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Abstract. We consider an M/G/1 queue with regular and optional phase vacation and with
state dependent arrival rate. The vacation policy is after completion of service if there are
no customers in the system, the server takes vacation consisting of K-phases, each phase
is generally distributed. Here the first phase is compulsory where as the other phases are
optional. For this model the supplementary variable technique has been applied to obtain the
probability generating functions of number of customers in the queue at the different server
states. Some particular models are obtained and a numerical study is also carried out.
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1. Introduction

In the M/G/1 queueing system, the concept of vacation had been first studied by
[11]. They introduced the concept of modified service time which has a main role
in the system with general service and vacation times. In many examples such as
production systems, bank services, computer and communication networks, these
systems have the concept of vacation. For overhauling or maintanance of the system
the server may go to (system) a vacation.
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The classic M/G/1 vacation queues with various vacation policies have been well
studied (see [3, 4], [5] and [8]). [2] considered a GI/M/1 queue with phase type
of working vacations and vacation interruption where the vacation time follows a
phase type distribution. Two monographes of [13, 16] also collected the research
results of the classical M/G/1 vacation queues. [14, 15] discussed the discrete time
GI/Geo/1 queue with server vacations and the GI/M/1 queue with PH vacations
or setup times, respectively.
Several authors studied the queueing system with heterogeneous arrival and het-

erogeneous service. [10] studied the characteristics for the heterogeneous batch ar-
rival queue with server startup and breakdown and they obtained the steady state
behavior of the system size distribution at stationary point of time as well as the
queue size distribution at departure point of time. Later [9] made the contribution
to the control policy of M/G/1 queue with server vacations, startup and break-
downs. The system characteristics of such a model are analyzed by the author and
author obtained total expected cost function per unit time was developed to deter-
mine the optimal threshold of N policies at a minimum cost. [7] have analyzed a
single server Bernoulli vacation queue with two type of services and with restricted
admissibillity. [7] have studied finite population single server batch service queue
with compulsory server vacation. [1] considered a MAP/M/c queueing system in
which group of servers take a simultaneous phase type vacation and he obtained
the steady state solutions. [12] obtained the joint distributions of the length of
a busy period, the number of customers served during the busy period and the
residual interarrival time at the instant the busy period ends for a GI/M/1 queue
with multiple phase type vacations.
As an example consider the optical access network with multiple wavelengths,

the data arrive randomly and are transmitted by wave lengths. In networks, wave
lengths are distributed and most of them transmit the data normally, and the left
wavelengths stay in Optical Network Unit (ONU) and not transmit the data. When
there are more data, the left wavelengths also can be used to transmit data during
a certain period, and the transmit process can be operated in multiple phases. In
this paper we consider an M/G/1 queue with regular and optional phase vacation
and with state dependent arrival rate. The vacation policy is after completion of
service if there are no customers in the system, the server takes vacation consisting
of K-phases, each phase is generally distributed. Here the first phase is compulsory
where as the other phases are optional. We give the mathematical description and
analysis in section 2. Section 3 deals with some particular models and section 4
presents some numerical results related to the model analyzed in this paper. The
last section gives a conclusion.

2. The Mathematical Model and Analysis

A single server queueing system has been considered. For this model, the arrival
follows Poisson with parameter λ, service time is generally distributed with distri-
bution function B(x) whose Laplace stieltjes transform(LST) is B∗(s). After com-
pletion of service if there are no customers in the system, the server takes vacation
consisting of K-phases with each phase has time duration V1, V2, V3, ..., VK all are
independent random variables with distribution functionsVi(x), i = 1, 2, ...,K. Here
phase one is compulsory after completion of phase i the server takes phase i + 1
with probability θi, i = 0, 1, ...,K(θ0 = 1, θK = 0). After completion of vacation
the server enter in to the system independent of the number of customers in the
system. That is, if there are customers in the queue the server starts service using
FCFS rule. Otherwise the server waits idle for a new arrival. The arriving cus-
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tomers waiting in a queue of infinite capacity, if the service is not immediate. The
modified vacation period is

