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Abstract. In this paper, we propose to extend the hierarchical bivariate Hermite Interpolant
to the spherical case. Let T be an arbitrary spherical triangle of the unit sphere S and let u be
a function defined over the triangle T . For k ∈ N, we consider a Hermite spherical Interpolant
problem Hk defined by some data scheme Dk(u) and which admits a unique solution pk in
the space Bnk (T ) of homogeneous Bernstein-Bézier polynomials of degree nk = 2k (resp.
nk = 2k + 1) defined on T . We discuss the case when the data scheme Dr(u) are nested,
i.e., Dr−1(u) ⊂ Dr(u) for all 1 ⩽ r ⩽ k. This, give a recursive formulae to compute the
polynomial pk. Moreover, this decomposition give a new basis for the space Bnk (T ), which
are the hierarchical structure. The method is illustrated by a simple numerical example.
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1. Introduction

As is known, methods for building the classical univariate or bivariate Hermite
spline interpolants needs the Hermite fundamental functions. In the absence of a
recursive formula to calculate these basic functions, the calculation of the Hermite
interpolant become difficult and complicated. To avoid this complexity Mazroui et
al (see [5] and [6]) have proposed a simple, practical and useful method for calculat-
ing the Hermite interpolant recursively. More precisely, the Hermite interpolant pk
can be decomposed in the form pk = p0+ q1+ . . .+ qk, where, p0 is the polynomial
interpolating the set D0(u) and qr, 1 ⩽ r ⩽ k, are particular splines.
In practice, since this decomposition make the calculation of Hermite interpolant

pk simple it can be used in the following applications, computing integrals, smooth-
ing curves and compressing data. For more details see [5] and [6].
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Since this method is simple it is natural to extend it to several variables. One
obvious way to do this is to use the tensor product. With regard to this extension,
it was described in [9] (see also [7, 10]) a recursive construction for tensor product
Hermite interpolants. In [8], it was proposed a method allowing to build recursively
bivariate Hermite spline interpolants of class Ck on R2. Recently, we are proposed in
[3] a recursive method for the construction of a Hermite spherical spline interpolant
of class Ck and degree 4k+1 on S. In this work, we deal with a new method allowing
us to build recursively Hermite spherical interpolants on spherical triangles T . In
this case the degree nk = 2k (resp. nk = 2k + 1) and the data scheme Dk(u)
constricting of values and derivatives of u at vertices Vi and points interior Bj of
triangle T . But in [3], nk = 4k + 1 and in addition to these data, we add values
and derivatives of u at center points arcs Mi,j .
Let T be a spherical triangle with vertices V1, V2 and V3, and for convenience,

let V4 = V1 and V5 = V2.
To define some useful derivatives associated with T , let gi,j be a tangent vector to

S at vi contained in the plane passing through vi, vj , and the origin, not parallel
with vi, i, j = 1, 2, 3, i ̸= j, and for convenience, gi,0 = gi,3 and gi,4 = gi,1. In
addition, let µj , νj be independent unit vectors lying in the tangent plane of S at
Bj ∈ T , where µj , νj are two non parallel directions.
Let u be a regular function defined on T . For each k ∈ N, there exists a unique

homogenous Bernstein-Bézier polynomial pk in the space Bnk
(T ) that interpolates

a given data set Dk(u). In general, Dk(u) is formed by the values and the derivatives
of u at the vertices Vi, 1 ⩽ i ⩽ 3, and at other points Bj , 1 ⩽ j ⩽ dk, inside T
and/or on the edges of T . More specifically, the set Dk(u) can be written in the
form

Dk(u) = {Dαu(Vi), D
γju(Bj); |α| ⩽ ρk, γj ∈ Ik, 1 ⩽ i ⩽ 3}, (1)

where Ik = {γj ∈ N × N, nj,k ⩽ |γj | ⩽ Ni,j , 1 ⩽ j ⩽ dk, nj,k, Ni,j ∈ N}. The
quantities Dαu(Vi), α = (α1, α2) ∈ N×N and |α| = α1+α2, (resp. Dγju(Bj), γj =
(γ1j , γ

2
j ) ∈ N× N) denote the directional derivatives of u at Vi (resp. Bj) obtained

by differentiating u α1 (resp. γ1j ) times in the directions gi,i+1 (resp. µj) and α2

(resp. γ2j ) times in the directions gi,i−1 (resp. νj).
Let Hk be the Hermite interpolation problem in Bnk

