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Abstract. In this paper, we propose to extend the hierarchical bivariate Hermite Interpolant
to the spherical case. Let T be an arbitrary spherical triangle of the unit sphere S and let u be
a function defined over the triangle 7. For k € N, we consider a Hermite spherical Interpolant
problem Hj, defined by some data scheme Dy (u) and which admits a unique solution pg in
the space Bp, (T) of homogeneous Bernstein-Bézier polynomials of degree nj = 2k (resp.
ng = 2k + 1) defined on T. We discuss the case when the data scheme D, (u) are nested,
i.e., Dr—1(u) C Dr(u) for all 1 < r < k. This, give a recursive formulae to compute the
polynomial pj. Moreover, this decomposition give a new basis for the space By, (T'), which
are the hierarchical structure. The method is illustrated by a simple numerical example.
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1. Introduction

As is known, methods for building the classical univariate or bivariate Hermite
spline interpolants needs the Hermite fundamental functions. In the absence of a
recursive formula to calculate these basic functions, the calculation of the Hermite
interpolant become difficult and complicated. To avoid this complexity Mazroui et
al (see [5] and [6]) have proposed a simple, practical and useful method for calculat-
ing the Hermite interpolant recursively. More precisely, the Hermite interpolant pj
can be decomposed in the form py = pg+q1 +. . . + qr, where, pg is the polynomial
interpolating the set Dy(u) and g, 1 < r < k, are particular splines.

In practice, since this decomposition make the calculation of Hermite interpolant
pi simple it can be used in the following applications, computing integrals, smooth-
ing curves and compressing data. For more details see [5] and [6].
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Since this method is simple it is natural to extend it to several variables. One
obvious way to do this is to use the tensor product. With regard to this extension,
it was described in [9] (see also [7, 10]) a recursive construction for tensor product
Hermite interpolants. In [8], it was proposed a method allowing to build recursively
bivariate Hermite spline interpolants of class C* on R2. Recently, we are proposed in
[3] a recursive method for the construction of a Hermite spherical spline interpolant
of class C* and degree 4k+1 on S. In this work, we deal with a new method allowing
us to build recursively Hermite spherical interpolants on spherical triangles T'. In
this case the degree ny = 2k (resp. ny = 2k + 1) and the data scheme Dy (u)
constricting of values and derivatives of u at vertices V; and points interior B; of
triangle 7. But in [3], ny = 4k + 1 and in addition to these data, we add values
and derivatives of u at center points arcs M; ;.

Let T be a spherical triangle with vertices V;, Vo and V3, and for convenience,
let V4 =V and V5 = Vs,

To define some useful derivatives associated with 7', let g; ; be a tangent vector to
S at v; contained in the plane passing through v;, v;, and the origin, not parallel
with v, 4,5 = 1,2,3, ¢ # j, and for convenience, g;0 = ¢;3 and ¢;4 = ¢;1. In
addition, let 41;, v; be independent unit vectors lying in the tangent plane of S at
Bj € T, where pj, v; are two non parallel directions.

Let u be a regular function defined on 7. For each k € N, there exists a unique
homogenous Bernstein-Bézier polynomial py in the space B, (") that interpolates
a given data set Dy (u). In general, D (u) is formed by the values and the derivatives
of u at the vertices V;, 1 < i < 3, and at other points B;, 1 < j < dy, inside T
and/or on the edges of T. More specifically, the set Di(u) can be written in the
form

D) = {Du(Vi), D¥u(By); o] < pro 7 € I 1< <3} (1)

where [, = {’)/j € N x N, njr < |’7j| < Ni,j, 1 <5 < dg, ang,Ni,j € N} The
quantities Du(V;), a = (a!,a?) € NxNand |a| = ol +a?, (resp. DV u(B;), vj =
(fyjl, fyjz) € N x N) denote the directional derivatives of u at V; (resp. Bj) obtained
by differentiating u o' (resp. 7]1) times in the directions g;;+1 (resp. uj) and o?
(resp. 77) times in the directions g; ;1 (vesp. v;).

