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Abstract.This paper present a numerical algorithm for the linear one-dimensional heat and
wave equation. In this method, a finite difference approach had been used to discrete the time
derivative while quintic spline is applied as an interpolation function in the space dimension.
We discuss the accuracy of the method by expanding the equation based on Taylor series and
minimize the error. The proposed method has eighth-order accuracy in space and fourth-order
accuracy in time variables. From the computational point of view, the solution obtained by
this method is in excellent agreement with those obtained by previous works and also it is
efficient to use. Numerical examples are given to show the applicability and efficiency of the
method.
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1. Introduction

Consider one-dimensional heat equation of the form

∂u

∂t
= c2

∂2u

∂x2
, 0 ⩽ x ⩽ l, t ⩾ 0, (1)
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with initial condition

u(x, 0) = f1(x), 0 ⩽ x ⩽ l, (2)

and boundary conditions

u(0, t) = p1(t), t ⩾ 0,

u(l, t) = q1(t), t ⩾ 0, (3)

and one-dimensional wave equation of the form

∂2u

∂t2
= c2

∂2u

∂x2
, 0 ⩽ x ⩽ l, t ⩾ 0, (4)

with initial condition

u(x, 0) = f2(x),
∂u(x, 0)

∂t
= f3(t), 0 ⩽ x ⩽ l, (5)

and boundary conditions

u(0, t) = p2(t), t ⩾ 0,

u(l, t) = q2(t), t ⩾ 0, (6)

where c2 and l are positive finite real constants and f1(x), f2(x), f3(x), p1(t),
p2(t), q1(t) and q2(t) are real continuous functions.

Some phenomena, which arise in many fields of scientific such as solid state
physics, plasma physics, fluid dynamics, mathematical biology and chemical kinet-
ics, can be modeled by partial differential equations. The heat and wave equations
are of primary importance in many physical systems such as electro-thermal anal-
ogy[1], signal formation[2], draining film [3], water transfer in soils [4], mechanic
and physics[5-8], elasticity[9] and etc.
There are several numerical schemes that have been developed for the solution

of the heat and wave equation [10-14]. Cubic spline has been used to approximate
the one dimensional heat conduction in[15], also the collocation method based on
hermite cubic spline applied to solve one-dimensional heat conduction problem in
[16].
In this paper, a method based on quintic spline for second-order boundary value

problems Eq.(1) and Eq.(4) is presented. This approach will employ consistency
relations at mid-knot. In Section 2 the formulation of non-polynomial quintic spline
has been developed and the consistency relation obtained is useful to discretize heat
equation Eq.(1) and wave equation Eq.(4). In Section 3, we present discretization of
the equation by a finite difference approximation to obtain the formulation of pro-
posed method. In Section 4, Truncation error and stability analysis are discussed.
In this section we approximate the functions based on Taylor series to minimize
the error term and to obtain the class of methods. In Section 5, numerical experi-
ments are conducted to demonstrate the viability and the efficiency of the proposed
method computationally.
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2. Formulation of Tension Quintic Spline Function

In recent years, many scholars have used non-polynomial spline for solving dif-
ferential equations [17-19]. The spline function is a piecewise polynomial or non-
polynomial of degree n satisfying the continuity of the (n−1)th derivative. Tension
quintic spline is a non-polynomial function that has six parameters to be deter-
mined hence it can satisfy the conditions of two endpoints of the interval and
continuity of first, second, third and fourth derivatives. We introduce the set of
grid points in the interval [0, l] in space direction

xi = ih , h =
l

n+ 1
, i = 0, 1, 2, ..., n+ 1.

For each segment, quintic spline pi(x) is define as

pi(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 + ei(e
ω(x−xi) − e−ω(x−xi))

+ fi(e
ω(x−xi) + e−ω(x−xi)), i = 0, 1, ..., n, (7)

where ai, bi, ci, di, ei and fi are the unknown coefficients to be determined also ω is
free parameter. If ω → 0 then pi(x) reduces to quintic spline in the interval [0, l].
To derive the unknown coefficients, we define

pi(xi) = ui, pi(xi+1) = ui+1, ṕ í(xi) =Mi, ṕ í(xi+1) =Mi+1,

p
(4)
i (xi) = Si, p

(4)
i (xi+1) = Si+1. (8)