(T ), corresponding to the
data scheme Dk(u). Our aim is to establish a recursive formula that allows us
compute step by step the polynomial pk, solution of the problem Hk. This com-
putation will be possible if some conditions are satisfied. Indeed, assume that the
sets Dr(u), 0 ⩽ r ⩽ k, are nested, i.e.,

D0(u) ⊂ D1(u) ⊂ . . . ⊂ Dk−1(u) ⊂ Dk(u). (2)

It is clear that (2) is equivalent to nr−1 ⩽ nr, ρr−1 ⩽ ρr and Ir−1 ⊂ Ir for 1 ⩽ r ⩽
k. Therefore, the polynomial pk can be written in the form pk = p0 + q1 + . . .+ qk,
where each qj is a homogenous Bernstein-Bézier polynomial of degree ⩽ nj that
can be determined by the data set Dj(u − pj−1). The multirsolution structure of
this decomposition means that p0 may be considered as a coarse approximation of
pk, and qj are correction terms or detail polynomials. Moreover, this representation
of pk gives rise to a new basis for the space Bnk

(T ). We show that this basis is
constituted by the last Hermite basis functions of each space Bnr

(T ), r = 1, . . . , k
and it is useful in practice.
As the bivariate case, we encounter serval different Hermite interpolation prob-

lems which have unique solutions and such that their corresponding data schemes
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satisfy (2). As application we deal in this works with those defined by the following
two data schemes

Dk(u) = {Dαu(Vi), D
γu(B); |α| ⩽ k, |γ| ⩽ k − 1, i = 1, 2, 3}, (3)

Dk(u) = {Dαu(Vi), D
γu(B); |α| ⩽ k − 1, |γ| ⩽ k, i = 1, 2, 3}, (4)

where B is an arbitrary point inside T . It is well known that there exists a unique
polynomial of degree nk = 2k + 1 (resp. nk = 2k) that interpolates Dk(u) given in
(3) (resp. in (4)).
The paper is organized as follows. In Section 2, we give some preliminary re-

sults on homogeneous Bernstein-Bézier polynomials. Section 3 is devoted to the
main results of this paper, namely, we first establish the hierarchical computation
of Hermite polynomials pk ∈ Bnk

(T ) when corresponding data schemes Dk(u) are
nested. Then, for an arbitrary data schemes, we deduce a new basis for Bnk

(T ).
As an application of the above results, we describe in Section 4 the explicit de-
composition of Hermite polynomial of odd or even degree that interpolate the data
schemes given on (3) or (4). Finally, in Section 5 we give a numerical example.

2. Preliminary results

In this section, we present the connection between the functions defined on S and
homogeneous trivariate functions, and we introduce some definitions.
A trivariate function F is said to be positively homogeneous of degree t ∈ R

provided that for every real number a > 0,

F (av) = atF (v), v ∈ R3\{0}.

Lemma 2.1 (see Alfeld et al. [1]) Given a function f defined on S, and let t ∈ R.
Then

Ft(v) = ∥v∥tf
(

v

∥v∥

)

is the unique homogenous extension of f of degree t to all of R3\{0}, i.e., Ft|S = f ,
and Ft is homogenous of degree t.

Let g be a given unit vector. Then, as in [1], we define the directional derivative
Dg of f at a point v ∈ S by

Dgf(v) = DgF (v) = gT∇F (v),

where F is some homogenous extension of f , and∇F is the gradient of the trivariate
function F.
While a polynomial of degree d has a natural homogenous extension to R3, a general
function f on S has infinitely many different extensions. The value of its derivative
may depend on which extension that we take (for more detail see [1]).
Let Pd be the space of trivariate polynomials of total degree at most d, and let

Hd = Pd|S be its restriction to the sphere S. A trivariate polynomial p is called
homogeneous of degree d if p(λx, λy, λz) = λdp(x, y, z) for all λ ∈ R, and harmonic
if ∆p = 0, where ∆ is the Laplace operator defined by ∆f = (D2

x +D2
y +D2

z)f .
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Definition 2.2 (see [2]) The linear space

Hd = {p|S : p ∈ Pd and p is homogeneous of degree d and harmonic}

is called the space of spherical harmonics of exact degree d.