Let Hj be the Hermite interpolation problem in By, (T'), corresponding to the
data scheme Dg(u). Our aim is to establish a recursive formula that allows us
compute step by step the polynomial pi, solution of the problem Hj. This com-
putation will be possible if some conditions are satisfied. Indeed, assume that the
sets Dy (u), 0 < r < k, are nested, i.e.,

Do(u) C Di(u) C ... C Di_1(u) C Di(u). (2)

It is clear that (2) is equivalent to n,_; < 1y, pr—1 < pp and I, C I, for 1 < r <
k. Therefore, the polynomial p; can be written in the form py = po+q1 + ... + g,
where each ¢; is a homogenous Bernstein-Bézier polynomial of degree < n; that
can be determined by the data set D;(u — p;j—1). The multirsolution structure of
this decomposition means that pg may be considered as a coarse approximation of
Dk, and ¢; are correction terms or detail polynomials. Moreover, this representation
of pi gives rise to a new basis for the space By, (T). We show that this basis is
constituted by the last Hermite basis functions of each space B, (T), r=1,...,k
and it is useful in practice.

As the bivariate case, we encounter serval different Hermite interpolation prob-
lems which have unique solutions and such that their corresponding data schemes
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satisfy (2). As application we deal in this works with those defined by the following
two data schemes

ka |’Y’</{7—1, i:1a273}7 (3)

Du(Vi), Du(B); |a
: k-1, |y| <k, i=1,2,3}, (4)

| <
D*u(V;), D"u(B); |a| <
where B is an arbitrary point inside 7. It is well known that there exists a unique
polynomial of degree ny = 2k + 1 (resp. ny = 2k) that interpolates D (u) given in
(3) (resp. in (4)).

The paper is organized as follows. In Section 2, we give some preliminary re-
sults on homogeneous Bernstein-Bézier polynomials. Section 3 is devoted to the
main results of this paper, namely, we first establish the hierarchical computation
of Hermite polynomials py € B, (T') when corresponding data schemes Dy (u) are
nested. Then, for an arbitrary data schemes, we deduce a new basis for By, (T').
As an application of the above results, we describe in Section 4 the explicit de-
composition of Hermite polynomial of odd or even degree that interpolate the data
schemes given on (3) or (4). Finally, in Section 5 we give a numerical example.

2. Preliminary results

In this section, we present the connection between the functions defined on S and
homogeneous trivariate functions, and we introduce some definitions.

A trivariate function F' is said to be positively homogeneous of degree t € R
provided that for every real number a > 0,

F(av) = a'F(v), v € R3\{0}.

LEMMA 2.1 (see Alfeld et al. [1]) Given a function f defined on S, and let t € R.

Then
Fu(o) = loll's (HH)

is the unique homogenous extension of f of degree t to all of R3\{0}, i.e., Fi|s = f,
and Fy is homogenous of degree t.

Let g be a given unit vector. Then, as in [1], we define the directional derivative
D, of f at a point v € S by

Dyf(v) = DyF(v) = g" VF(v),

where F' is some homogenous extension of f, and V F is the gradient of the trivariate
function F.

While a polynomial of degree d has a natural homogenous extension to R?, a general
function f on S has infinitely many different extensions. The value of its derivative
may depend on which extension that we take (for more detail see [1]).

Let P, be the space of trivariate polynomials of total degree at most d, and let
Hq = Pal|s be its restriction to the sphere S. A trivariate polynomial p is called
homogeneous of degree d if p(Az, Ay, A\z) = \p(zx,y, 2) for all A € R, and harmonic
if Ap = 0, where A is the Laplace operator defined by Af = (D? + Dz + D?)f.
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DEFINITION 2.2 (see [2]) The linear space
Ha={pls : p € Pq and p is homogeneous of degree d and harmonic}

is called the space of spherical harmonics of exact degree d.

Let be given a spherical triangle 7. The associated spherical Bernstein basis
functions of degree d are defined by

a . ; .
where by (v), ba(v), b3(v) are spherical barycentric coordinates of v relative to
T. These <d; 2) functions are linearly independent [2], and form a basis for

the space denoted, in what follows, by By. Each p € By is called a spherical
Bernstein-Bézier (SBB) polynomial. It is clear that p can be written in the form

i d .- . . . .
p= Zi+j+k:dcijkBijk and it is uniquely determined by its B-coefficients c;;y.
It is well known (see [2]) that Bidjk are actually linear combinations of spherical

harmonics.