From Eq.(7) and Eq.(8), we can determine the unknown coefficients

ai = ui −
Si
ω4

,

bi =
ui+1

h
− ui
h

+ Si

(
h

ω4
+

h

3ω2

)
+ Si+1

(
h

6ω2 − 1

hω4

)
− h

3
Mi −

h

6
Mi+1,

ci =
Mi

2
− Si

2ω2
, di =

1

6h

(
Mi+1 −Mi +

Si
ω2

− Si+1

ω2

)
ei =

Si+1

ω4 (eθ − e−θ)
−

Si
(
eθ + e−θ

)
2ω4 (eθ − e−θ)

, fi =
Si
2ω4 ,

where θ = ωh and i = 0, 1, 2, ..., n.
Finally using the continuity of first derivative at the support points for i =
2, 3, ..., n− 1, we have

ui+1

h
− 2

ui
h

+
ui−1

h
− h

6
Mi−1 −

2h

3
Mi −

h

6
Mi+1 =

= Si−1

(
hω−4 − h

6ω2 −
(
eθ + e−θ

)2
2ω3 (eθ − e−θ)

+
eθ − e−θ

2ω3

)
, (9)
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and from continuity of third derivative, we have

Mi+1

h
− 2

Mi

h
+
Mi−1

h
= Si−1

(
hω−2 −

(
eθ + e−θ

)2
2ω (eθ − e−θ)

+
eθ − e−θ

2ω

)

+Si

(
−2hω−2 + 2

eθ + e−θ

ω (eθ − e−θ)

)
+ Si+1

(
hω−2 + 2

1

ω (eθ − e−θ)

)
. (10)

From Eq.(9) and Eq.(10), after eliminating Si we have the following useful relation
for i = 2, 3, ..., n− 2

ui+2 + 2ui+1 − 6ui + 2ui−1 + ui−2 =

=
h2

20
(αMi+2 + βMi+1 + γMi + βMi−1 + αMi−2) , (11)

where

α = θ−4 − 2

θ3 (eθ − e−θ)
− 1

3θ (eθ − e−θ)
,

β = −4 θ−4 +
4 + 2 eθ + 2 e−θ

θ3 (eθ − e−θ)
+

eθ + e−θ − 4

3θ (eθ − e−θ)
,

γ = 6 θ−4 +
4 eθ + 4 e−θ − 2

3θ (eθ − e−θ)
− 4 + 4 eθ + 4 e−θ

θ3 (eθ − e−θ)
.

When ω → 0 so θ → 0, then (α, β, γ) → (1, 26, 66), and the relation defined by
Eq.(11) reduce into ordinary quintic spline

ui+2 + 2ui+1 − 6ui + 2ui−1 + ui−2 =

=
h2

20
(Mi+2 + 26Mi+1 + 66Mi + 26Mi−1 +Mi−2) . (12)

3. Numerical Technique

By using Eq.(12) for (j + 1)th, (j)th and (j − 1)th time level we have

uj+1
i+2 + 2uj+1

i+1 − 6uj+1
i + 2uj+1

i−1 + uj+1
i−2 =

=
h2

20

(
αM j+1

i+2 + βM j+1
i+1 + γM j+1

i + βM j+1
i−1 + αM j+1

i−2

)
, (13)

uji+2 + 2uji+1 − 6uji + 2uji−1 + uji−2 =

=
h2

20

(
αM j

i+2 + βM j
i+1 + γM j

i + βM j
i−1 + αM j

i−2

)
, (14)

uj−1
i+2 + 2uj−1

i+1 − 6uj−1
i + 2uj−1

i−1 + uj−1
i−2 =
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=
h2

20

(
αM j−1

i+2 + βM j−1
i+1 + γM j−1

i + βM j−1
i−1 + αM j−1

i−2

)
, (15)

that we will use these equations to discretize heat and wave equation.