Let be given a spherical triangle T . The associated spherical Bernstein basis
functions of degree d are defined by

Bd
ijk(v) =

d!

i!j!k!
bi1(v)b

j
2(v)b

k
3(v), i+ j + k = d,

where b1(v), b2(v), b3(v) are spherical barycentric coordinates of v relative to

T . These
(
d+2
2

)
functions are linearly independent [2], and form a basis for

the space denoted, in what follows, by Bd. Each p ∈ Bd is called a spherical
Bernstein-Bézier (SBB) polynomial. It is clear that p can be written in the form

p =
∑

i+j+k=d
cijkB

d
ijk and it is uniquely determined by its B-coefficients cijk.

It is well known (see [2]) that Bd
ijk are actually linear combinations of spherical

harmonics.

Proposition 2.3 (see [2]) For all d ⩾ 1, we have

Bd =

{
H0 ⊕H2 . . .⊕H2k if d = 2k,

H1 ⊕H3 . . .⊕H2k+1 if d = 2k + 1.

From the above proposition, it is simple to see that

Bd−1 ̸⊂ Bd but Bd−2 ⊂ Bd.

For the Hermite data scheme Dk(u) given in (1), we denote by Hk the corre-
sponding interpolation problem. Then Hk can be formulated as follows

Hk

Find pk ∈ Bnk
(T ) such that

Dαpk(Vi) = Dαu(Vi), |α| ⩽ ρk and i = 1, 2, 3,
Dγjpk(Bj) = Dγju(Bj), nj,k ⩽ |γj | ⩽ Nj,k and 1 ⩽ j ⩽ dk.

Definition 2.4 We say that Dk(u) is a Bnk
(T )-unisolvent data scheme if the

problem Hk has a unique solution pk ∈ Bnk
(T ).

In what follows, we deal with sets Dk(u) that are Bnk
(T )-unisolvent. Then, as

dimBnk
(T ) =

(
nk+2

2

)
, the integers ρk, dk, nj,k and Nj,k, 1 ⩽ j ⩽ dk, are given so

that card(Dk(u)) =
(
nk+2

2

)
.

Let Bk =
{
φα
i,k, ψ

γj

k , |α| ⩽ ρk, γj ∈ Ik and i = 1, 2, 3
}

be the Hermite basis

for Bnk
(T ) corresponding to the problem Hk. More precisely, φα

i,k and ψ
γj

k are
determined by the following interpolation conditions

Dβφα
i,k(Vt) = δi,tδα,β, for |β| ⩽ ρk and 1 ⩽ i, t ⩽ 3,

Dγjφα
i,k(Bj) = 0, for all γj ∈ Ik,

Dβψ
γj

k (Vt) = 0, for all |β| ⩽ ρk and 1 ⩽ t ⩽ 3,
Dγsψ

γj

k (Bs) = δj,sδγj ,γs
, for all γs ∈ Ik,

(5)

where δ is the Kronecker delta.
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Using the basis Bk, the solution pk of Hk can be written in the unique form

pk(λ) =
3∑

i=1

∑
|α|⩽ρk

Dαu(Vi)φ
α
i,k(λ) +

∑
γj∈Ik

Dγju(Bj)ψ
γj

k (λ). (6)

3. Recursive computation of Hermite spherical interpolants

The lack of recursive formulae for computing the basis elements of Bk makes the use
(6) rather complicated. To remedy this problem, we established a decomposition
of pk. In other works, if we assume that Dk−1(u) ⊂ Dk(u). then by using the fact
that Bnk−1

(T ) ⊂ Bnk
(T ), we deduce that pk = pk−1 + qk, where pk−1 is the unique

solution of the Hermite problem Hk−1 and qk is particular polynomial in Bnk
(T ).

In order to illustrate this decomposition, we need the following lemma.

Lemma 3.1 If Ik−1 ⊂ Ik and ρk−1 ⩽ ρk, the for |α| ⩽ ρk−1, γj ∈ Ik−1 and
i = 1, 2, 3 we have

φα
i,k = φα

i,k−1 − φα
i,k and ψ

γj

k = ψ
γj

k−1 − ψ
γj

k ,

where

φα
i,k =

3∑
l=1

ρk∑
|β|=ρk−1+1

Dβφα
i,k−1(Vl)φ

β
l,k +

∑
γj∈Ik\Ik−1

Dγjφα
i,k−1(Bj)ψ

γj

k . (7)

ψ
γj

k =
3∑

l=1

ρk∑
|β|=ρk−1+1

Dβψ
γj

k−1(Vl)φ
β
l,k +

∑
γs∈Ik\Ik−1

Dγsψ
γj

k−1(Bs)ψ
γs

k . (8)

Proof Let Ik be the Hermite interpolation operator defined for a function u by
Iku = uk ∈ Bnk

. As Ik is exact on Bnk
, i.e., Ikp = p for all p ∈ Bnk

, we deduce
that Ikφ

α
i,k−1 = φα

i,k−1. In other words, we have

φα
i,k−1 =

3∑
l=1

∑
|β|⩽ρk

Dβφα
i,k−1(Vi)φ

β
l,k +

∑
γj∈Ik

Dγjφα
i,k−1(Bj)ψ

γj

k .