V = V1 with probability (1− θ1)

= V1 + V2 with probability θ1(1− θ2)

· · ·

= V1 + V2 + ...+ VK−1 with probability θ1θ2...θK−2(1− θK−1)

= V1 + V2 + ...+ VKwith probability θ1θ2...θK−1


(1)

and the LST of V is

V ∗(s) =

K∑
j=1

( j∏
i=1

θi−1V
∗
i (s)

)
(1− θj) (2)

with

E(V ) =

K∑
j=1

( j∏
i=1

θi−1

)
E(Vj) (3)

The arrival rate have the following definitions

i.e. λ =


λ0, if the arrival is during idle period

λ1, if the arrival is during service period

λ2, if the arrival is during vacation period

The time required by a customer to complete a service cycle isBc = B + V
where V is defined in equation (1). The LST of Bc is B∗

c (s), B
∗
c (s) = B∗(s)V ∗(s),

whereV ∗(s) is given in equation (2) E(Bc) = E(s) + E(v),where E(v)is given in
equation (3)
Asssume B(0) = Vi(0) = 0,B(∞) = Vi(∞) = 1, i = 1, 2, ...,K. The elapsed

service time at time t is defined by ξ0(t) and the elapsed vacation time of phase i
is denoted by ηi(t).
Let Y (t) be the state of the server at time t

i.e. Y (t) =


0, if the server is idle at time t

i, if the server is ith phase of vacation at time t

K + 1, if the server is busy at time t

Let the random variable L(t) is defined as

L(t) =


0, if Y (t) = 0

ηi(t), if Y (t) = i, i = 1, 2, ..,K

ξ0(t), if Y (t) = K + 1

and let N(t) be the number of customers in the queue. Now we define the proba-
bilities

Q(t) = Pr {N(t) = 0, L(t) = 0}
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Pn(t, x)dx = Pr {N(t) = n, Y (t) = K + 1, x < ξ0(t) ⩽ x+ dx} , n ⩾ 0

Ri,n(t, x)dx = Pr {N(t) = n, Y (t) = i, x < ηi(t) ⩽ x+ dx} , n ⩾ 0, i = 1, 2, ...,K

where {(N(t), Y (t)); t ⩾ 0} is a Bivariate Markov process with state space S =
{(0, 0)} ∪ {(K + 1, j)} ∪ {(i, j)} , i = 1, 2, ...,K, j ⩾ 0.

The hazard rate function of B is µ(x)dx =
dB(x)

1−B(x)
, is the conditional probabil-

ity of completion of a service during the time interval (x, x+dx] given that elpased

service time is x. The similar quantity for Vi is ηi(x)dx =
dVi(x)

1− Vi(x)
, i = 1, 2, ...,K.

In steady state, the probabilities are Q = lim
t→∞

Q(t), Pn(x) = lim
t→∞

Pn(t, x) and

Ri,n(x) = lim
t→∞

Ri,n(t, x).

The model is governed by the following differential difference equations:

d

dx
P0(x)+(λ1+µ(x))P0(x) = 0 (4)

d

dx
Pn(x)+(λ1+µ(x))Pn(x) = λ1Pn−1(x), n ⩾ 0, x > 0 (5)

d

dx
Ri,0(x)+ (λ2+ ηi(x))Ri,0(x) = 0, i = 1, 2, ...,K (6)

d

dx
Ri,n(x)+(λ2+ηi(x))Ri,n(x) = λ2Ri,n−1(x), i = 1, 2, ...,K (7)

The boundary conditions are

λ0Q =
K−1∑
i=1

(1−θi)

∫ ∞

0
ηi(x)Ri,0(x)dx+

∫ ∞

0
ηK(x)RK,0(x)dx (8)

