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Abstract. In this paper, we use Petrov-Galerkin elements such as continuous and discon-
tinuous Lagrange-type k-0 elements and Hermite-type 3-1 elements to find an approximate
solution for linear Fredholm integro-differential equations on [0, 1]. Also we show the efficiency
of this method by some numerical examples.
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1. Introduction

A linear Fredholm integro-differential equation is{
u′(t)− u(t)− (Ku)(t) = f(t) ; t ∈ [0, 1]
u(0) = u0

(1)

where

(Ku)(t) =

∫ 1

0
k(t, s)u(s)ds.
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There are different numerical methods to solve the equation (1) including least
square, collocation, Galerkin. The analysis of these methods can be found in, for
example, [1–3, 5]. Petrov Galerkin method is established for linear Fredholm in-
tegral equations in [4]. In that paper, it is shown that Petrov-Galerkin method
includes the Galerkin, collocation and least square methods. One of the advan-
tages of Petrov-Galerkin method is that it allows us to achieve the same order of
convergence as the Galerkin method with much less computational cost by choos-
ing the test spaces to be spaces of piecewise polynomials of lower degree. In [6–9],
authors used Lagrange-type k− 0 elements, Hermite-type 3-1 elements and multi-
wavelets bases for solving linear Fredholm integral equations and Hammerstein
integral equations on [0, 1]. Also, wavelet Petrov - Galerkin method for solving
integro-differential equations has been used in [10].
The rest of this paper is organized as follows: In section 2 we review petrov-

Galerkin method and illustrate it for equation (1). In sections 3, 4 and 5 we re-
view some kinds of Petrov-Galerkin elements such as continuous and discontinuous
Lagrange-type k-0 elements and Hermite-type 3-1 elements. In section 6 we explain
how to use this method for solving equation (1) and finally, in section 7 we use
some numerical examples to show the efficiency of this method.

2. Petrov-Galerkin method

In this section, following [4], we explain Petrov-Galerkin method.
Suppose X is a Banach space and X∗ is the dual space of X consisting of con-

tinuous linear functionals on X. Assume that Xn and Yn, for each positive integer
n, are finite dimensional vector spaces such that Xn ⊂ X, Yn ⊂ X∗ and

dimXn = dimYn, n = 1, 2, · · · . (2)

Also suppose that Xn and Yn satisfy in the following condition:
(H) : For each x ∈ X and y ∈ X∗, there exist xn ∈ Xn and yn ∈ Yn such that
∥xn − x∥ → 0 and ∥yn − y∥ → 0 as n→ ∞.

Definition 2.1 For x ∈ X, an element Pnx ∈ Xn is called the generalized best
approximation from Xn to X with respect to Yn whenever

(x− Pnx, yn) = 0 for all yn ∈ Yn. (3)

In [4], it is proved that for each x ∈ X, there exists a unique generalized best
approximation from Xn to X with respect to Yn if and only if

Yn ∩X⊥
n = {0}. (4)

and in this case, Pn is a projection, i.e., P 2
n = Pn.

Now let for each positive integer n, there exist a linear operator Πn : Xn → Yn
with ΠnXn = Yn satisfying two following conditions:

(H-1) for all xn ∈ Xn, ∥xn∥ ⩽ C1(xn,Πnxn)
1/2

(H-2) for all xn ∈ Xn, ∥Πnxn∥ ⩽ C2∥xn∥.

If a pair of space sequences {Xn} and {Yn} satisfy (H − 1) and (H − 2), we
call {Xn, Yn} a regular Pair. It is shown that, if a regular Pair {Xn, Yn} satisfies
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dimXn = dimYn and condition (H), then the corresponding generalized projection
Pn satisfies:

(1) for all x ∈ X, ∥Pnx− x∥ → 0 as n→ ∞

(2) there is a constant C > 0 such that, ∥Pn∥ < C, n = 1, 2, · · ·

(3) for some constant C > 0, independent of n , we have ∥Pnx−x∥ ⩽ C∥Qnx−
x∥

where Qnx is the best approximation from Xn to x.
Petrov-Galerkin method for equation (1) is a numerical method to find un ∈ Xn

such that

(u′n − un −Kun, yn) = (f, yn) for all yn ∈ Yn. (5)

Now assume un ∈ Xn and {bi}ni=1 is a basis for Xn and {b∗j}nj=1 is a basis for Yn.
Therefore Petrov-Galerkin method on [0, 1] for equation (1) is

(u′n − un −Kun, b
∗
j ) = (f, b∗j ) j = 1, · · · , n. (6)

Petrov-Galerkin method using regular pairs {Xn, Yn} of piecewise polynomial
spaces are called Petrov-Galerkin elements. If we use piecewise polynomials of
degrees k and k′ for spaces Xn and Yn respectively, we call the corresponding
Petrov-Galerkin elements k − k′ elements.

