η7+
60β2c3ϕ6η7 − 45β3c4ϕ6η7 + cϕ4η5 − 5βc2ϕ4η5 + 9β2c3ϕ4η5−
3β3c4ϕ4η5 + cϕ2η3 − βc2ϕ2η3 + β2c3ϕ2η3 + c η

Notice that, we can get to the value of c by using the shooting method
to solve the boundary value problem (4) together the boundary conditions
(5),(c =0.9213147484091304‘, β = 0.5 andϕ = 0.5).Then [5/5] Padé approximate
of L[θ(η)] yields:

5
5 = 0.00250221− 2.50891 η+ 2.01442 η2+ 0.164675 η3+ 0.571892η4− 0.20996η5

1−1.20 (−0.92+η)+0.79 (−0.9+η)2−0.14 (−0.92+η)3−0.16 (−0.92+η)4+0.136476 (−0.92+η)5

Recalling= 1
s , we obtain [5/5] in terms of s

5
5 =

0.00250221− 2.50891

s
+ 2.01442

s2
+ 0.164675

s3
+ 0.571892

s4
− 0.20996

s5

1−1.20 (−0.92+ 1

s)+0.79 (−0.9+ 1

s)
2−0.14 (−0.92+ 1

s)
3−0.16 (−0.92+ 1

s)
4
+0.13 (−0.92+ 1

s)
5

By using inverse Laplace transformation to[5/5], we obtain the solution θ̇ (η)by
using the after treatment techniquewhich improves the accuracy of the ADM

θ̇ (η) = (−0.000707271 + 0. i) + 0.274563 e−0.867664 η − (0.0721158

+0.0803442 ie(0.393851 −0.382903 i)η − (0.0721158 − 0.0803442 i) e(0.393851 +0.382903 i)η

+(0.400408 + 0.0736334 i) e(0.420784 +0.128103 i)η

+(0.400408 − 0.0736334 i) e(0.420784 −0.128103i)η

6. Results

The results of comparison between Adomian Decomposition Method and Pad ap-
proximation PADM solutions with a numerical results is presented in table 1 the
case thermal conductivity is constant (β = 0 and Ψ = 0.55) the results of this anal-
ysis are gathered against the obtained by the numerical solution by Runge-Kutta
fourth order method . a very good agreement between the results is also observed,
which confirms the excellent validity of the PADM.
To better visualize the effectiveness of the analytical technique used, we present
In the table 2 the comparison Adomian Decomposition Method and Pad approx-
imation PADM solutions with a numerical solution by Runge-Kutta fourth order
method and also comparing the Differential Transformation Method DTM with a
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Table 1. Comparison between PADM and Numerical Results for temperature Distribution when (β=0 and Ψ =

0.55)

Numerical(Nu) PADM ERROR
0 0.8657248454 0.865724851 5.6×10−9

0.05 0.8660522223 0.8660522241 1.8×10−9

0.1 0.8670345910 0.8670345902 8.0×10−9

0.15 0.8686726946 0.8686726926 2.0×10−9

0.2 0.8709677708 0.8709677700 8.0×10−9

0.25 0.8739215557 0.8739215584 2.7×10−9

0.3 0.8775362886 0.8775362916 3.0×10−9

0.35 0.8818147002 0.8818147034 3.2×10−9

0.40 0.886760026 0.8867600296 3.6×10−9

0.45 0.892376007 0.8923760104 3.4×10−9

0.50 0.8986668901 0.898666893 2.9×10−9

0.55 0.9056374321 0.9056374354 3.3×10−9

0.60 0.9132929055 0.9132929092 3.7×10−9

0.65 0.9216391005 0.921639104 3.5×10−9

0.70 0.9306823288 0.9306823328 4.0×10−9

0.75 0.940429430 0.940429434 4.0×10−9

0.80 0.9508877761 0.9508877803 4.2×10−9

0.85 0.9620652764 0.9620652806 4.2×10−9

0.90 0.9739703841 0.9739703885 4.4×10−9

0.95 0.9866121031 0.9866121080 4.9×10−9

1.00 0.9999999948 0.9999999999 5.1×10−9

Table 2. Values of temperature Distribution by DTM and PADM Method (ψ=0.5 ,β=0.2)

numerical solution; in this case the thermal conductivity (β = 0.2 and Ψ = 0.5), It
should be noted that the final results from PADM and DTM are in good agreement
with the Runge-Kutta-Fehlberg method which is a well-tested numerical solution.
Figure 2 Illustrate the effect of parameters thermo-geometrics of fin for the tem-

perature variation when the thermal conductivity is constant (β = 0).This figure
display that increasing in the values of thermo-geometric fin parameter produce
decrease in values of dimensionless temperature.
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Table 3. Constant temperature θ(0) for Different Values of Ψ when(β=0 and β=0.5) (Analytical and numerical

results)

Figure 2. Temperature distribution in convective fins thermo-geometric fin parameter (ψ) when β=0 With
PADM method and Ns

(a) (b)

Figure 3. Temperature distribution in convective fins with variable thermal conductivity with PADM
method and Ns

Figure 3 shows the temperature distributions along the dimension of the surface
coil with β ranging from 0.2 to -0.2 are shown in Figure 3(a),3(b) for different the
values of parameters thermo-geometrics ψ =0.75 and ψ = 0.25, respectively. If the
thermal conductivity of material increases with the fin temperature, the values of
fin temperature in the axis (ξ =0) with parameters thermo-geometrics (ψ =0-6)
and thermal conductivity β (0, 0.5) is shown in table 3.
Figure 4 shows the behavior of the fin efficiency relative to ψ and β. it’s clearly
that the fin efficiency increases as the thermal conductivity parameter,βincreases.
To explain the effect of parameter β, we note that while the temperature increases
as βincreases,the PADM results were checked against NS which were in excellent
agreement with each other.
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Figure 4. Variation of the fin efficiency with variable thermal conductivity with PADM method and Ns

The Results obtained shown in the figures above for the analytical solution pro-
posed the method Adomian Decomposition and Pad approximation PADM com-
pared with the numerical solution of Runge Kutta method , an excellent agreement
in each case, in order to verify the accuracy of analytical technique adopted effi-
ciency, a comparison with other studies is presented in Table 2 ,the results show
that our results agree well with the results of the literature, which justifies the ap-
plicability, the efficiency and greater precision analytical technique PADM adopted
other analytical methods used in articles published previously as the differential
transformation method (DTM) [1],a good agreement with the results of our pro-
posed methods(PADM).

7. Conclusion

In this study ,The PADM have been utilized to solve a nonlinear differential equa-
tion for the convection of the temperature distribution of a straight fin with the
thermal conductivity depends on the temperature is solved for boundary problems.
Actual results are then compared with results obtained previously using digital
solution by RungeKutta method and articles published previously as the differen-
tial transformation method DTM in order to verify the accuracy of the proposed
method. Figures and tables clearly show that these methods have good approxi-
mations to the solution of this nonlinear equation with high accuracy. After the
audit, we analyze the effects of some physical parameters for this problem, such
as thermo-setting end geometric and setting the thermal conductivity, the thermal
conductivity of fin increase with increasing of average temperature rises.
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8. Nomenclature

Cp specific heat J Kg−1k−1

h Convective heat transfer coefficient W. M−2.k−1

Ka Conductivity W. M−1.k−1

l Fin length M
q heat flux W.M−2

T Temperature K
Ta ambient temperature K
S Surface M2

η Fin efficiency
ξ dimensionless coordinate
Ψ thermo-geometricfin parameter
β dimensionless parameter describing variation of the thermal conductivity
θ dimensionless temperature
b base
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