PROPOSITION 2.3 (see [2]) For all d > 1, we have

B, — HoD®Ho... P Ho if  d=2k,
TN @M Hopr  if d=2k+1.

From the above proposition, it is simple to see that
Big_1¢ By but Bg_o C By.

For the Hermite data scheme Dy (u) given in (1), we denote by Hj the corre-
sponding interpolation problem. Then Hj can be formulated as follows

Find py € By, (T) such that
Hk Dapk(‘/l) = Dau(‘/’b)7 |Oé| < Pk and 7= 172737
DYipp(Bj) = DV u(Bj), njk < |vj] < Njp and 1< j <dp.

DEFINITION 2.4 We say that Di(u) is a By, (T)-unisolvent data scheme if the
problem Hy, has a unique solution py € By, (T').

In what follows, we deal with sets Dy(u) that are By, (T)-unisolvent. Then, as
dimBy, (T) = (”’“;2), the integers pg, dj, nj, and Nji, 1 < j < dj, are given so
that card(Dg(u)) = (nk;r2)

Let B = {gpfﬁk,z/)zj, la| < pg, v € Iy and @ = 1,2,3} be the Hermite basis
for By, (T') corresponding to the problem Hj. More precisely, ¢f and Yy are
determined by the following interpolation conditions

DO, (Vi) = 814009, for |B] < ppand 1 <t <3,

D7 tpffk(Bj) =0, for all v; € I, (5)
DPy (V) =0, for all |5| < pj, and 1 <t <3,

D%K/JZJ(BS) = 0,50+, ., for all v, € Iy,

where § is the Kronecker delta.
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Using the basis By, the solution p; of Hy can be written in the unique form

ZZD“ DEt N + Y DYu(BygE (). (6)

i=1 || <pr v;€lx

3. Recursive computation of Hermite spherical interpolants

The lack of recursive formulae for computing the basis elements of 53, makes the use

(6) rather complicated. To remedy this problem, we established a decomposition

of pg. In other works, if we assume that Dy_;(u) C Dg(u). then by using the fact

that By, ,(T) C By, (T), we deduce that py = px_1 + qx, where py_1 is the unique

solution of the Hermite problem Hj_; and g is particular polynomial in By, (7).
In order to illustrate this decomposition, we need the following lemma.

LEMMA 3.1 If Iy_1 C I and pr—1 < pg, the for |a| < pp—1, vj € Ip—1 and
1 =1,2,3 we have

a _,« —Q Yi o Y
Gik = Pik—1 — Pik and Y7 =Pt —

where

(pzk_z Z Dﬁ(plk 1 )(Plk+ Z D%@zk 1(B )wzj (7)

=1 |B|l=pr—1+1 Y €L\ —1
3 Pk
=3 > DR (Ve + Y DIl (B (8)
=1 |8|=pr—1+1 Vs €L\ i1

Proof Let I be the Hermite interpolation operator defined for a function u by
Iyu = u € By, . As I is exact on B, , i.e., Iyp = p for all p € B,,,, we deduce
that I _; = ¢7_;. In other words, we have

%C‘fk—1:Z Z Dﬂ%k 1 )Sﬂlk‘F Z DY o 1 (B

I=1 |B|<px viel

On the other hand, from (5), we deduce that for all o < p_1

Z Z Dﬁ(pzk 1 )(plk = szk; and Z Dw‘lozqfk—l(Bj)ij —0.

=1 |B|<pr-1 v €Lk —1
where after, we get the first equality. Using a similar technique, one can establish
the other equalities. |
Now, we give the main result of this paper.

