
International Journal of

Mathematical Modelling & Computations

Vol. 05, No. 03, Summer 2015, 267- 275

Optimum Generalized Compound Linear Plan for Multiple-Step

Step-Stress Accelerated Life Tests

N. Chandraa∗ and Mashroor Ahmad Khanb

a,bDepartment of Statistics Ramanujan School of Mathematical Sciences, Pondicherry

University (A Central University), Pondicherry-605 014, India.

Abstract. In this paper, we consider an M−step(M ⩾ 3) i.e., multiple step-stress accelerated
life testing (ALT) experiment with unequal duration of time τi(τ1 < τ2 < · · · < τm−1). It
is assumed that the time to failure of a product follows Rayleigh distribution with a log-
linear relationship between stress and lifetime and also we assume a generalized Khamis-
Higgins model for the effect of changing stress levels. Taking into account that the problem of
choosing the optimal time for 3-step step-stress tests under compound linear plan was initially
attempted by [17]. We ever first have developed a generalized compound linear plan for
multiple-step step-stress setting using variance-optimality criteria. Some numerical examples
are discussed to illustrate the proposed procedures.
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1. Introduction

The accelerated life test (ALT) is frequently used to obtain information about
system or product life distribution more quickly than under normal operating
conditions. Then the data from such tests will be transformed to estimate the
distribution of failure time under usual conditions. A special case of ALT is the
step-stress, [21] described that a step-stress test which allows the stress of a unit
to be changed at pre-specified times. In step-stress test, an initial low stress is
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applied to all test units. If a unit does not fail in a pre-specified time, the stress
is increased. There, can be more than one change of stress level. For more details,
see [3, 4, 6, 10, 15, 20, 27] and [24].
During the past two decades, the problem of determination of the optimal dura-

tion of stress changing of the step-stress test has attracted great attention in the
reliability literature. The development of optimal test plan under step-stress model
has been attempted by many researchers and they commonly used to design an
optimal plan by minimizing the asymptotic variances of the maximum likelihood
estimator of the log of mean life or some percentile of life at a specified stress
level. [20] initiated research in this area by assuming complete failure data under
two stress levels (simple step-stress) with the assumption of exponential lifetimes.
Extension of the above results to the time-censored and the three stress level cases
were obtained by [2] and [17], respectively. For the general M-level and k-variable
case, some numerical investigations were under taken by [16]. For an M-step step-
stress ALT with equal duration steps, [12], [5] and [25] and [26] tackled the problem
of determining the optimal stress change points when the available data are expo-
nential with progressively Type-I censored. For more details, see [13, 18, 22]. The
problem of optimal time issues with the cumulative exposure model for two stress
levels under different lifetime distributions has been studied by several authors
such as [1, 7, 8, 11, 14, 23]. Recently, [9] studied a problem for 3-step, step-stress
ALT by assuming the existence of linear as well as quadratic relationship between
the log mean failure time and stress, and also they developed an optimum plan
under compound linear plan.
Although much work has been done on the determination of optimal simple

step-stress ALT plans, attention on the general M − step(⩾ 3) step-stress testing
with unequal test length under the Rayleigh distributions has not been paid in
the literature. While most of models use simple step-stress plans that use only two
stresses. It has practical limitations; they highly depend upon the assumption of
a linear relationship between time to failure and stress and also use two extreme
stresses that can cause irrelevant failure modes, Khamis and Higgins [16].
In practice, the assumption of equal duration steps may be not the best for M-step