3.1 Heat Equation

We develop an approximation for Eq.(1) in which first order time derivative is
replaced by the following finite difference approximation

ūjt =
uj+1
i − uj−1

i

2k
= ujt +O

(
k2
)
, (16)

and the space derivative is replaced by non-polynomial tension spline approxima-
tion

ūjxx = p′′(xi, tj) =M j
i . (17)

By using Eq.(16) and Eq.(17) we can develop a new approximation for the solution
of Eq.(1), So that the heat equation Eq.(1) is replaced by

ηM j−1
i + (1− 2 η)M j

i + ηM j+1
i =

uj+1
i − uj−1

i

2c2k
, (18)

where 0 ⩽ η ⩽ 1 is a free constant.
If Eq.(14) multiplied by (1− 2η) added to Eq.(13) and Eq.(15) multiplied by η

and eliminate M j
i , then we obtain the following relation for heat equation Eq.(1)

η (u (i+ 2, j − 1) + u (i− 2, j − 1)) + (1− 2 η) (u (i+ 2, j) + u (i− 2, j))

+η (u (i+ 2, j + 1) + u (i− 2, j + 1)) + 2 η [u (i+ 1, j − 1)

+u (i− 1, j − 1)] + 2 (1− 2 η) (u (i+ 1, j) + u (i− 1, j))

+2 η (u (i+ 1, j + 1) + u (i− 1, j + 1))− 6 η u (i, j − 1)

−6 (1− 2 η)u (i, j)− 6 η u (i, j + 1)− h2

40c2k
α [u (i+ 2, j + 1)

−u (i+ 2, j − 1) + u (i− 2, j + 1)− u (i− 2, j − 1)]

− h2

40c2k
β [u (i+ 1, j + 1)− u (i+ 1, j − 1) + u (i− 1, j + 1)

−u (i− 1, j − 1)]− h2

40c2k
γ (u (i, j + 1)− u (i, j − 1)) = 0,

j = 1, 2, 3, ... i = 2, ..., N − 2. (19)

3.2 Wave Equation

Finite difference approximation for second order time derivative is

ūjtt =
uj+1
i − 2uji + uj−1

i

k2
= ujtt +O

(
k2
)
, (20)
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as we consider, the space derivative is approximated by the non-polynomial tension
spline

ūjxx = p′′(xi, tj) =M j
i . (21)

By using Eq.(16) and Eq.(17) for wave equation Eq.(4) we have

ηM j−1
i + (1− 2 η)M j

i + ηM j+1
i =

uj+1
i − 2uji + uj−1

i

c2k2
, (22)

where 0 ⩽ η ⩽ 1 is a free constant.
Again we multiply Eq.(14) by (1 − 2η) and add this to Eq.(13) and Eq.(15)

multiplied by η and eliminate M j
i , then we obtain the following relation for wave

equation Eq.(4)

η (u (i+ 2, j − 1) + u (i− 2, j − 1)) + (1− 2 η) (u (i+ 2, j) + u (i− 2, j))

+η (u (i+ 2, j + 1) + u (i− 2, j + 1)) + 2 η [u (i+ 1, j − 1)

+u (i− 1, j − 1)] + 2 (1− 2 η) (u (i+ 1, j) + u (i− 1, j))

+2 η (u (i+ 1, j + 1) + u (i− 1, j + 1))

−6 η u (i, j − 1)− 6 (1− 2 η)u (i, j)− 6 η u (i, j + 1)

− h2

40c2k
α [u (i+ 2, j + 1)− 2u (i+ 2, j) + u (i+ 2, j − 1) + u (i− 2, j + 1)

−2u (i− 2, j) + u (i− 2, j − 1)]− h2

40c2k
β [u (i+ 1, j + 1)− 2u (i+ 1, j)

+u (i+ 1, j − 1) + u (i− 1, j + 1)− 2u (i− 1, j) + u (i− 1, j − 1)]

− h2

40c2k
γ (u (i, j + 1)− 2u (i, j) + u (i, j − 1)) = 0,

j = 1, 2, 3, ... i = 2, ..., N − 2. (23)

4. Error Estimate in Spline Approximation

To estimate the error for heat and wave equation we expand Eq.(19) and Eq.(23)
in Taylor series about u(xi, tj) and then we find the optimal values for α, β and γ.