On the other hand, from (5), we deduce that for all α ⩽ ρk−1

3∑
l=1

∑
|β|⩽ρk−1

Dβφα
i,k−1(Vi)φ

β
l,k = φα

i,k and
∑

γj∈Ik−1

Dγjφα
i,k−1(Bj)ψ

γj

k = 0.

where after, we get the first equality. Using a similar technique, one can establish
the other equalities. ■

Now, we give the main result of this paper.

Theorem 3.2 Let pk and pk−1 be the Hermite spherical polynomial solutions of
problems Hk and Hk−1 respectively. If Dk−1(u) ⊂ Dk(u), then the spherical poly-
nomial pk can be decomposed as follows

pk = pk−1 + qk, where
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qk =

3∑
i=1

ρk∑
|α|=ρk−1+1

Dα(u− pk−1)(Vi)φ
α
i,k +

∑
γj∈Ik\Ik−1

Dγj (u− pk−1)(Bj)ψ
γj

k .

Proof Recall that Dk−1(u) ⊂ Dk(u) implies that Ik−1 ⊂ Ik and ρk−1 ⩽ ρk. Then,
the expression of the Hermite polynomial pk given in (6) becomes

pk =
3∑

i=1

∑
|α|⩽ρk−1

Dαu(Vi)φ
α
i,k +

∑
γj∈Ik−1

Dγju(Bj)ψ
γj

k +

3∑
i=1

ρk∑
|α|=ρk−1+1

Dαu(Vi)φ
α
i,k +

∑
γj∈Ik\Ik−1

Dγju(Bj)ψ
γj

k .

Using the expressions for φα
i,k, ψ

γj

k , φ
α
i,k and ψ

γj

k , given in Lemma (3.1), we get

pk = pk−1 +
3∑

i=1

ρk∑
|α|=ρk−1+1

Dα(u− pk−1)(Vi)φ
α
i,k +

∑
γj∈Ik\Ik−1

Dγj (u− pk−1)(Bj)ψ
γj

k .

■

Remark 1 From the above expression for qk, we deduce that its corresponding
insolvent data set is Dk(u− pk−1).

Corollary 3.3 Assume that D0(u) ⊂ D1(u) ⊂ . . . ⊂ Dk(u). Then we have the
spherical polynomial pk can be decomposed in the form

pk = p0 + q1 + . . .+ qk, (9)

where qs =

3∑
i=1

ρs∑
|α|=ρs−1+1

Cα
i,sφ

α
i,s +

∑
γj∈Is\Is−1

C̃γj
s ψ

γj
s , 1 ⩽ s ⩽ k and p0 is the solu-

tion of the Hermite problem H0, and the coefficients

Cα
i,s = Dα(u− ps−1)(Vi), C̃γj

s = Dγj (u− ps−1)(Bj)

can be computed recursively as follows
for s = 1, |α| = ρ0 + 1, . . . , ρ1 and γj ∈ I1\I0,

Cα
i,1 = Dαu(Vi)−Dαp0(Vi), C̃

γj

1 = Dγju(Bj)−Dγjp0(Bj),
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and for s ⩾ 2, |α| = ρs−1 + 1, . . . , ρs and γj ∈ Is\Is−1,

Cα
i,s = Dαu(Vi)−Dαp0(Vi)−

s−1∑
t=1

[ 3∑
l=1

ρt∑
|β|=ρt−1+1

Cβ
l,tD

αφβ
l,t(Vi)

+
∑

γm∈It\It−1

C̃γm

t Dαψγm

t (Vi)

]

C̃γj
s = Dγju(Bj)−Dγjp0(Bj)−

s−1∑
t=1

[ 3∑
l=1

ρt∑
|β|=ρt−1+1

Cβ
l,tD

γjφβ
l,t(Bj)

+
∑

γm∈It\It−1

C̃γm

t Dγjψγm

t (Bj)

]
.