(or higher steps) step-stress life test planning. [6] also pointed out in his challenging
open problem 6 that the equi-spaced time intervals are quite appealing in the
framework of a step-stress test, it will be of interest to consider a general setting in
which we allow unequal steps and develop the corresponding inferential procedures.
It will then be useful to assess the loss (in precision or information) incurred in
adopting an equi-spaced step-stress test. Needless to say, the determination of
optimal step-stress tests in this general setting (i.e., finding the optimal time points
τ1 < τ2 < · · · < τm−1) will be of great practical value.
Therefore, this nice suggestion has motivated to authors to consider unequal

duration steps problem for products with Rayleigh distribution. The main focus
of this paper, to develop generalized compound linear plan for M − step(M ⩾ 3)
step-stress ALT and to investigate the choice of optimal change points at different
stress levels. Under complete data, the optimum time points are obtained by using
V-optimality criterion. To the best of our knowledge, either a theoretical or a
numerical verification of generalized compound linear plan for M − step(M ⩾ 3)
has not been made in the literature.
In the subsequent sections, the proposed model and assumptions are discussed

in section 2. In section 3, we present the expected Fisher information matrix of
the MLEs of the unknown parameters. The optimality criteria and the generalized
compound linear plan are given in section 4. Some simulation results are illustrated
in section 5. A conclusion of the proposed study is summarized in section 6.
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Notations
x0 Design (use) stress
xi ith test-stress, i = 1, 2, · · · ,m; x1 < x2 < · · · < xm
m Number of stress level
ξ Extrapolation amount where ξ = (x1 − x0)/(xm − x1)
n Total number of units placed on test
ni Number of failed units at stress
ti,j Ordered failure time of test unit at stress xi; i = 1, 2, · · · ,m; j = 1, 2, · · · , ni

θi Mean life at stress xi, i = 0, 1, 2, · · · ,m
τi Time of stress changing at xi
Fi(t) CDF of Rayleigh distribution with mean θi
F (t) CDF of a test unit under M-step step-stress
β0, β1 Unknown parameters of log-linear relationship between stress and life.

2. Model Description and Basic Assumptions

Let us assumed x1 < x2 < · · · < xm that are the ordered stress level to be used in
the life test. For i = 1, 2, · · · ,m, let ni denote the number of units failed at stress
level xi, and ti,j denote the j

th ordered failure time among the ni failed units at xi.
Therefore, a step-stress model with unequal step duration τi proceeds as follows:
Initially n experimental units are placed on a life test at stress x1, and run until
a pre-specified time τ1; at that point, the stress is changed to x2 and the test is
continued on the remaining n − n1 units until τ2, and so on. Finally, at time τk,
all surviving n−

∑m
i=1 ni items are failed or censored, thereby terminating the life

test.
At stress level xi, i = 1, 2, · · · ,m, the lifetime T of a test unit is assumed to

follow a Rayleigh distribution with cumulative distribution function (CDF)

Fi(t; θi) = 1− exp

(
− t2

2θ2i

)
, t > 0, θ > 0 (1)

Basic Assumptions

(i). Under any constant stress, the time to failure of a test unit follows a
Rayleigh distribution with distribution function is given in equation (1).

(ii). At any stress level xi, the mean time to failure θi, of a test unit is a log-linear
function of stress, i.e.,

log(θi) = β0 + β1xi, i = 1, 2, · · · ,m. (2)

where, β0, β1 are the unknown parameters depending on the nature of the
product and method of the test.

(iii). The lifetimes of test units are independent and identically distributed.

Under the assumption (i) and (ii), the CDF of the lifetime of a test unit under
M-step step-stress ALT is given by

Fi(t) = Fi(t− τi−1 + Si−1; θi) if
{
τi−1⩽τi for i=1,2,··· ,m−1

τk−1<∞ for i=m
(3)

where, S0 = 0, τ0 = 0 and Si−1 =
θi

θi−1
(τi−1 + Si−2 − τi−2) is the solution of

Fi(Si−1; θi) = Fi−1(τi−1 + Si−2 − τi−2; θi−1), i = 1, 2, · · · ,m.
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Hence, the Rayleigh cumulative distribution function for M-step, step-stress ALT
using K-H model is given by

F (t) =


1− exp

(
− t2

2θ2
1

)
, for 0 < t ⩽ τ1

1− exp
(
− t2+S2

i−1−τ2
i−2

2θ2
i

)
, for τi−1 ⩽ t ⩽ τi if i = 2, · · · ,m− 1,

and for τi ⩽ t < ∞ if i = m.