THEOREM 3.2 Let pr. and pr_1 be the Hermite spherical polynomial solutions of
problems Hy, and Hy_q respectively. If Dy_1(u) C Di(u), then the spherical poly-
nomial pi, can be decomposed as follows

Dk = Pk—1 + qx, where
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Pk
Tk = Z Z D*(u — pr—1) (Vi) iy + Z D (u — pp—1) (B;)".
i=1 ‘O‘|:Pk—1+1 ’Yjelk\lk,1

Proof Recall that Dy_1(u) C Dg(u) implies that I_1 C I and pr_1 < pg. Then,
the expression of the Hermite polynomial py given in (6) becomes

Z Vel + Y DVu(By)y) +
o <pr

3
i=1 Y5 €1k -1

3

> D u(Vi)plp+ D DVu(Byw).
=1 |a|=pr_1+1 Vi €0\ Ik—1

Using the expressions for ¢, @Z)Z",@O‘k and ¢’ given in Lemma (3.1), we get
3 Pk
Pe=pe1t Y. Y. Du—pe)(VD)el+ D> DV (u—peo) (B
i=1 |a|=pr-1+1 Y €L\ -1

Remark 1 From the above expression for ¢, we deduce that its corresponding
insolvent data set is Dg(u — pr_1)-

COROLLARY 3.3 Assume that Do(u) C Di(u) C ... C Di(u). Then we have the
spherical polynomial pi can be decomposed in the form

Pk =Dpo+q + ...+ q, 9)

3 pe
where qs = Z Z Cispis + Z CYyl, 1 <s <k andpo is the solu-

=1 |a|=ps_1+1 RZIST IRV P
tion of the Hermite problem Hy, and the coefficients

Cfo=D(u—ps-1)(Vi),  CF =DV (u—psi1)(B))

can be computed recursively as follows
fors=1,|a|=po+1,...,p1 and ; € I1\Ip,

= Du(V;) — D®po(V7), C} = DYiu(Bj) — DVpo(B)),
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and for s > 2, la] = ps—1+1,...,ps and vj € I\I5_1,

s—1 3 Pt
08, = D*u(Vy) — Dpo(Vi) — 3 [Z S D)

t=1 L I=1 |B|=pe_1+1

D M)
Ym €L\t —1
s—1

CY = DYiu(B;) — DVipo(B Z[Z Z Cl DY), (B;)

t=1 L I=1|8|=p;_1+1

LY aerm)]

’Ymelt\lt—l

Proof The decomposition (9) of py follows from Theorem 3.2. On the other hand,
it is clear that for s =1,...,k, we have

s—1 3 Pt
ps—1:p0+z {Z Z Cﬁtsoﬁt"’_ Z @%wt%]

t=1 =1=1 |B|=ps—1+1 Vi €LN\Te—1
Then, by using the obvious equality Cf'; = Du(V;) — Dps—1(V;), we deduce that

s—1 3 Pt
Cits = Du(V;) — D%po (Vi) — [Z Z CﬁtD%ft(%)

t=1 “i=1|B|=p,_1+1

+ Z é]m Da% m (‘/’L):| .
Vo €L\ Lt -1
In same way, we can obtain the recursive formula for cy. [ ]
Now, if we put p_1 = —1 and I_; = (), then we have the following result.

THEOREM 3.4 The family
By = {2,070, 1<i<3, 0<s<k, poo1 +1< || < ps and vj € L\I;_1}

forms a basis for the space By, (T'). Moreover, B\k, k € N, are hierarchical.

Proof Let p € By, (T). Since the Hermite interpolation interpolation operator I
is exact on By, (1), we deduce that p = Ix(p) = po + q1 + --- + qx, where pg is
the unique solution of the Hermite problem Hy, and ¢, 1 < s < k, are particular
polynomials in By, (T') defined by

3
5= > HopfoN) + D ag'vg’ (V)

=1 Ja|<po vi€lo

k—1 3 Ps
+ [Z PRV RS agjngj(x)]:o,

i=1 |a|=p,_1+1 Vi €L\ 51
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Using the definitions of Hermite basis functions given in (5), and starting from
= 0to s = k and from |a] = ps_ 1 + 1 to || = ps, we obtain step by step
D*f(A;) = pf'y = 0 and D% f(Bj) = o4’ = 0. Consequently, By, is a basis for Bk

On the other hand, if we put Bg = By, it is simple to check that Bk = Bk;—1 U Bk,
where

B = {&f 00, 1<i <3, pro1+1< o] <ppand ;€ L\I—1}.