Proof The decomposition (9) of pk follows from Theorem 3.2. On the other hand,
it is clear that for s = 1, . . . , k, we have

ps−1 = p0 +
s−1∑
t=1

[ 3∑
l=1

ρt∑
|β|=ρt−1+1

Cβ
l,tφ

β
l,t +

∑
γj∈It\It−1

C̃
γj

t ψ
γj

t

]
.

Then, by using the obvious equality Cα
i,s = Dαu(Vi)−Dαps−1(Vi), we deduce that

Cα
i,s = Dαu(Vi)−Dαp0(Vi)−

s−1∑
t=1

[ 3∑
l=1

ρt∑
|β|=ρt−1+1

Cβ
l,tD

αφβ
l,t(Vi)

+
∑

γm∈It\It−1

C̃γm

t Dαψγm

t (Vi)

]
.

In same way, we can obtain the recursive formula for C̃
γj
s . ■

Now, if we put ρ−1 = −1 and I−1 = ∅, then we have the following result.

Theorem 3.4 The family

B̂k = {φα
i,s, ψ

γj
s , 1 ⩽ i ⩽ 3, 0 ⩽ s ⩽ k, ρs−1 + 1 ⩽ |α| ⩽ ρs and γj ∈ Is\Is−1}

forms a basis for the space Bnk
(T ). Moreover, B̂k, k ∈ N, are hierarchical.

Proof Let p ∈ Bnk
(T ). Since the Hermite interpolation interpolation operator Ik

is exact on Bnk
(T ), we deduce that p = Ik(p) = p0 + q1 + · · · + qk, where p0 is

the unique solution of the Hermite problem H0, and qs, 1 ⩽ s ⩽ k, are particular
polynomials in Bnk

(T ) defined by

qs =

3∑
i=1

∑
|α|⩽ρ0

µαi,0φ
α
i,0(λ) +

∑
γj∈I0

σ
γj

0 ψ
γj

0 (λ)

+

k−1∑
s=1

[ 3∑
i=1

ρs∑
|α|=ρs−1+1

µαi,sφ
α
i,s(λ) +

∑
γj∈Is\Is−1

σγj
s ψ

γj
s (λ)

]
= 0.
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Using the definitions of Hermite basis functions given in (5), and starting from
s = 0 to s = k and from |α| = ρs−1 + 1 to |α| = ρs, we obtain step by step

Dαf(Ai) = µαi,s = 0 and Dγjf(Bj) = σ
γj
s = 0. Consequently, B̂k is a basis for Bk.

On the other hand, if we put B̂0 = B0, it is simple to check that B̂k = B̂k−1 ∪ B̂k,
where

B̂k = {φα
i,k, ψ

γj

k , 1 ⩽ i ⩽ 3, ρk−1 + 1 ⩽ |α| ⩽ ρk and γj ∈ Ik\Ik−1}.

Then we have B̂k−1 ⊂ B̂k. ■

Remark 2
The comparaison of the two bases Bk and B̂k of the space Bnk

(T ) leads to the
following observations.
i) The hierarchical structure of the bases B̂k, k ∈ N, can be used for several

practices in numerical analysis like compressing data and surfaces.
ii) If we denote by Tα,k (resp. T γj ,k) the number of B-coefficients of each φα

i,k, 1 ⩽
i ⩽ 3, (resp. ψ

γj

k ) that are not necessarily equal to zeros, then by straightforward
computation we get

Tα,k =
(
nk+2
2

)
− 2

(
ρk+2
2

)
−

(
|α|+1
2

)
and T γj ,k =

(
nk+2
2

)
− 3

(
ρk+2
2

)
.

These B-coefficients are solution of linear systems of size Tα,k or T γj ,k, that derive

from Hermite interpolation problems given by (5). For the elements of B̂k, the
number of B-coefficients is only Tα,s for φα

i,s and T γj ,s for ψ
γj
s , when α is such

that ρs−1 + 1 ⩽ |α| ⩽ ρs, γj ∈ Is\Is−1 and 0 ⩽ s ⩽ k. Then the size of their
corresponding systems are respectively Tα,s and T γj ,s. However, the complexity of

determining the basis B̂k is far less than that of Bk.
iii) Computation of the polynomial pk ∈ Bnk

(T ) at several points: According to
(ii), each basis function φα

i,k or ψ
γj

k is determined by a large number of B-coefficients,
so the computation of the polynomial pk needs at lot of operations. As in practice
this computation is required for several points T , we conclude that it is useful to
use the new basis which allows us to reduce extensively the number of operations.

