
International Journal of

Mathematical Modelling & Computations

Vol. 03, No. 03, 2013, 245- 252

An Application of Neural Networks to Solve Ordinary Differential

Equations

S. Ezadia,∗ and N. Parandinb

aDepartment of Mathematics, Islamic Azad University, Hamedan Branch,

PO. Code 65138, Iran;
bDepartment of Mathematics, Islamic Azad University, Kermanshah Branch,

PO. Code 67189-97551, Iran.

Abstract. In this paper, we introduce a hybrid approach based on modified neural networks
and optimization teqnique to solve ordinary differential equation. Using modified neural net-
work makes that training points should be selected over the open interval (a, b) without
training the network in the range of first and end points. Therefore, the calculating volume
involving computational error is reduced. In fact, the training points depending on the dis-
tance [a, b] selected for training neural networks are converted to similar points in the open
interval (a, b) by using a new approach, then the network is trained in these similar areas.
In comparison with existing similar neural networks proposed model provides solutions with
high accuracy. Numerical examples with simulation results illustrate the effectiveness of the
proposed model.

Received:21 Janurary 2013, Revised:19 July 2013, Accepted:4 September 2013.

Keywords: Ordinary Differential Equations, Modified Neural Networks.

Index to information contained in this paper

1 Introduction

2 Definitions and required theorems

3 Problem formulation

4 Numerical examples

5 Conclusions

1. Introduction

Differential equations are used as a powerful tool in solving many problems in var-
ious fields of human knowledge, such as physics, chemistry, mechanics, economics,
etc. One application of the differential equation is turning problems and natural
phenomena into differential equations, then, by solving the differential equation the

∗Corresponding author. Email: Somayeh.ezadi@yahoo.com

c⃝ 2013 IAUCTB
http://www.ijm2c.ir

246 S. Ezadi & N. Parandin/ IJM2C, 03 - 03 (2013) 245-252.

answer is described and the phenomena are calculated. Usually many of these prob-
lems do not have analytical solutions or their solution may have certain implica-
tions. Many researchers have tried to approximate the solutions of these equations
and proposed a lot of algorithms such as Runge-Kutta, Adomian, Adam-Beshforth,
Adam-Molton, Predictor-Corrector methods and other methods. In recent years
neural networks for estimation of ordinary differential equations (ODE) and par-
tial differential equations (PDE) as well as the fuzzy differential equation (FDE)
have been used. In year 1990 Lee and Kang [3] used parallel processor computers to
solve a first order differential equation with Hopfield neural network models. Meade
and Fernandez [7, 8] solved linear and nonlinear ordinary differential equations us-
ing feed forward neural networks architecture and B-splines of degree one. It is
not easy to extend these techniques to multidimensional domains [1]. Lagarys and
colleagues (1998) used artificial neural networks for solving ordinary differential
equations (ODE s) and partial differential equations (PDE) with the initial value
and boundary value problems [5]. In Comparison with jamme and Liu [4], Malek
and Shekari presented numerical method based on neural network and optimization
techniques which the higher-order differential equations answers approximates by
finding a package form analytical of specific functions [9] which is a combination
of two terms: The first term is related to the initial condition or boundary and the
second term contains parameters related to the neural network, The used neural
network is a two-layer network with one hidden layer and the activation function
used in the hidden layer is a sigmoid function or Hyperbolic tangant function. This
paper is divided into five section. In the Section 2 we introduce the basic definitions
and needed theorems, In Section 3, the proposed model for solving the ordinary
differential equations is introduced. In The Section 4, illustrative examples are
discussed, Section 5 contains the conclusions.

2. Definitions and required theorems

This section provides the necessary Definitions and required theorems, which is
used to propose the model.

Definition 2.1 (Activation functions)In neural network, activation function is
used for limiting the output neurons. In this paper we use linear activation function
and Hyperbolic secont activation function. Introducing one conversion function in
artificial neural network feedforward:
heyperbolic secont transformation function

S(n) =
2

en + e−n
.