Then we have gk_l - f)’\k [ |

Remark 2 R
The comparaison of the two bases By and Bj of the space B, (T) leads to the
following observations. R

i) The hierarchical structure of the bases By, k € N, can be used for several
practices in numerical analysis like compressing data and surfaces.

i) If we denote by T, i, (resp. T+, ;) the number of B-coefficients of each P 1<
i < 3, (resp. 1,/}? ) that are not necessarily equal to zeros, then by straightforward
computation we get

Top = ("5%) =2 ("52) = (") and Ty, = (572 - 3("5).

These B-coefficients are solution of linear systems of size T, j or T’y &, that derive

from Hermite interpolation problems given by (5). For the elements of Bk, the
number of B-coefficients is only T, s for ¢fs and T% for 2, when «a is such
that ps_1 +1 < |a| < ps, 75 € 1 \Is 1 and 0 < s < k. Then the size of their
corresponding systems are respectively T, s and T% However, the complexity of

determining the basis gk is far less than that of Bj.

i71) Computation of the polynomial py € B, (T) at several points: According to
(ii), each basis function ©i'g or wzﬂ is determined by a large number of B-coefficients,
so the computation of the polynomial p; needs at lot of operations. As in practice
this computation is required for several points T', we conclude that it is useful to
use the new basis which allows us to reduce extensively the number of operations.

3.1 Application

In this section, we are interested in the decomposition of polynomials that arise
from some unisolvent interpolation problems

LEMMA 3.5 The data set Di(u) given in (3) (resp. in (4)) uniquely determines a

SBB-polynomial py, of degree ny, = 2k (resp. ny, = 2k + 1) solution of the problem
Hy.

Proof The proof is similar to the proof of the bivariate case (see [4]). Indeed, assume
that pg is written in its SBB-form, and the corresponding Bézier coefficients are
numbered as in Figure (1). Assume that nj = 2k, it is simple to verify that

2k 42

dim By, (T) = card(Dy(u)) = ( 5

) = (2k+1)(k+ 1).



A. Lamnii & H. Mraoui/ ITJM?C, 02 - 04 (2012) 247-259. 255

Figure 1. k =2, ng = 4.

Then, showing that Dy (u) is a determining set for B, (T") is equivalent to show
that Dy, (u) uniquely determines all B-coefficients of py.. Indeed, the C* smoothness
at v; implies that the data set {D“u(v1), |o| < k — 1} uniquely determines the

(k _;)JFQ = @ coefficients corresponding to domain points marked with e clos-

est to vertex v; (see Figure(1)). The situation at vy and vz is analogous. Moreover,
it is easy to see that {DVu(B), |y| < k} uniquely determines the (k”2L2) = ergﬁ
coefficients corresponding to domain points marked with ¢ (diamond). Thus, a to-
tal of 3k(k2+1) + (k+1)2(k+2) = (2k 4+ 1)(k + 1) coefficients are already determined,

and this completes the proof. [ |

COROLLARY 3.6 Let pi € Bog1(T) (resp. by, € Bar(T)) be the Hermite spherical
polynomial interpolant associated to the data set (4) (resp. (3)). Then py and Py,
can be decomposed in the form

Pr=po+q+...+q,
DPr=Do+Qq1 + ...+ qg,

where pgo s the spherical polynomial interpolating the value of uw at Vi, i = 1,2,3
and Py is the spherical polynomial equal to u(B), while

3
¢s=) > D*u—ps—)(Vi)eis+ Y DV(u—ps1)(Bj)e]
=1 |a|=s lyl=s—1
and
3 ~
.= > D*u—Dp, ) (V)@ + Y D"(u—p,)(B)].
=1 Jaf=s-1 Iyl=s
For each 1 < s < k, the elements {¢?, ¥, la| = s, |y] = s — 1}

(resp.{&ffs,@, la] = s — 1, |y| = s}) are the last Hermite basis functions for
Bos1(T) ( resp. Bas(T)).

COROLLARY 3.7 The collection {¢§,d, la| =5, 7| =s—-1, 1<s <k and 1<
i < 3} (resp.{@ofsﬂzg, la] =s—1, |7v|=s, 1<s<kandl <i<3}) forma
basis for Bog+1(T), ( resp. Bok(T)).