3.1 Application

In this section, we are interested in the decomposition of polynomials that arise
from some unisolvent interpolation problems

Lemma 3.5 The data set Dk(u) given in (3) (resp. in (4)) uniquely determines a

SBB-polynomial pk of degree nk = 2k (resp. nk = 2k + 1) solution of the problem
Hk.

Proof The proof is similar to the proof of the bivariate case (see [4]). Indeed, assume
that pk is written in its SBB-form, and the corresponding Bézier coefficients are
numbered as in Figure (1). Assume that nk = 2k, it is simple to verify that

dim Bnk
(T ) = card(Dk(u)) =

(
2k + 2

2

)
= (2k + 1)(k + 1).
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Figure 1. k = 2, nk = 4.

Then, showing that Dk(u) is a determining set for Bnk
(T ) is equivalent to show

that Dk(u) uniquely determines all B-coefficients of pk. Indeed, the Ck smoothness
at v1 implies that the data set {Dαu(v1), |α| ⩽ k − 1} uniquely determines the(
(k−1)+2

2

)
= k(k+1)

2 coefficients corresponding to domain points marked with • clos-
est to vertex v1 (see Figure(1)). The situation at v2 and v3 is analogous. Moreover,

it is easy to see that {Dγu(B), |γ| ⩽ k} uniquely determines the
(
k+2
2

)
= (k+1)(k+2)

2
coefficients corresponding to domain points marked with ♦ (diamond). Thus, a to-

tal of 3k(k+1)
2 + (k+1)(k+2)

2 = (2k + 1)(k + 1) coefficients are already determined,
and this completes the proof. ■

Corollary 3.6 Let pk ∈ B2k+1(T ) (resp. pk ∈ B2k(T )) be the Hermite spherical
polynomial interpolant associated to the data set (4) (resp. (3)). Then pk and pk
can be decomposed in the form

pk = p0 + q1 + . . .+ qk,

pk = p0 + q1 + . . .+ qk,

where p0 is the spherical polynomial interpolating the value of u at Vi, i = 1, 2, 3
and p0 is the spherical polynomial equal to u(B), while

qs =

3∑
i=1

∑
|α|=s

Dα(u− ps−1)(Vi)φ
α
i,s +

∑
|γ|=s−1

Dγ(u− ps−1)(Bj)ψ
γ
s

and

qs =

3∑
i=1

∑
|α|=s−1

Dα(u− ps−1)(Vi)φ̃
α
i,s +

∑
|γ|=s

Dγ(u− ps)(Bj)ψ̃
γ
s .

For each 1 ⩽ s ⩽ k, the elements {φα
i,s, ψ

γ
s , |α| = s, |γ| = s − 1}

(resp.{φ̃α
i,s, ψ̃

γ
s , |α| = s − 1, |γ| = s}) are the last Hermite basis functions for

B2s+1(T ) ( resp. B2s(T )).

Corollary 3.7 The collection {φα
i,s, ψ

γ
s , |α| = s, |γ| = s− 1, 1 ⩽ s ⩽ k and 1 ⩽

i ⩽ 3} (resp.{φ̃α
i,s, ψ̃

γ
s , |α| = s − 1, |γ| = s, 1 ⩽ s ⩽ k and 1 ⩽ i ⩽ 3}) form a

basis for B2k+1(T ), ( resp. B2k(T )).

Proof This result follows from Theorem 3.4 with nk = 2k + 1 (resp. nk = 2k),
taking into account that the functions φ̃α

i,0 and ψγ
s such that |α| = |γ| = −1 are
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omitted. ■

According to Remark 2, we have two cas:

Case : nk = 2k + 1

- The explicit expression for Tαk
and T γk

are

Tα,k = (k + 1)2 − |α|(|α|+ 1)

2
and T γ,k =

k(k + 1)

2
.

- The total number of B-coefficients needed for the determination of Bk,T

is given by

Σ2k+1 = 3
∑
|α|⩽k

Tα,k +
∑

|γ|⩽k−1

T γ,k = 3 +
37

4
k +

89

8
k2 +

25

4
k3 +

11

8
k4,

- The number of B coefficients for the determination of the new basis
B̂k,T is given by

σ2k+1 =
k∑

s=0

3 ∑
|α|=s

Tα,s +
∑

|γ|=s−1

T γ,s

 = 3 +
47

6
k +

15

2
k2 +

19

6
k3 +

1

2
k4.