(4)

The corresponding probability density function (PDF) of the lifetime of a test unit
is given by

f(t) =


t
θ2
1
exp

(
− t2

2θ2
1

)
, for 0 < t ⩽ τ1

t
θ2
i
exp

(
− t2+S2

i−1−τ2
i−2

2θ2
i

)
, for τi−1 ⩽ t ⩽ τi if i = 2, · · · ,m− 1,

and for τi ⩽ t < ∞ if i = m.

(5)

3. Maximum Likelihood Estimation (MLE) of Parameters

The MLE method is used for parameters estimation and analysis of failure time
data. From equation (5), the joint p.d.f. of observed data n = (n1, n2, · · · , nm) and
t = (t1, t2, · · · , tm) with ti = (ti,1, ti,2, · · · , ti,ni

) is given by

L(t,n) =

m∏
i=1

 ni∏
j=1

fi(tij)

 (6)

Hence, by using the assumption (ii) the log-likelihood function of β0 and β1 is given
by

logL(β0, β1) = −2

m∑
i=1

ni log(β0 + β1xi) +

m∑
i=1

ni∑
j=1

log(tij)−
m∑
i=1

ni∑
j=1

log(Zij) (7)

where, Zij =
t2ij+S2

i−2−τ2
i−1

2e2(β0+β1xi)
, i = 1, 2, · · · ,m and j = 1, 2, · · · , ni. Note that the

MLEs of β0 and β1 exist only if ni > 0, in equation (7). By using the following
expressions:

∂Si−1

∂β1
=

i∑
h=2

(xh − xh−1)Sh−1e
β1(xi−xh) (8)

∂Zij

∂β0
= −Zij ,

∂Zij

∂β1
= −2xiZij +

(∑i
h=2(xh − xh−1)Sh−1e

β1(xi−xh)

2e2(β0+β1xi)

)
for i = 1, 2, · · · ,m and j = 1, 2, · · · , ni

(9)

The MLEs β̂0 and β̂1 can be obtained by solving the following two likelihood
equations:

∂ logL

∂β0
= −2

m∑
i=1

ni +
m∑
i=1

ni∑
j=1

Zij = 0 (10)
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∂ logL

∂β1
= −2

m∑
i=1

nixi +
m∑
i=1

ni∑
j=1

(
2xiZij −

∑i
h=2(xh − xh−1)Sh−1e

β1(xi−xh)

2e2(β0+β1xi)

)
= 0

(11)
The likelihood equations (10) and (11) has no close form solution for β0 and β1
and cannot be solved analytically. Thus, MLEs (β̂0, β̂1) of β0 and β1 can be ob-
tained through numerical methods such as Newton-Raphson method. The Newton–
Raphson algorithm implemented in R package maxLik is used to maximize the
log-likelihood in equation (7).
Let θ = (θ1, θ2)

′ = (β0, β1)
′. Under some mild regularity conditions, for a large

sample size n, the vector of the MLEs θ̂ is approximately distributed as bivariate
normal with mean vector θ and variance-covariance matrix I−1(θ), which is the
inverse of the Fisher information matrix given by

I(θ) = −E

{
∂2log(θ)

∂θi∂θj

}
= n

[
I11 I12
I21 I22

]
(12)

The double and mixed partial derivatives of equation (7) are given as

∂2 logL

∂β2
0

= −4

m∑
i=1

ni∑
j=1

Zij

∂2 logL

∂β0, ∂β1
= −4

m∑
i=1

ni∑
j=1

xiZij

∂2 logL

∂β2
1

= −4

m∑
i=1

ni∑
j=1

x2iZij + 2

m∑
i=1

ni∑
j=1

i∑
h=2

xi
(xh − xh−1)Sh−1e

β1(xi−xh)

2e2(β0 + β1xi)

−
m∑
i=1

ni∑
j=1

i∑
h=2

h∑
l=2

(xh − xh−1)
(xl − xl−1)Sl−1e

β1(xi−xh)