4.1 Error Estimate for Heat Equation

By expanding Eq.(19) in Taylor series and replace the derivatives involving t by
the relation

∂i+ju

∂xi∂tj
= c2j

∂i+2ju

∂xi+2j
, (24)
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for heat equation Eq.(1), we obtain the local truncation error. The principal part
of the local truncation error of the proposed method for heat equation is

Ti
j =

(
− α

10
− γ

20
− β

10
+ 6

)
h2 (Dx,x) (U) (0, 0)

+

(
−α
5
− β

20
+

3

2

)
h4 (Dx,x,x,x) (U) (0, 0)

+

(
6 η c2h2k2 +

(
− α

15
− β

240
+

11

60

)
h6
)
(Dx,x,x,x,x,x) (U) (0, 0)

+

(
− α

60
− β

60
− γ

120

)
c2h2k2 (Dx,x,x,x,x,x) (U) (0, 0)

+

((
− α

30
− β

120
+

3

2
η

)
c2h4k2

)
(Dx,x,x,x,x,x) (U) (0, 0)

+[

(
− α

30
− β

120
+

3

2
η

)
h4k2c2 +

+

(
− 2

225
α− 1

7200
β +

43

3360

)
h8] (Dx,x,x,x,x,x,x,x) (U) (0, 0)

+ ..... . (25)

By choosing suitable values of parameters α, β, γ and η we obtain various classes
of the proposed method.

Remark1. If θ → 0 in Eq.(11) we have α = 1, β = 26 and γ = 66 which
is ordinary quintic spline.

Remark2. If we choose α = 7
6 , β = 76

3 and γ = 67 in Eq.(25) we obtain

a new scheme of order O(h8 + h4k4), furthermore by choosing η = 1
6 we can

optimize our scheme, too.

4.2 Error Estimate for Wave Equation

For wave equation, we expand Eq.(23) in Taylor series and replace the derivatives
involving t by the relation

∂i+ju

∂xi∂tj
= cj

∂i+ju

∂xi+j
, (26)
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and then we drive the local truncation error. The principal part of the local trun-
cation error of the proposed method for wave equation is

Ti
j =

(
− α

10
− γ

20
− β

10
+ 6

)
h2 (Dx,x) (U) (0, 0)

+[

(
−α
5
− β

20
+

3

2

)
h4 +

+

(
− α

120
− γ

240
− β

120
+ 6η

)
h2k2c] (Dx,x,x,x) (U) (0, 0)

+[

(
− α

15
− β

240
+

11

60

)
h6 +

+

(
− α

60
− β

240
+

3

2
η

)
h4k2c] (Dx,x,x,x,x,x) (U) (0, 0)

+

((
− α

3600
− γ

7200
− β

3600
+

1

2
η

)
h2k4c2

)
(Dx,x,x,x,x,x) (U) (0, 0)

+

((
− 2

225
α− 1

7200
β +

43

3360

)
h8
)
(Dx,x,x,x,x,x,x,x) (U) (0, 0)

+ ..... . (27)

Remark3. If we choose α = 7
6 , β = 76

3 and γ = 67 in Eq.(27) we obtain a new

scheme of order O(h8 + h4k4), furthermore by choosing η = 1
12 we can optimize

our scheme, too.

5. Stability Analysis

In this section, we discuss stability of the proposed method for numerical solution
of heat and wave equation. we assume that the solution of Eq.(19) and Eq.(23) at
grid point (lh, jk) is

ujl = ξjeliθ, (28)

where i =
√
−1 , θ is a real number and ξ is a complex number.

By substituting Eq.(28) in Eq.(19) and Eq.(23), we obtain a quadratic equation as
follow

Qξ2 + ϕξ + ψ = 0. (29)

For heat equation we have

Q = cos (2 θ)

(
2 η +

h2α

20ck

)
+ cos (θ)

(
4 η +

h2β

20ck

)
− 6 η +

h2γ

20ck
,

ϕ = cos (2 θ) (1− 2 η) + cos (θ) (2− 4 η)− 6 + 12 η,
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ψ = cos (2 θ)

(
2 η − h2α

20ck

)
+ cos (θ)

(
4 η − h2β

20ck

)
− 6 η − h2γ

20ck
.

By using RouthHurwitz criteria and using transformation ξ = 1+z
1−z in Eq.(29), we

have

(Q− ϕ+ ψ)ξ2 + 2(Q− ψ)ξ + (Q+ ϕ+ ψ) = 0. (30)

If |ξ| < 1, then the difference scheme Eq.(19) is stable. It is sufficient to show that
Q− ϕ+ ψ > 0, 2(Q− ψ) > 0 and Q+ ϕ+ ψ > 0.
From the above relation we have
(i)Q− ϕ+ ψ = cos2 (θ) (12 η − 2) + cos (θ) (12 η − 2)− 30 η + 7,

(ii)Q− ψ = h2

10ck (αcos(2θ) + βcos(θ) + γ),
(iii)Q+ ϕ+ ψ = cos2 (θ) (4 η + 2) + cos (θ) (4 η + 2)− 2 η − 7.
If η > 1

6 and η > 30
132 then Q− ϕ+ ψ > 0. For α = 7

6 , β = 76
3 and γ = 67 we have

Q− ψ > 0 and if η > −1
2 and η > −30

12 then Q+ ϕ+ ψ > 0.
Thus our method is stable for heat equation.