Definition 2.2 (MLP Network training)learning the feed forward neural networks,
the law of error propagation (BP) is used which is based on The error correction
learning rule. Therefore, to calculate sensitivities for the different layers of neurons
in the MLP network the Derivative of conversion neurons functions is required. So
functions used that have derivative. one of these functions is Hyperbolic secont
function which The characteristics of this function was explained in the previous
section. The Error function is described in the following sections.

Theorem 2.3 (The World approximation Builder)The MLP network with one
hidden layer with a sigmoid functions(Hyperbolic secont function) in the middle
layer and linear transformation functions in output layer are able to approximate
All functions in any degree of the integral of the square. (see [2]).

S. Ezadi & N. Parandin/ IJM2C, 03 - 03 (2013) 245-252. 247

3. Problem formulation

Consider the following initial value first order differential equation:


dy(x)
dx = f(x, y(x)), x ∈ [a, b] ,

y(a) = α,

(1)

the trial function may be written in the following form:

yT (x, p) = α+ (x− a)N(x, p) (2)

above function has two parts, the first part satisfies the initial condition and con-
tains no adjustable parameters, the second part involves a neural network containig
adjustable parameters [5, 9].
The error function that must minimize, has the following form:

E(p) =

m∑
i=1

(
dyT (xi, p)

dx
− f(xi, yt(xi, p))

2 (3)

where {ui}n−1
i=0 are discrete points belong to the interval[a, b]. Now differentiating

from trial function yT (xi, p) in (3), we obtain

dyT (x, p)

dx
= N(x, p) + (x− a)

dN(x, p)

dx
(4)

Because derivatives of tangent hyperbolic of network feed-forward and sigmoid
functions are a direct function of the value of transformation function, we do not
need any differentiation. Therefore, it has many applications in hidden layer of
neural network and functions such as the hyperbolic secant is less accurate in
comparison with other functions. In our proposed model, modified neural network
has one hidden layer with H hyperbolic secont activation functions and a linear
activation function in output unit and it was shown even the use of the network by
selecting a secant hyperbolic function in the hidden layer can be arbitrary accuracy
than the existing neural networks for solving ordinary differential equations and
fuzzy differential equations must be. wj is a weight parameter from input layer to
the ith hidden layer, vj is an ith weight parameter from hidden layer to the output
layer, bj is an ith bias for the ith unit in the hidden layer, nj is an output of the

ith hidden unit, so in (4), N(x, P) and dN(x,p)
dx are defined as follow:

N =

H∑
j=1

VjS(nj) (5)

where

S(nj) =
2

enj + e−nj
, nj = wjQ(x) + bj (6)

248 S. Ezadi & N. Parandin/ IJM2C, 03 - 03 (2013) 245-252.

so that

Q(x) = (x+ 1)ε, ε ∈ (0, 1) (7)

therefore

Q(x) ∈ (a, b) (8)

it means, the training points depending on the distance [a,b] are selected for train-
ing neural networks using a technique similar points in the open interval (a,b) are
converted ,Then the network is trained in similar areas

dN

dx
=

H∑
j=1

vjwjS
′(nj) =

H∑
j=1

vjwj
−2(ewjQ(x)+bj + e−wjQ(x)−bj)

(ewjQ(x)+bj + e−wjQ(x)−bj)2
(9)

using (5) and (9), (3) may rewriten the following form:

E(p) = −
m∑
i=1

(
(xi − a)

H∑
j=1

vjwj
−2(ewjQ(xi)+bj + e−wjQ(xi)−bj)

(ewjQ(xi)+bj + e−wjQ(xi)−bj)2

−
H∑
j=1

Vj
2

ewjQ(xi)+bj + e−wjQ(xi)−bj
+ f(xi, yt(xi, p)

)2
(10)

we can apply BFGS quasi-Newton method to minimize (10)[6].

4. Numerical examples

To show the behavior and properties of this new method,in this section. we discuss
the simulation results one examples. The simulation is conducted on Matlab 12,
the objective function in (1) minimizer engaged is fminunc. The initial weights
were randomly selected.