Proof This result follows from Theorem 3.4 with ny = 2k + 1 (resp. nx = 2k),
taking into account that the functions @f; and ¢ such that |a| = |y[ = —1 are
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omitted. [ ]

According to Remark 2, we have two cas:
Case : n;, =2k +1

- The explicit expression for T, and T',, are

_ ed(al+1)

k(k+1)
. Er

Ty = (k+1)> 5

and T%k =

- The total number of B-coefficients needed for the determination of By 1
is given by

_ 25 11

2 3 4

Sokr1=3 3 Top+ . Toi 3+—k+—k TRk
ol <k Iyl <k—1

- /"\J_’he number of B coefficients for the determination of the new basis
By, T is given by

i _ 715, 194 1,
O'Qk+1:Z 32Ta,8+ Z T%S :3+Ek+?k +Ek +§k
5=0 | |a|=s Iyl=s—1
Case : n;, = 2k

- The explicit expression for T, and T, are

Clallal+1) o (e D(k+2)

Tog = (k+ 1) 5 k= 5

- The total number of B-coefficients needed for the determination of By r
is given by

11

Sk’

- 19, 05,5 23,5
Sok=3 ) Ta7k+ZT%k:1+zk+§ks k
lol<k—1 Ik

- :\Fhe number of B coefficients for the determination of the new basis
By, T is given by

k
_ 19 , 1
o= |3 D> Tas+ > Tys :1+—k+—k2 PR
s=0 | Jaj=s—1 =

In the following table, we give ¥ogy1, 0ok+1, 2ok and g, for the first values of k.

Table 1. Xoky1, 0241, X2k and ogg, for £ =1...10.

k 1 2 3 4 5 6 7 8 9 10

0
Yog41 3 31 138 411 970 1968 3591 6058 9621 14565 21208
3

O2k+1 22 82 220 485 938 1652 2712 4215 6270 8998

Yok 1 21 111 355 870 1806 3346 5706 9135 13915 20361

o2 1 16 70 200 455 896 1596 2640 4125 6160 8866
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Figure 2. Do(u) C D1(u) C Da2(u)..

In order to illustrate our results, we give in the next section some numerical
examples.

4. Numerical Examples

In this section, we give an example which illustrate the theoretical results. Let
T be the spherical triangle with vertices V1 = (0,3), V2 = (0,%), V3 = (%T”, T
In this example, we describe the decomposition of the Hermite interpolant po to
3
the Sphere-Like Surfaces associated at the function f(x,y,z) = Z(gi(az,y, z))_é
2 2 2 =
where g;(z,y,2) = ((%) + ( Y ) + ( 2 ) and (ai,...,a5) = (5,1,2,5,1).

Q41 Qg2

B is the center of gravity of T'(see Figure (2)). From corollary 3.7, we have
p2 = po + q1 + g2 In Figure 3 we present the graphs of pg, ps and the detail
functions ¢; and g¢o, for ni = 2k + 1, in this case we have

and

Dy(u) ={Dg, ,u(V;),w(B), Dyu(B), Dyu(B); a =0,1,2; 1 <i,j <3; i # j}.

Table 2. The maximum error between f and different step of decomposition.

lfir —pollee  llfir — ot @)lls  Ilfir —Pills  Ilfir — (Po+ @1 + @2)llc  [Ifjr — P2lloo
2.5687 10~1 5.0113 103 4.9384 103 1.5202 104 1.4375 104
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1]
amn

(a) Graph of j (bh Graph of 4

(¢} Graph of py (d) Graph of ga

| -y |y

(&) Graph of po + a1 + g2 () Graph of g

Figure 3. Decomposition of ps.

Table 3. The maximum error between ps and different step of decomposition

lp2 —pollee P2 — (Po + @1)lloo  |lP2 = P1llec P2 — (PO + @1 + ¢2) |0
2.3549 101 2.9702 10—3 2.8973 10~3 1.6367 10—4

5. Conclusion

In this paper, we proposed to extend the hierarchical bivariate Hermite Interpolant
to the spherical case. Let T" be an arbitrary spherical triangle of the unit sphere
S and let u be a function defined over the triangle T'. For k € N, we considered a
Hermite spherical Interpolant problem Hj, defined by some data scheme Dy (u) and
which admits a unique solution pj, in the space By, (T') of homogeneous Bernstein-
Bézier polynomials of degree ny = 2k (resp. ny = 2k + 1) defined on 7.
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