P0(0) = λ0Q+
K∑
i=1

(1− θi)

∫ ∞

0
ηi(x)Ri,1(x)dx+

∫ ∞

0
P1(x)µ(x)dx (9)

Pn(0) =
K∑
i=1

(1− θi)

∫ ∞

0
ηi(x)Ri,n+1(x)dx+

∫ ∞

0
Pn+1(x)µ(x)dx, n ⩾ 1 (10)

R1,0(0) =

∫ ∞

0
µ(x)P0(x)dx (11)

R1,n(0) = 0, n ⩾ 1 (12)



R. Kalyanaraman & R. Shanthi/ IJM2C, 05 - 03 (2015) 231-244. 235

Ri,n(0) = θi−1

∫ ∞

0
Ri−1,n(x)ηi−1(x)dx, i = 2, 3, ...,K;n = 0, 1, 2, · · · (13)

The normalization condition is

Q+ P (1) +

K∑
i=1

Ri(1) = 1

For the analysis, the following probability generating functions have been defined

P (x, z) =

∞∑
n=0

znPn(x)

and

Ri(x, z) =

∞∑
n=0

znRi,n(x), i = 1, 2, ...,K

From equation (4), we have

P0(x) = P0(0)(1−B(x))e−λ1x (14)

Multiplying equation (5) by zn, summing from 1 to ∞ and adding equation (4),
we get

P (x, z) = P (0, z)(1−B(x))e−λ1(1−z)x (15)

Multiplying equation (7) by zn, summing from 1 to ∞ and adding equation (6),
we get

Ri(x, z) = Ri(0, z)(1− Vi(x))e
−λ2(1−z)x, i = 1, 2, ...,K (16)

From equation (6), we get

Ri,0(x) = Ri,0(0)(1− Vi(x))e
−λ2x, i = 1, 2, ...,K (17)

Multiplying equation (10) byzn, summing from 1 to ∞, adding equation (9) and
multiply by z, we get

zP (0, z) = zλ0Q+

k∑
i=1

(1− θi)
[∫ ∞

0
ηi(x)Ri(x, z)dx−

∫ ∞

0
ηi(x)Ri,0(x)dx

]
+

∫ ∞

0
µ(x)P (x, z)dx−

∫ ∞

0
µ(x)P0(x)dx, i = 1, 2, ...,K

(18)

From equation (17),we have∫ ∞

0
Ri,0(x)ηi(x)dx = Ri,0(0)V

∗
i (λ2), i = 1, 2, ...,K (19)
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From equation (16), we have∫ ∞

0
Ri(x, z)ηi(x)dx = Ri(0, z)V

∗
i (λ2(1−z)), (20)

From equation (14), we have∫ ∞

0
P0(x)µ(x)dx = P0(0)B

∗(λ1) (21)

From equation (15), we have∫ ∞

0
P (x, z)µ(x)dx = P (0, z)B∗(λ1(1− z)) (22)

Using equations (19),(20),(21) and (22) in (18),

P (0, z) = λ0zQ+
K∑
i=1

(1− θi)Ri(0, z)V
∗
i (λ2(1− z))

−
K∑
i=1

(1− θi)Ri,0(0)V
∗
i (λ2)− P0(0)B

∗(λ1)


(23)

where R = λ1(1− z) and T = λ2(1− z)
Multiplying the equation (12) by zn, summing from n = 1 to ∞ and adding with

equation (11), we get

R1(0, z) = P0(0)B
∗(λ1) (24)

Multiplying equation (13) by zn, summing from n = 0 to ∞ , we get

Ri(0, z) =

i−1∏
l=1

θlV
∗
l (T )B

∗(λ1)P0(0), i = 2, 3, ...,K (25)

Put n = 0 in equation (13),we get

Ri,0(0) =

i−1∏
l=1

θlV
∗
l (λ2)B

∗(λ1)P0(0), i = 2, 3, ...,K (26)