For wave equation we have

Q = cos (2 θ)

(
2 η − h2α

10ck2

)
+ cos (θ)

(
4 η − h2β

10ck2

)
− 6 η − h2γ

20ck2
,

ϕ = cos (2 θ)

(
2− 4 η +

h2α

5ck2

)
+ cos (θ)

(
4− 8 η +

h2β

5ck2

)
− 6 + 12 η +

h2γ

10ck2
,

ψ = cos (2 θ)

(
2 η − h2α

10ck2

)
+ cos (θ)

(
4 η − h2β

10ck2

)
− 6 η − h2γ

20ck2
,

thus we have (Q− ϕ+ ψ)ξ2 + (Q+ ϕ+ ψ) = 0. In order to |ξ| < 1, we must have
ϕ < 0 and Q+ ψ > 0.
Obviously we have Q + ψ > 0 for each η, if η > 1

2 + 7h2

120ck2 then ϕ < 0, therefore
our scheme will be stable for wave equation.

6. Numerical Example

We applied the presented method to the following heat and wave equations. For
this purpose, we consider three examples for heat equations and two examples for
wave equation.
We applied proposed method with (α, β, γ) = (1, 26, 66) (method I) which is the or-
dinary quintic spline of with order O(h6+k4) and if we select (α, β, γ) = (76 ,

76
3 , 67)

we obtain a new method which is of order O(h8 + h4k4) (method II).

Example1:
We consider Eq.(1) with c = 1

π , f1(x) = sin(πx) and p1(t) = q1(t) = 0. The exact
solution for this problem is

u (x, t) = e−t sin (π x) .
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Table 1. Absolute errorforExample.1

xi tj Method I Method II Method in [13]

0.125 0.01 4.1× 10−7 3× 10−7 1× 10−4

0.125 0.05 8× 10−7 7× 10−7 2.5× 10−4

0.25 0.01 5.3× 10−7 4.9× 10−7 4× 10−4

0.25 0.05 1× 10−6 9.5× 10−7 4.2× 10−4

0.5 0.01 5× 10−7 4.9× 10−7 3× 10−4

0.5 0.05 1× 10−6 9.6× 10−7 2× 10−4

Figure 1. Space-Time graph of the solution up to t=1 s, with c = 1
π
, t = 0.01 and h = 0.001 for example

1.

This problem is solved by different values of the step size in the x-direction h
and time step size ∆t = 0.01. The computed solutions by proposed method are
compared with the exact solution at the grid points and the maximum absolute
errors are tabulated in Table 1. Also the results are compared with the solutions
obtained in [13]. The space−time graph of the estimated solution is given in Figs.
1. The maximum absolute error of this example by method II is 3.6× 10−9 and by
method I is 3× 10−6.

Example2:

We consider Eq.(1) with c = 1, f1(x) = cos(π2x) and p1(t) = e−
π2

4
t and q1(t) = 0.

The exact solution for this problem is

u (x, t) = e−
π2

4
t cos

(π
2
x
)
.
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Table 2. Absolute errorforExample.2

xi tj MethodI MethodII

0.1 0.0003 6.5× 10−9 7× 10−10

0.1 0.0005 2.5× 10−9 4× 10−10

0.15 0.0003 2.3× 10−9 3× 10−10

0.15 0.0005 2.5× 10−9 1.6× 10−10

0.2 0.0003 2.2× 10−9 1.4× 10−10

0.2 0.0005 2.1× 10−9 1× 10−10

Figure 2. Space-Time graph of the solution up to t=1 s, with c = 1, t = 0.0001 and h = 0.01 for example
2.

This problem is solved by different values of the step size in the x-direction h
and time step size ∆t = 0.0001. The computed solutions by proposed method are
compared with the exact solution at the grid points and the maximum absolute
errors are tabulated in Table 2. The space−time graph of the estimated solution
is given in Figs. 2. The maximum absolute error of this example by method II is
1.32× 10−8 and by method I is 3× 10−9.