2e2(β0 + β1xi)

Now, the elements of the expected Fishers Information matrix are given as:

I11 = −E

{
∂2 logL

∂β2
0

}
=

ni∑
i=1

Ai(τ)

I12 = I21 = −E

{
∂2 logL

∂β0, ∂β1

}
=

ni∑
i=1

xiAi(τ)

I22 = −E

{
∂2 logL

∂β2
1

}
=

ni∑
i=1

x2iAi(τ)
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where

A1 = 1− exp

{
− τ21
2θ21

}

A2 = exp

{
− τ21
2θ21

}{
1− exp

[
−τ22 − τ21

2θ22

]}

.........

Am = exp

{
−
τ2m−1 − τ2m−2

2θ2m−1

−
τ2m−2 − τ2m−3

2θ2m−2

− · · · − τ22 − τ21
2θ22

− τ21
2θ21

}
Our main objective in this paper is to explore the choice of τi, i = 1, 2, · · · ,m− 1,
the time of the stress change. We investigated the selection of the optimal time
point according to the variance-optimality criteria mainly based on equation (12)
and are discussed in the next section.

4. Optimum criterion

4.1 Variance-(V) optimality

The mean of the failure time distribution is an important characteristic and im-
perative in reliability analysis. In step-stress scheme, the researchers often wish to
estimate the mean lifetime at the use stress with maximum precision and minimum
variability possible. We can use the asymptotic variance of the log of the mean life-
time θ0 at use stress as the objective function for selecting the optimal stress change
time. For this purpose, we consider an objective function from equation (12) as

Φ(τ1, τ2, · · · , τm−1) = nAV ar(log θ̂0)

= nAV ar
(
β̂0 + β̂1x0

)
= n(1, x0)I

−1
n (β̂0, β̂1)

(
1
x0

)
(13)

Φ(τ1, τ2, · · · , τm−1) =

∑m
i=1Ai(τ)(xi − x0)

2

4
∑m

i=1

∑m
l=1Ai(τ)Al(τ)(xi − xl)2

(14)

where, AVar Stands for asymptotic-variance and x0 is the design (use) stress. The
V-optimality is the one that minimizes Φ(τ1, τ2, · · · , τm−1) in equation (14).

4.2 Generalized Compound Linear Plan

The M − step(M ⩾ 3) step-stress optimum linear plan (14) by minimizing
Φ(τ1, τ2, · · · , τm−1), occurs when τ1 = τ2 = · · · = τm−1 so that only two extreme
stresses x1 and xm are used in testing. Hence, the optimal stress change point at
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τ1 = τ2 = · · · = τm−1 is given as:

τ∗ = θ

√
2 log

(
1 + 2ξ

ξ

)
, where ξ =

x1 − x0
xm − x1

(15)

According to [17] only two extreme stresses are used and that can cause irrele-
vant failure modes. So, they had given another plan, called compound linear plan
for 3-step SSALT. In which they uses the optimum simple step-stress plan twice.
Therefore, the generalized compound linear plan for M − step(M ⩾ 3) is given as

τ ′i−1 = θi−1

√
2 log

(
1 + 2ξi−1

ξi−1

)
, with stresses x0, xi−1, xi, i = 2, 3, ..m. Then

τ∗i−1 = τ∗i−2 + τ ′i−1 (16)

4.3 The case for 3-step step-stress

Let us consider the case m = 3; to investigate the solution for proposed model
given in equation (16).

τ∗1 = θ1

√
2 log

(
1 + 2ξ1

ξ1

)
, with stresses x0, x1, x2 and ξ1 =

x1 − x0
x2 − x1

.

τ ′2 = θ2

√
2 log

(
1 + 2ξ2

ξ2

)
, with stresses x0, x2, x3 and ξ2 =

x2 − x0
x3 − x1

, then

τ∗2 = τ∗1 + τ ′2.