From equation (23)

P (0, z) = λ0zQ+ (1− θ1)V
∗
1 (T )P0(0)B

∗(λ1)

+

K∑
i=2

(1− θi)V
∗
i (T )

i−1∏
l=1

θlV
∗
l (T )B

∗(λ1)P0(0)

− (1− θ1)V
∗
1 (λ2)B

∗(λ1)P0(0)− P0(0)B
∗(λ1)

−
K∑
i=2

(1− θi)V
∗
i (λ2)

i−1∏
l=1

θlV
∗
l (λ2)B

∗(λ1)P0(0)


(27)
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From equation (8),

λ0Q = (1−θ1)V
∗
1 (λ2)B

∗(λ1)P0(0)+
K∑
i=2

(1−θi)V
∗
i (λ2)

i−1∏
l=1

θlV
∗
l (λ2)B

∗(λ1)P0(0) (28)

Substituting equation(28) in (27), we get

P (0, z) =
[(z − 1)A+ (1− θ1)V

∗
1 (T ) +A1 − 1]

[z −B∗(R)]
B∗(λ1)P0(0) (29)

where

A = (1− θ1)V
∗
1 (λ2) +

K∑
i=2

(1− θi)V
∗
i (λ2)

i−1∏
l=1

θlV
∗
l (λ2)

A1 =

K∑
i=2

(1− θi)V
∗
i (T )

i−1∏
l=1

θlV
∗
l (T )

Now

P (z) =

∫ ∞

0
P (x, z)dx = P (0, z)

[1−B∗(R)]

R

and Ri(z) =

∫ ∞

0
Ri(x, z)dx = Ri(0, z)

[1− V ∗
i (T )]

T
, i = 1, 2, ...,K.

 (30)

To find the unknown probability P0(0) we use the normalization condition

Q+ P (1) +

K∑
i=1

Ri(1) = 1,

we get

P0(0) =
λ0(1 + λ1B

∗′
(0))

B∗(λ1)C1
(31)

where

C1 = [1 + (λ1 − λ0)B
∗′
(0)]A− λ0[1 + (λ1 − λ2)B

∗′
(0)]

[
V ∗′

1 (0) +

K∑
i=2

V ∗′

i (0)

i−1∏
l=1

θl

]
P (z) and Ri(z) are the probability generating functions of number of customers

in the queue when the server is busy and the server is on the ith phase of vacation.
Substituting equation (31) in (28),we get

Q =
(1 + λ1B

∗′
(0))A

C1
(32)

Equations in (30), together with (24), (25), (28), (29), (31) and (32) gives the
probability generating function of number of customers in the queue with server is
busy and the server is on the ith phase of vacation (i = 1, 2, ...,K)respectively.
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3. Some Operating Characteristics

In this section we derive the operating characteristics mean and variance number
of customers in the queue when the server is busy and mean and variance number
of customers in the queue when the server is on the ith(i = 1, 2, ...,K) phase of
vacation.
(i) Mean number of customers in the queue when the server is busy:

Lb =
λ0[λ1B

∗′′
(0)C2 −B∗′

(0)(1 + λ1B
∗′
(0))C3]

2(1 + λ1B∗′(0))C1

(ii) Variance of number of customers in the queue when the server is busy:

Vb =
λ0[2C1C8 − 3λ0C9]

12(1 + λ1B∗′(0))2C2
1

(iii) Mean number of customers in the queue when the server is on vacation:

Lv =
λ0λ2(1 + λ1B

∗′
(0))C10

2C1
(iv) Variance of number of customers in the queue when the server is on vacation:

Vv =
λ0λ2(1 + λ1B

∗′
(0))[6C1C10 − 4λ2C1C11 − 3λ0λ2(1 + λ1B

∗′
(0))C2

10]