3. Continuous lagrange-type k − 0 elements

Let 0 = t0 < t1 < · · · < tn = 1. We divide the interval [0, 1] into n subinterval
Ii = [ti−1, ti]. Let hi = ti − ti−1 for i = 1, · · · , n and Xn be the space of continuous
piecewise polynomials of degree ⩽ k with knots at ti, i = 1, 2, · · · , n − 1. We
construct a basis for Xn as follows:
let τj =

j
k , j = 0, 1, · · · , k and define

t
(i)
j = ti−1 + τjhi j = 0, 1, · · · , k , i = 1, · · · , n.

Clearly ti−1 = t
(i)
0 < · · · < t

(i)
k = ti. Now let we define nk + 1 functions Φ

(i)
j (t) by

Φ
(i)
j (t) =


k∏

ℓ=0

ℓ ̸=i

t− t
(i)
ℓ

t
(i)
j − t

(i)
ℓ

t ∈ Ii

0 t ̸∈ Ii


{
i = 1, 2, · · · , n
j = 1, 2, · · · , k − 1

i = 1, j = 0
i = n, j = k
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Φ
(i)
k (t) =



k−1∏
ℓ=0

t− t
(i)
ℓ

t
(i)
k − t

(i)
ℓ

t ∈ Ii

k∏
ℓ=1

t− t
(i+1)
ℓ

(t
(i+1)
0 − t

(i)
ℓ )

t ∈ Ii + 1

0 t ̸∈ Ii ∪ Ii + 1

i = 1, 2, · · · , n− 1.

Note that for any xn ∈ Xn, we have

xn(t) =
k∑

j=0

xn(t
(i)
j )Φ

(i)
j (t) t ∈ Ii, i = 1, · · · , n

To construct the test space Yn, we define

Ψ
(i)
0 (t) =

{
1 ti−1 ⩽ t ⩽ ti−1 +

1
2k

0 otherwise
i = 1, · · · , n

Ψ
(i)
j (t) =

{
1 ti−1 +

2j−1
2k ⩽ t ⩽ ti−1 +

2j+1
2k i = 1, · · · , n

0 otherwise j = 1, 2, · · · , k − 1

Ψ
(i)
k (t) =

{
1 ti−1 +

2k−1
2k ⩽ t ⩽ ti

0 otherwise
i = 1, 2, · · · , n

Then dimXn = dimYn = nk + 1 and in [4] it is proved that for 1 ⩽ k ⩽ 5 these
two space sequences form a regular pair.

4. Discontinuous lagrange-type k − 0 elements

As before we divide the interval [0, 1] into n subinterval Ii = [ti−1, ti] by a sequence
of points 0 = t0 < t1 < · · · < tn = 1. Let hi = ti − ti−1 for i = 1, · · · , n and Xn be
the space of piecewise polynomials of degree ⩽ k with knots at ti, i = 1, · · · , n− 1.
Let τj =

2j+1
2k+2 , j = 0, 1 · · · , k and define

t
(i)
j = ti−1 + τjhi j = 0, 1, · · · , k , i = 1, · · · , n

we define n(k + 1) functions Φ
(i)
j (t) by

Φ
(i)
j (t) =


k∏

ℓ=0

ℓ ̸=j

t− t
(i)
ℓ

t
(i)
j − t

(i)
ℓ

t ∈ Ii

0 t ̸∈ Ii

i = 1, · · · , n
j = 0, 1, · · · , k.

