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Abstract: A sigmoid function is necessary for creation a chaotic neural network (CNN).In this paper, a new function
for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for
controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be
improved remarkably by using our method. By means of this control method, the outputs of the controlled CNN
converge to the stored patterns and they are dependent on the initial patterns. We observed that the controlled CNN can
distinguish two initial patterns even if they are slightly different. These characteristics imply that the controlled CNN
can be used for pattern recognition.
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1. Introduction

Recently, chaotic dynamical behavior has attracted a great deal of attention in many
research fields, and a great deal of progress in chaotic study has been made [1-5]. People
are believe that chaotic dynamic behavior plays an important role in neural networks [6,7].
Many researchers have attempted to model artificial neural networks with chaotic
dynamics on the basis of deterministic differential equations or stochastic models. For
example, Aihara et al. [5] has proposed deterministic difference equations, which describe
an artificial neural network model, composed of chaotic neurons. This model has
advantages in terms of computational time and memory for numerical analysis due to the
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spatiotemporal complex dynamics of the neurons. Adachi et al. [1] proposed a system
based on model proposed by Aihara et al. Adachi et al. [2] have shown that the CNN can
generate chaotic associative memory dynamics in several parameter regions. In particular,
Kuroiwa et al. [7] have investigated the dynamical properties of a single chaotic neuron in
response to stochastic inputs. On the other hand, Freeman’s studies on the olfactory bulb of
a rabbit revealed that the dynamics of the neural system in the basic state are chaotic, but in
the case that a familiar scent is presented, the system rapidly simplifies its behavior and its
dynamics become more ordered and nearly periodic [12]. This suggests an interesting
model of the recognition and learning process in biological neural systems. In other words,
self-induced chaos control might play a key role in the recognition and learning processes
in biological neural systems. To employ this function in an artificial neural system, it is
important to study how chaos can be controlled. In other words, it is the realization of the
periodic dynamical behavior from the chaotic behavior that results when a stimulus is
imparted. In addition, a study on controlling chaos in CNNss is also necessary to understand
the mechanism of recognition in a real brain.

Several control methods have been adopted for CNNs. Mizutani et al. [11] proposed a

chaos control method in which the chaos in the CNNs was controlled by employing an
exponential feedback control signal to change the threshold value of a neuron. Nakamura
et al. [12] and Kushiba et al. [8] controlled chaos by changing the parameters of the CNN.
The CNN therefore reduces to a Hopfield network in which the outputs of the controlled
CNN are fixed points; consequently, pattern recognition and memory search can be
achieved. However, in all their methods, the control targets should have been referred to at
the beginning of the recognition task. To apply the CNNs to information processing, a
self-adaptable chaos control method in which the control targets need not be referred to as
a priori is required [6]. In this paper, a new function for CNN is proposed that it can
increase the speed of convergence. In the proposed method, we use a novel signal for
controlling chaos in CNNs, in which the chaos is controlled in a self-adaptive manner by
perturbing parameters of the system with a delay feedback control signal. Then we employ
the controlled CNNs to perform pattern recognition. Both the theory analysis and
computer simulation results show that the performance of CNN can be improved greatly
by using our method.
The rest of this paper is as following. In Section 2, a model of the controlled CNN is
reviewed briefly. In Section 3, we scrutinized the controlled CNN that mentioned at
section 2. In Section 4, computer simulation results of solving CNN problem, by using the
controlled CNN and improved controlled CNN, respectively, are presented. Some
conclusions are given in Section 5.

2. A Controlled Chaotic Neural Network Model

A chaotic neural network (CNN) constructed with chaotic neurons. In this network, the
behavior of associative dynamics for some values of the parameters is chaotic. The
structure of a chaotic neural network is shown in Fig. 1 [10].
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Fig. 1. Structure of chaotic neural network

The dynamics of the simplest chaotic neuron model can be described by the following
equations [6]:

y(t+1)=ky(t)- of (y(t)+a, 1
X(t+1) = f(y(t+1)), )
1
f(x) _ = (3)
l1+e¢

According to the data mentioned above, Y(t) is the internal state of the neuron at time
t, X(t) is the output of the neuron at time t, K is the decay parameter of the
refractoriness, and « is the refractory scaling parameter. ¢ is a parameter that is based
on the external input and the threshold of the neuron; f (X) , the sigmoid function, is the

output function of the neuron; and & is the steepness parameter of the sigmoid
function.For some values of the parameters, the internal state y(t) and the output X(t)

exhibit chaotic behavior. The bifurcation diagram of Y(t) is shown in Fig. 2. The other
parameters are fixedat K =0.5, £ =0.04,and a=1.0.