Similarly, we can obtain for m = 4, 5, . . . ,∞. The numerical values of the optimum
stress changing times are calculated by considering some selected value of m =
(4, 6) in the formula (16), are tabulated in the tables 1-3 given in next section.

5. Numerical study

The main purpose of this paper is to determine the optimal unequal time points
τi(τ1, τ2, · · · , τm−1) that minimize the asymptotic variance of the MLEs of the log
mean life at the normal-use stress x0 under V-optimality criteria. For numerical
investigation of generalized compound linear plan (16), we conducted a small nu-
merical study. The optimum times τ∗i (τ

∗
1 , τ

∗
2 , · · · , τ∗m−1) of changing stress levels

are presented in Tables 1-3.

6. Conclusion

This paper has presented the optimum M − Step(M ⩾ 3) i.e., multiple-step step-
stress accelerated life test under generalized compound linear plan, which assume
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Table 1. Optimal change times and the associated asymptotic variance according to the V-optimality and gen-

eralize compound linear plan (16) under 3-step step-stress setting based on complete data in the Rayleigh case

x1 x2 x3 τ∗1 τ∗2 nAVar
0.2 0.3 0.8 8.189 17.02 3.022

0.6 0.8 10.07 15.35 1.074
0.5 1.0 9.576 16.22 0.987
0.8 1.0 10.85 15.08 0.699

0.4 0.5 0.8 6.308 12.50 9.650
0.7 0.8 7.045 11.58 3.270
0.8 1.0 7.341 11.57 2.192
0.9 1.0 7.605 11.28 1.682

Table 2. Optimal change times and the associated asymptotic variance according to the V-optimality and gen-

eralize compound linear plan (16) under 4-step step-stress setting based on complete data in the Rayleigh case

x1 x2 x3 x4 τ∗1 τ∗2 τ∗3 nAVar
0.2 0.3 0.7 1.0 8.19 16.68 21.57 3.349

0.4 0.6 0.8 8.97 15.67 20.95 2.065
0.5 0.7 0.8 9.58 15.501 20.04 1.318
0.6 0.8 1.0 10.1 15.35 19.58 1.071

0.4 0.5 0.6 0.8 6.31 11.94 17.22 15.84
0.6 0.7 0.8 6.71 11.75 16.28 5.982
0.5 0.8 1.0 6.31 12.50 16.73 9.623
0.7 0.9 1.0 7.05 11.76 15.45 3.174

Table 3. Optimal change times and the associated asymptotic variance according to the V-optimality and gen-

eralize compound linear plan (16) under 6-step step-stress setting based on complete data in the Rayleigh case

x1 x2 x3 x4 x5 x6 τ∗1 τ∗2 τ∗3 τ∗4 τ∗5 nAVar
0.2 0.3 0.4 0.6 0.7 0.9 8.19 15.32 22.02 27.06 31.78 6.265

0.3 0.6 0.7 0.9 1.0 8.19 16.32 21.35 26.07 29.74 3.927
0.4 0.5 0.7 0.8 1.0 8.97 15.28 21.21 25.74 29.94 2.407

0.4 0.5 0.6 0.7 0.8 0.9 6.31 11.94 16.98 21.51 25.59 15.91
0.6 0.7 0.8 0.9 1.0 6.71 11.75 16.28 20.36 24.03 5.761

that a linear relationship exists between the time to failure and the stress. A
Rayleigh distribution and a generalized Khamis-Higgins model were assumed. We
have obtained optimal choice of (τ1, τ2, · · · , τm−1) in generalM−Step(M ⩾ 3) step-
stress setting, particularly for m = 3, 4, 6, by minimizing the asymptotic variance
of the maximum likelihood estimator of the log of mean life time of the distribution
at the design stress, given in Table 1,2,3, respectively. The numerical study shows
that generalized compound linear plan working well for multiple-step step-stress
test.
Some more interesting optimum plans for M − Step(M ⩾ 3) step-stress under

quadratic relationship between life and stress can be developed by using both
classical and Bayesian techniques, for other life time distributions also.
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