So for each xn ∈ Xn, we have

xn(t) =
k∑

j=0

xn(t
(i)
j )Φ

(i)
j (t), t ∈ Ii, i = 1, · · · , n.
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Now we construct the test space Yn by

ψ
(i)
j (t) =

{
1 ti−1 +

jhi

k+1 ⩽ t ⩽ ti−1 +
(j+1)hi

k+1 j = 0, 1, · · · , k
0 otherwise i = 1, · · · , n

Then dimXn = dimYn = n(k+1) and in [4] it is proved that for 1 ⩽ k ⩽ 5 these
two spaces sequences form a regular pair.

5. Hermite-type 3-1 elements

Again let 0 = t0 < t1 < · · · < tn = 1 and define Ii and hi as the previous section.
Let Xn be the space of piecewise Hermite-type cubic polynomials,that is:

Xn = { xn ∈ C1[0, 1] : xn|Ii is a cubic polynomial determined by

xln(ti−1), x
l
n(ti), l = 0, 1, i = 1, · · · , n}

= span{b1(t), b2(t), · · · , b2n+2(t)}

Using Hermite interpolation, we can show that for each xn ∈ Xn the following
relation is satisfied

xn(t) =

n+1∑
j=1

{xn(tj−1)b2j−1(t) + x′n(tj−1)b2j(t)},

where

bj(t) =


ϕj(τ)(h1)

j−1 τ = t−t0
h1

, t ∈ I1

0 t ̸∈ I1

j = 1, 2

b2i+j(t) =


ϕj+2(τ)(hi)

j−1 τ = t−ti−1

hi
, t ∈ Ii

ϕj(τ)(hi+1)
j−1 τ = t−ti

hi+1
, t ∈ Ii+1

0 t ̸∈ Ii
∪
Ii+1

{
i = 1, · · · , n− 1
j = 1, 2

b2n+j(t) =

ϕj+2(τ)(hn)
j−1 τ = t−tn−1

hn
, t ∈ In

0 t ̸∈ In

j = 1, 2

and

ϕ1(τ) = (1− τ)2(2τ + 1)

ϕ2(τ) = τ(1− τ)2

ϕ3(τ) = τ2(3− 2τ)

ϕ4(τ) = (τ − 1)τ2.
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Now suppose Yn is the space of piecewise linear polynomials, that is:

Yn = span{b∗1(t), b∗2(t), · · · , b∗2n+2(t)}

where

b∗2i+1(t) =

1 t ∈ [ti − hi

2 , ti +
hi+1

2 ]

0 otherwise

i = 0, 1, · · · , n

b∗2i+2(t) =

 t− ti t ∈ [ti − hi

2 , ti +
hi+1

2 ]

0 otherwise

i = 0, 1, · · · , n

h0 = hn+1 = 0

Then dimXn = dimYn = 2n + 2 and in [4] it is proved that {Xn, Yn} form a
regular pair.

6. Numerical solution of the equation

Now for solving equation(1), note that u′n ∈ Xn can be written as:

u′n(t) =

N∑
j=1

cjbj(t), (7)

where N = nk + 1 for continuous Lagrange-type k-0 elements and N = n(k + 1)
for discontinuous Lagrange-type k-0 elements and N = 2n + 2 for Hermite-type
3-1 elements. Therefore

un(t) =

∫ t

0
u′n(η)dη + u(0)

=
N∑
j=1

cj

∫ t

0
bj(η)dη + u0. (8)

From (6), Petrov-Galerkin method for equation(1) is

(u′n(t)− un(t)−
∫ 1

0
k(t, s)un(s)ds, b

∗
i (t) =

(f(t), b∗i (t)) , i = 1, · · · , N. (9)

If we substitute (7) and (8) in (9), this leads to determin {c1, c2, · · · , cN} as the
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Table 1. Error of the solution of example 7.1, by using continuous Lagrange-

type k-0 elements

k\n 1 2 4 10

1 0.0711171 0.0188107 0.054749 0.005467
2 0.0318487 0.0217291 0.00369031 3.76589*10−5

3 0.00718256 0.00482825 0.00011322 1.34267*10−5

4 0.00379042 5.01533*10−4 1.43578*10−5 8.91439*10−8

5 0.000644195 2.11348*10−4 2.25054*10−6 1.39802*10−10

Table 2. Error of the solution of example 7.1, by using discontinuous

Lagrange-type k-0 elements

k\n 1 2 4 10

1 0.0511045 0.0224796 0.071885 0.0193661
2 0.00360519 0.00812911 0.000710505 2.86684*10−4