Example3:
We consider Eq.(1) with c = 1, f1(x) = sin(x), p1(t) = 0 and q1(t) = −e−tsin(1).
The exact solution for this problem is

u (x, t) = e−t sin (x) .
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Table 3. Absolute errorforExample.3

xi tj MethodI MethodII

0.1 0.0003 1× 10−10 1× 10−10

0.1 0.0005 1× 10−10 1× 10−10

0.15 0.0003 2× 10−11 2× 10−11

0.15 0.0005 4× 10−11 4× 10−11

0.2 0.0003 1× 10−10 1× 10−10

0.2 0.0005 2× 10−10 1× 10−10

Figure 3. Space-Time graph of the solution up to t=1 s, with c = 1, t = 0.0001 and h = 0.01 for example
3.

This problem is solved by different values of the step size in the x-direction h
and time step size ∆t = 0.0001. The computed solutions by proposed method are
compared with the exact solution at the grid points and the maximum absolute
errors are tabulated in Table 3. The space−time graph of the estimated solution
is given in Figs. 3. The maximum absolute error of this example by method II is
1× 10−9 and by method I is 2.1× 10−9.

In the following examples we apply proposed method to the wave equa-
tion.

Example4:
We consider Eq.(4) with c = 1, f2(x) = 0, f3(x) = πcos(πx), p2(t) = sin(πt) and



J. Rashidinia & M. Mohsenyzadeh/ IJM2C, 05 - 04 (2015) 291-305. 303

Table 4. Absolute errorforExample.4

xi tj MethodI MethodII

0.05 0.03 9× 10−12 3× 10−12

0.05 0.05 1.6× 10−11 7× 10−12

0.1 0.03 1.2× 10−11 1.7× 10−11

0.1 0.05 1.7× 10−11 1× 10−12

0.2 0.03 7× 10−12 1× 10−12

0.2 0.05 1× 10−11 1.1× 10−11

Figure 4. Space-Time graph of the solution up to t=1 s, with c = 1, t = 0.01 and h = 0.01 for example 4.

q2(t) = −sin(πt). The exact solution for this problem is

u (x, t) = π cos (π x) sin (π t) .

This problem is solved by different values of the step size in the x-direction h
and time step size ∆t = 0.01. The computed solutions by proposed method are
compared with the exact solution at the grid points and the maximum absolute
errors are tabulated in Table 4. The space−time graph of the estimated solution
is given in Figs. 4. The maximum absolute error of this example by method II is
8.7× 10−10 and by method I is 1.2× 10−9.

Example5:
We consider Eq.(4) with c = 1, f2(x) = cos(πx), f3(x) = 0, p2(t) = cos(πt) and
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Table 5. Absolute errorforExample.5

xi tj MethodI MethodII

0.05 0.0003 5× 10−10 1× 10−9

0.05 0.0005 1× 10−10 1× 10−9

0.1 0.0003 2.1× 10−9 7× 10−10

0.1 0.0005 9.7× 10−9 4× 10−10

0.2 0.0003 6.2× 10−9 1× 10−10

0.2 0.0005 1.3× 10−8 1× 10−10

Figure 5. Space-Time graph of the solution up to t=1 s, with c = 1, t = 0.0001 and h = 0.01 for example
5.

q2(t) = −cos(πt). The exact solution for this problem is

u (x, t) =
1

2
cos (π (x+ t)) +

1

2
cos (π (x− t)) .

This problem is solved by different values of the step size in the x-direction h
and time step size ∆t = 0.0001. The computed solutions by proposed method are
compared with the exact solution at the grid points and the maximum absolute
errors are tabulated in Table 5. The space−time graph of the estimated solution
is given in Figs. 5. The maximum absolute error of this example by method II is
6.5× 10−9 and by method I is 3.84× 10−8.
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7. Conclusion

In this paper, we constructed a three time-level spline-difference scheme for the one-
dimensional heat and wave equation. Finite difference approximations for the time
direction and quintic spline in space direction are used, our presented scheme is of
order O(h8+h4k4). We solved five examples to discuss the accuracy of the method.
L∞ have been used for errors which are tabulated in tables. These computational
results show that our proposed algorithm is effective and accurate.
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