Example 4.1 Consider the following first order ODE:{
dy(x)
dx = 4x3 − 3x2 + 2, x ∈ [0, 1]

y(0) = 0
(11)

The exact solution of (7) is y(x) = x4 − x3 + 2x. The trail solution is given as

yT (x) = xN(x, p) = x
H∑
j=1

2

ewjQ(x)+bj + e−wjQ(x)−bj

thus, the error function is the following form:

E(p) =

m∑
i=1

(H∑
j=1

vj
2

ewjQ(x)+bj + e−wjQ(x)−bj
+ xi

H∑
j=1

vjwj
−2(ewjQ(x)+bj + e−wjQ(x)−bj)

(ewjQ(x)+bj + e−wjQ(x)−bj)2

− (4x3 − 3x2 + 2)
)2

S. Ezadi & N. Parandin/ IJM2C, 03 - 03 (2013) 245-252. 249

Error function in this example for the H = 5 hyperbolic secont units in the
hidden layer and for ε = 0.4 m = 6 equally spaced points inside the interval [0, 1]
is trained.
the optimal value of the weights and biases are shown in Table 1 values of ana-

lytical solution and trial function are shown in Table 2. The transient behavior of
proposed model in terms of the weights and biases is shown in Figure 1.

Table 1. The optimal values of weights and biases

i 1 2 3 4 5

Vi 3.0155 2.5384 -1.7355 7.5394 4.0451
Wi 2.5829 6.0664 2.1042 -4.6663 5.7714
bi -0.7159 2.2954 0.2143 6.4021 7.7615

Table 2. Comparison of the exact ya and approximated yt

solutions.

i 1 2 3 4 5 6

xi 0 0.2 0.4 0.6 0.8 1
yt 0 0.3936 0.7616 1.1135 1.4976 1.9999
ya 0 0.3936 0.7616 1.1136 1.4976 2.0000

0 500 1000 1500 2000
−10

0

10

Number of iterations

V
al

ue
s

of
 c

oe
ffi

ci
en

ts

0 500 1000 1500 2000
−10

0

10

20

Number of iterations

V
al

ue
s

of
 c

oe
ffi

ci
en

ts

0 500 1000 1500 2000
−10

0

10

20

Number of iterations

V
al

ue
s

of
 b

ia
se

s

w1
w2
w3
w4
w5

v1
v2
v3
v4
v5

u1
u2
u3
u4
u5

1(a)
1(b)

1(c)

Figure 1. Source point located on the boundary, surrounded by a semicircular region.

−1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

3

4

5

6

7

8

x

Y
(x

)

Computed solution

Exact solution

Figure 2. Numerical results for Example 1. Graph of exact solution in comparison with the computed
solution inside and outside the domain [0, 1.5].

The E(p) error of the network is: 2.7557e− 07 for example 1.

250 S. Ezadi & N. Parandin/ IJM2C, 03 - 03 (2013) 245-252.

Example 4.2 Consider the following first order ODE:

{
dy(x)
dx = y(x), x ∈ [0, 1]

y(0) = 1
(12)

The exact solution of the ODE is: y(x) = ex. The trail solution is given as

yT (x) = 1 + xN(x, p) = 1 + x

H∑
j=1

2

ewjQ(x)+bj + e−wjQ(x)−bj

thus, the error function is the following form:

E(p) =

m∑
i=1

(H∑
j=1

vj
2

ewjQ(x)+bj + e−wjQ(x)−bj
+xi

H∑
j=1

vjwj
−2(ewjQ(x)+bj + e−wjQ(x)−bj)

(ewjQ(x)+bj + e−wjQ(x)−bj)2
−y(x)

)2

Error function in this example for the H = 5 hyperbolic secont units in the hidden
layer and for ε = 0.4, m = 6 equally spaced points inside the interval [0,1] is
trained.
the optimal value of the weights and biases are shown in Table 3 values of analytical
solution and trial function are shown in Table 4. The transient behavior of proposed
model in terms of the weights and biases is shown in Figure 3.