3 0.00187936 0.00216985 0.000183828 7.35154*10−5

4 0.00138635 3.43556*10−4 3.07522*10−5 6.93185*10−8

5 0.000358096 1.48186*10−5 2.78763*10−6 1.14221*10−10

solution of linear system

N∑
j=1

cj{(bj(t), b∗i (t))− (

∫ t

0
bj(η)dη, b

∗
i (t)) −

(

∫ 1

0
k(t, s)

∫ s

0
bj(η)dηds, b

∗
i (t))} = (f(t), b∗i (t)) +

(u0, b
∗
i (t)) + (u0

∫ 1

0
k(t, s)ds, b∗i (t)) , i = 1, · · · , N. (10)

7. Numerical results

Example 7.1 Consider integro-differential equation{
u′(t)− u(t)−

∫ 1
0 e

stu(s)ds = 1−et+1

t+1 0 ⩽ t ⩽ 1

u(0) = 1

with the exact solution u(t) = et. In table 1 and table 2 we computed

∥un(t(i)j ) − u(t
(i)
j )∥2 by using continuous Lagrange-type k-0 elements and discon-

tinuous Lagrange-type k-0 elements, respectively, and in table 5, we computed
∥un(ti)−u(ti)∥2 by using Hermite-type 3-1 elements for n = 1, 2, 4, 10 with equally
spaced points.

Example 7.2 Consider integro-differential equation{
u′(t)− u(t)− 1

(ln 2)2

∫ 1
0

t
s+1u(s)ds =

1
t+1 − t

2 − ln(t+ 1) 0 ⩽ t ⩽ 1

u(0) = 0

with the exact solution u(t) = ln(t + 1). In table 3 and table 4 we computed

∥un(t(i)j ) − u(t
(i)
j )∥2 by using continuous Lagrange-type k-0 elements and discon-

tinuous Lagrange-type k-0 elements, respectively, and in table 5, we computed
∥un(ti)−u(ti)∥2 by using Hermite-type 3-1 elements for n = 1, 2, 4, 10 with equally
spaced points.
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Table 3. Error of the solution of example 7.2 by using continuous Lagrange-

type k-0 elements

k\n 1 2 4 10

1 0.281718 0.0981084 0.0143986 0.0198249
2 0.00615015 0.000388461 3.63723*10−4 8.69589*10−6

3 0.00189197 0.000289194 4.30127*10−4 8.68816*10−6

4 5.64184*10−7 7.56978*10−6 2.08519*10−8 1.85981*10−9

5 3.14611*10−7 4.61389*10−6 5.34152*10−8 2.07412*10−9

Table 4. Error of the solution of example 7.2 by using discontinuous

Lagrange-type k-0 elements

k\n 1 2 4 10

1 0.0116123 0.00483185 0.017779 0.004548
2 0.000668994 0.0079569 8.47232*10−5 3.51021*10−6

3 0.00128848 0.000119047 1.09386*10−5 4.31958*10−6

4 3.01056*10−5 7.61518*10−6 2.17294*10−7 1.41735*10−9

5 4.10969*10−5 5.16155*10−7 2.58529*10−7 2.67806*10−9

Table 5. Error of the solution of exam-

ples 7.1 and 7.2 by using Hermite-type 3-1

elements

n Example 7.1 Example 7.2

1 0.00660823 0.01902821
2 0.00028836 0.00261158
4 1.17916*10−5 0.000334349
10 4.89515*10−7 1.552805*10−6

8. Conclusion

When using piecewise polynomials as basis functions we face with the following
problems:
1) Increasing in the polynomials’s degree increases calculation’s errors;
2) Numerical solution of equations by the Galerkin method is so difficult.
In this paper, we used Petrov-Galerkin elements for solving linear Fredholm

integro-differential equations. Using this method, by choosing the test space to be
space of piecewise polynomials of lower degree, we practically showed that the above
problems could be removed, consequently, we are able to solve equation (1) with
less computational cost. In section 7 we showed , by two examples , that increasing
in the degree of polynomials causes decreasing of the calculation’s errors.
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