Case : nk = 2k

- The explicit expression for Tαk
and T γk

are

Tα,k = (k + 1)2 − |α|(|α|+ 1)

2
and T γ,k =

(k + 1)(k + 2)

2
.

- The total number of B-coefficients needed for the determination of Bk,T

is given by

Σ2k = 3
∑

|α|⩽k−1

Tα,k +
∑
|γ|⩽k

T γ,k = 1 +
19

4
k +

65

8
k2 +

23

4
k3 +

11

8
k4,

- The number of B coefficients for the determination of the new basis
B̂k,T is given by

σ2k =

k∑
s=0

3 ∑
|α|=s−1

Tα,s +
∑
|γ|=s

T γ,s

 = 1 +
29

6
k +

13

2
k2 +

19

6
k3 +

1

2
k4.

In the following table, we give Σ2k+1, σ2k+1, Σ2k and σ2k, for the first values of k.

Table 1. Σ2k+1, σ2k+1, Σ2k and σ2k, for k = 1 . . . 10.

k 0 1 2 3 4 5 6 7 8 9 10

Σ2k+1 3 31 138 411 970 1968 3591 6058 9621 14565 21208

σ2k+1 3 22 82 220 485 938 1652 2712 4215 6270 8998

Σ2k 1 21 111 355 870 1806 3346 5706 9135 13915 20361

σ2k 1 16 70 200 455 896 1596 2640 4125 6160 8866
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Figure 2. D0(u) ⊂ D1(u) ⊂ D2(u)..

In order to illustrate our results, we give in the next section some numerical
examples.

4. Numerical Examples

In this section, we give an example which illustrate the theoretical results. Let
T be the spherical triangle with vertices V1 = (0, π2 ), V2 = (0, π4 ), V3 = (3π4 ,

π
4 ).

In this example, we describe the decomposition of the Hermite interpolant p2 to

the Sphere-Like Surfaces associated at the function f(x, y, z) =
3∑

i=1

(gi(x, y, z))
− 1

2

where gi(x, y, z) =
(

x
αi

)2
+

(
y

αi+1

)2
+
(

z
αi+2

)2
and (α1, . . . , α5) = (5, 1, 2, 5, 1).

B is the center of gravity of T (see Figure (2)). From corollary 3.7, we have
p2 = p0 + q1 + q2. In Figure 3 we present the graphs of p0, p2 and the detail
functions q1 and q2, for nk = 2k + 1, in this case we have

D0(u) = {u(Vi), 1 ⩽ i ⩽ 3},

D1(u) = {Dα
gi,ju(Vi), u(B), α = 0, 1; 1 ⩽ i, j ⩽ 3; i ̸= j},

and

D2(u) = {Dα
gi,ju(Vi), u(B), Dµu(B), Dνu(B); α = 0, 1, 2; 1 ⩽ i, j ⩽ 3; i ̸= j}.

Table 2. The maximum error between f and different step of decomposition.

∥f|T − p0∥∞ ∥f|T − (p0 + q1)∥∞ ∥f|T − p1∥∞ ∥f|T − (p0 + q1 + q2)∥∞ ∥f|T − p2∥∞

2.5687 10−1 5.0113 10−3 4.9384 10−3 1.5202 10−4 1.4375 10−4
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Figure 3. Decomposition of p2.

Table 3. The maximum error between p2 and different step of decomposition

∥p2 − p0∥∞ ∥p2 − (p0 + q1)∥∞ ∥p2 − p1∥∞ ∥p2 − (p0 + q1 + q2)∥∞

2.3549 10−1 2.9702 10−3 2.8973 10−3 1.6367 10−4

5. Conclusion

In this paper, we proposed to extend the hierarchical bivariate Hermite Interpolant
to the spherical case. Let T be an arbitrary spherical triangle of the unit sphere
S and let u be a function defined over the triangle T . For k ∈ N, we considered a
Hermite spherical Interpolant problem Hk defined by some data scheme Dk(u) and
which admits a unique solution pk in the space Bnk

(T ) of homogeneous Bernstein-
Bézier polynomials of degree nk = 2k (resp. nk = 2k + 1) defined on T .
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