Table 3. The optimal values of weights and biases

i 1 2 3 4 5

Vi -1.4517 1.7167 -0.7126 5.8092 2.0571
Wi 0.3878 0.8054 0.6515 -3.5665 -1.3531
bi 0.8634 0.7485 1.5981 6.2970 1.8880

Table 4. Comparison of the exact ya and approximated yt

solutions.

i 1 2 3 4 5 6

xi 0 0.2 0.4 0.6 0.8 1
yt 1 1.2214 1.4918 1.8221 2.2255 2.7182
ya 1 1.2214 1.4918 1.8221 2.2255 2.7182

0 500 1000 1500
−5

0

5

Number of iterations

V
al

ue
s

of
 c

oe
ffi

ci
en

ts

0 500 1000 1500
−10

0

10

Number of iterations

V
al

ue
s

of
 c

oe
ffi

ci
en

ts

0 500 1000 1500
−5

0

5

10

Number of iterations

V
al

ue
s

of
 b

ia
se

s

w1
w2
w3
w4
w5

v1
v2
v3
v4
v5

u1
u2
u3
u4
u5

2(a) 2(b)

2(c)

Figure 3. Transient behavior of the proposed model in Example 2: 2(a) in terms of w1, w2, w3, w4, w5;
2(b) in terms of v1, v2, v3, v4, v5; 2(c) in terms of b1, b2, b3, b4, b5.

S. Ezadi & N. Parandin/ IJM2C, 03 - 03 (2013) 251-252. 251

−1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

x

Y
(x

)

Computed Solution

Exact Solution

Figure 4. Numerical results for Example 2. Graph of exact solution in comparison with the computed
solution inside and outside the domain [0, 1].

The E(p) error of the network by B-splines of degree one [2] for example 2 is:
5.60e− 05.
and in this paper
The E(p) error of the network is: 2.3422e− 07 for example 2.

5. Conclusions

Because derivatives of tangent hyperbolic of network feed-forward and sigmoid
functions are a direct function of the value of transformation function, we do not
need any differentiation. Therefore, it has many applications in hidden layer of
neural network and functions such as the hyperbolic secant is less accurate in com-
parison with other functions. In this paper, a modified neural network introduced
in Section 3 was used for solving this problem and it was shown that even the use
of this network by selecting a secant hyperbolic function in the hidden layer can
be resulted in the arbitrary accuracy in comparison with neural networks used for
solving ordinary differential equations and also fuzzy differential equations.

References

[1] Dissanayake M. W. M. G., Phan-Thien N., Neural-network-based approximations for solving partial
differential equations, Communications in Numerical Methods in Engineering, 10 (1994) 195-201.

[2] Hornick K., Stinchcombe M., White Multilayer feedforward networks are universal approximators,
Neural Networks, 2 (1989) 359-366.

[3] Lee H., Kang I.S., Neural algorithms for solving differential equations, journal of computational
physics, 91(1990) 110-131.

[4] Liu B., Jammes B., Solving ordinary differential equations by neural networks, in: Proceeding of 13th
European Simulation Multi-Conference Modelling and Simulation: A Tool for the Next Millennium,
Warsaw, Poland, June 14, (1999).

[5] Lagaris I. E., Likas A., Fotiadis D. I., Artificial neural networks for solving ordinary and partial
differential equations, IEEE Transactions on Neural Networks, 9 (5) (1998) 987-1000.

[6] Liu C., Nocedal J., On the limited memory BFGS method for large scale optimization. Mathematical
Programming, 45(3) (1989) 503-528.

[7] Meade Jr A.J., Fernandez A.A., The numerical solution of linear ordinary differential equations by
feed forward neural networks, Mathematical and Computer Modelling, 19 (12) (1994) 1-25.

[8] Meade Jr A.J., Fernandez A.A., Solution of nonlinear ordinary differential equations by feedforward
neural networks, Mathematical and Computer Modelling, 20 (9) (1994) 19-44.

[9] Malek A., Shekari R., Numerical solution for high order differential equations, using a hybrid neural
networkOptimization method, Applied Mathematics and Computation, 183 (2006) 260-271.

252 S. Ezadi & N. Parandin/ IJM2C, 03 - 03 (2013) 251-252.