4
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Fig. 2.The bifurcation diagram by using sigmoid function.
We notice that when the value of ¢ is increased from 0.2 to 2.0, there exist two areas in
which the neuron is chaotic. One chaotic area exists for a ranging from 1.066 to 1.111,

while the other exists for  ranging from 1.572 to 1.606, as shown in Fig. 2. The dynamics
of the i th chaotic neuron in the CNN at time t can be described simply as follows [6]:

Xi(t+1): f(’?i(t+1)+§i(t+1)): “4)
77i(t+1)=kf77i(t)+ZN_:Winj(t)a (5)
Git+1)=k & (t)-ax(t)+a, (6)
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Where X; (t) is the output of the ith chaotic neuron for a time step t, and 7 (t)and
¢ (t) are the internal state variable of the feedback inputs from the constituent neurons in
the network and the refractoriness of the ith chaotic neuron at time t, respectively. N is
the number of neurons in the network. K andK, are the decay parameters of the feedback
inputs and the refractoriness, respectively. The parameter a; is the threshold of the ith
neuron. As in the case of the chaotic neuron model, the parameter ¢ is the refractory
scaling parameter of a neuron, and the output function of the neuron f (X) is a sigmoid
function with a steepness parameter &, as described in Eq. (3). on is the synaptic weight

to the ith constituent neuron from the jth constituent neuron. A neuron does not have the
synaptic connection from itself so @, = 0. The weights are defined according to the

symmetric auto-associative matrix of n binary patterns given as follows [6]:
1
w, =HZ(2XJ’ ~1)2xP —1) ™

Where Xip is the ith component of the P th binary pattern with a discrete value of
either O or 1.

Fig. 3.Patterns to be stored. A pattern comprises 10 x 10 binary pixels.

In accordance with this kind of experiment, the binary patterns can be stored as basal
memory patterns in the network. n is the total number of stored memory patterns. The
four patterns shown in Fig. 3 are employed as the stored patterns. Each pattern comprises
10x10 binary pixels. Correspondingly, the network is constructed with 100 neurons. A

neuron will be represented by a black block ‘‘m”” when its output, X;, is equal to 1, which

59

indicates that the neuron is “‘excited,”” while a neuron is denoted by a white block *’ 0
when its output is equal to 0, which indicates that the neuron is ‘‘resting’’. According to
the synaptic weights learning rule given in Eq. (7), the four stored patterns shown in Fig. 3
are embedded in the CNN. We observe that in Fig. 2, a neuron can create chaotic behavior
for certain special parameters and the chaotic dynamics of the neuron depends on & . We
therefore assume that chaos would be controlled if the value of & of the chaotic neurons is
perturbed by a control signal. If we consider a delay feedback signal to be the control
signal in the chaos control process, the control targets do not have to be assigned. This is
the main idea of self-adaptable control method in this paper. A controlled chaotic neuron is
described as follows [6]:

y(t+1) =ky(t) —ap*“" " f(y(t) +a, )
X(t+1)= f(yt+1)), 9)
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1
f(x)=—— (10)
1+e4

u(x) = [x(t) = x(t - 7) (11)

In the case that L(t) is a control signal determined by the difference in the output of the

cu(t)

chaotic neuron at different times with a delay 7 and S" is the perturbation term

that multiplies the refractory scaling parameter ¢ . When the output of a chaotic neuron is

chaotic, the control signal l(t) is not zero and af} M s Jess than & when 0< p<l.

Thus, the dynamics of the chaotic neuron will be changed [6].

We observe the dynamics of the networks by calculating a quasi-energy function defined
in Eq. (12) [10]. The quasi-energy function is one type of observation functions for CNN,
which is not a true energy function. Energy function is usually used to analyze the
dynamics of the conventional associative network. However, there is no energy function
for chaotic dynamics, and such analogy is not appropriate for the quasi-energy function of
the network because the network behavior cannot be characterized by gradient descent
dynamics of the function. But, it is useful to analyze the long-term temporal behavior of
the neurons in a network as a whole with the scalar quasi-energy function [6].

QE(t)=—1zzwijxi(t)xj(t)—ziaixi(t). (12)
D

The quasi-energy function denotes that the outputs of the controlled CNN are stable and
periodic.

3. Improvement of the Controlled CNN

Studies show that one of the disadvantages of the controlled CNN is that the recall speed
is slow. Additionally, another of the disadvantages of the CNN is that the output of the
CNN cannot be stabilized to one of the stored patterns or a periodic orbit because of its
chaotic behavior [6]. To increase the recall speed and decrease chaos of CNN, we propose
the new function instead of the sigmoid function. A sigmoid function is necessary for
creation a CNN. Sigmoid function is shown in Eq. (10). For the CNN, we proposed the
following new function:

LX) = (13)
e

According to our new function, the bifurcation diagram of Y(t) for different values of &

is shown in Fig. 4. Additionally, will prove new function contrast with sigmoid functionhave
more speed convergence.
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Fig. 4.The bifurcation diagram by using our new function.
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As aresult, it is seen that the behaviour of this function is like sigmoid function but the
speed of its convergence is more than sigmoid function which causes to decrease of chaos.
To employ this function in the CNN, it is important to study how chaos can be controlled.
One of the disadvantages of the controlled CNN is that the recall speed is slow. Therefore
mentioned control method for the CNN described in Eq. (8)-(11) will vary change. The
core of this method is that using a new control signal instead of mentioned control signal
for the CNN.A self-adaptable chaos control method is proposed as follows:

y, (t+1) =ky(t) —au(t) f ((y(t)) +a, (14)
15
x(t+1)= f(y(t+1)), (15)
1
fi(x)=—— (16)
1+e 4
u,(t) = e\x(t)—x(t—r)\ (17)

The results of this comparison show the performance of CNN is improved greatly with
the new method in chaos control. In the control method proposed in this paper, the control
target needs not to be assigned and prior knowledge of the system is not required. This
control technique is a type of adaptive control method. As a result, the outputs of the
controlled CNN converge to the periodic orbits and are dependent on the initial patterns.
Additionally, we will prove this new method contrast with mentioned method Have more
speed convergence.

4. Experimental Results and Analysis

We use the conventional controlling method and the new method to realize associative
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memory. The values of the parameters for the both methods are:

r=02, B=1, N=100, a, =28  a, =37,
y=0.945 7 =3, , =0.6, £ = 0.001

The initial value of ¢;is between «, ; and &, , and the value of «; is updated

after with every 2 time steps. According to the Fig. 3, the four binary patterns 100 bit for
the both models stored.

To test the effectiveness of the proposed method, for each pattern we built 10 different
patterns by adding 25% random noise. Therefore 10 training set contains 4x10 test
patterns. One of the training set is shown in Fig. 5.

Fig. 5. A training set sample.

Both networks can retrieve the noisy patterns, correctly. The recall speed average of
controlled CNN shown in Table 1, also the recall speed average of controlled CNN with
new controlling parameter shown in Table 2.

Initial pattern L 0] V E
Average recall 20.1 243 25.6 19.8
speed

Table 1:Control results for a controlled CNN

Initial pattern L 0] V E
Average recall 10.5 13.2 14 10.1
speed

Table 2:Control results for a controlled CNN with new controlling parameters
It appears that the recall speed in new method increase to 50% in comparision to
controlled CNN model.

Additionally, we will prove convergence in new method. For the system, we proposed
the following energy function:

E=-2 2.0 0w (™ + 2, (18)

p=ns=p i ]

In the following, we prove every change in y during the process will cause E to
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decreas this much:

-4 ZZAsz’ZW 2y
p=ns=p

Let’s assume there would be a change in ¥, unit, so Eq. (5) should be:

033032 RITSER s PLISTOLES S IR aet:
i i

p=ns=p\ i#r j#r

E2 :_Zz ZZW] (S) +}(](5)) _+_Z 0( (O] +ZJ(S)) +Zwr (5) +Zr2(8))

p=ns=p\ i#r j=r

The difference of Energy function is as follows:

E,-E =

11
IS+ T G 2+

p=ns=p\_]

=SS [ 2 20 —2%(5’%(S)U+

P=NS=p\ ]

_l N . ® ) ®,,0 © © ©,0
ZZ. ZWr /‘t} b "72 ! +27(r /?,; ,?,; 2}(r

pNsS=p\ ]

__yy 2 er ZJS)'A :S) +2 Vvlr ZIS) A (S)

p=ns=p

Because of the symmetry of the net (W = W/;), so AE  will be obtained as follows:

AE =—4. ZZAL(S)ZW x5 (19)

p=ns=p

At first, we show that Eq. (18) is consistent when just one pattern is stored in memory:
z i~ Wy is the weighted sum of the enterd inputs to the I th node.
i
o The first status (y, =+land y =-1): for y, is changed from
+1 in to -1 , therefore Z Xi*W; <0  and

Ay, =—1-1=-2<0thus AE <0.
* The second status (y, = —land Xe, = +1): for y, is changed from
-1 in to +1 ,  therefore Z XiW; >0 and
j

Ay, =+1+1=+4+2>0thus AE <O0.

As aresult, it is seen that with every change in ¥, , energy function will decrease. Now
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assuming that the issue is consistent for the time when M—1 patterns are stored in the
system, we will verify that it is also consistent for M patterns.

1 1
AN W =
p i

p=ns=

1 1 1
4] AW+ Y A S A Y
j s=rH j i

p=n-1s=p

Supposed Proved

According to Induction, it is consistent for M patterns. So that AE is always negative or
ZEero.

5. Conclusion

We have proposed a new function for the CNN and proved that it can increase the speed
of convergence and decrease chaos. In order to apply CNN to pattern recognition, a new
chaos control scheme was proposed. The improved controlled CNN have a superior ability
to distinguish initial patterns comparing with mentioned controlled CNN in this paper.
However, we have not discussed the control parameters in detail in this paper. How to
choose the control parameters and the effects of control parameters on pattern recognition
will be investigated in our next work.
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