12C2
1

where

C2 = A− λ2(1− θ1)V
∗′

1 (0) + C5

C3 = λ2
2(1− θ1)V

∗′′

1 (0) + C6

C4 = −λ3
2(1− θ1)V

∗′′′

1 (0) + C7

C5 = −λ2

[
θ1V

∗′

1 (0) +
K∑
i=2

V ∗′

i (0)
i−1∏
l=1

θl

]

C6 = λ2
2

[
θ1V

∗′′

1 (0) +

K∑
i=2

V ∗′′

i (0)

i−1∏
l=1

θl + 2

K−1∑
i=1

V ∗′

i (0)

K∑
n=i+1

V ∗′

n (0)

n−1∏
l=1

θl

]

C7 = −λ3
2

[
θ1V

∗′′′

1 (0) +

K∑
i=2

V ∗′′′

i (0)

i−1∏
l=1

θl

+ 3
[K−1∑
j=1

V ∗′′

i (0)
K∑

n=j+1

V ∗′

n (0)
n−1∏
l=1

θl +
K−1∑
j=1

V ∗′

j (0)
K∑

n=j+1

V ∗′′

n (0)
n−1∏
l=1

θl

]

+ 6

K−2∑
m=1

V ∗′

m (0)

K−1∑
j=m+1

V ∗′

j (0)

K∑
n=j+1

V ∗′

n (0)

n−1∏
l=1

θl

]
C8 = λ2

1[3λ1B
∗′′2

(0)− 2B∗′′′
(0)(1 + λ1B

∗′
(0))]C2 + 3λ1B

∗′′
(0)(1 + λ1B

∗′
(0))

× [C2 + C3]−B∗′
(0)(1 + λ1B

∗′
(0))2[2C4 + 3C3]

C9 = λ2
1B

∗′′2
(0)C2

2 +B∗′2
(0)(1 + λ1B

∗′
(0))2C2

3 − 2λ1B
∗′
(0)B∗′′

(0)

× (1 + λ1B
∗′
(0))C2C3

C10 = V ∗′′

1 (0) +
K∑
i=2

V ∗′′

i (0)
i−1∏
l=1

θl + 2
K−1∑
i=1

V ∗′

i (0)
K∑

n=i+1

V ∗′

n (0)
n−1∏
l=1

θl
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C11 = V ∗′′′

1 (0) +

K∑
i=2

V ∗′′′

i (0)

i−1∏
l=1

θl + 3
[K−1∑
j=1

V ∗′′

i (0)

K∑
n=j+1

V ∗′

n (0)

n−1∏
l=1

θl +

K−1∑
j=1

V ∗′

j (0)

×
K∑

n=j+1

V ∗′′

n (0)
n−1∏
l=1

θl

]
+ 6

K−2∑
m=1

V ∗′

m (0)
K−1∑

j=m+1

V ∗′

j (0)
K∑

n=j+1

V ∗′

n (0)
n−1∏
l=1

θl

4. Some Particular Cases

In this section, we present six particular cases by assuming particular form to
the parameters and/or particular probability distribution to service time and/or
vacation time.
Case 1: Now we take λ0 = λ1 = λ2 = λ and θi = 0(M/G/1 Queue with single

vacation)

Q =
(1 + λB∗′

(0))V ∗
1 (λ)

[V ∗
1 (λ)− λV ∗′

1 (0)]

Lb =
λ2[B∗′′

(0)[V ∗
1 (λ)− λV ∗′

1 (0)]− λB∗′
(0)V ∗′′

1 (0)(1 + λB∗′
(0))]

2(1 + λB∗′(0))[V ∗
1 (λ)− λV ∗′

1 (0)]

Lv =
λ2V ∗′′

1 (0)(1 + λB∗′
(0))

2[V ∗
1 (λ)− λV ∗′

1 (0)]

The results concide with result of M/G/1 queue with single vacation (page 21,
[16]).
Case 2: We take λ0 = λ1 = λ2 = λ

Q =
(1 + λB∗′

(0))F1

F2

Lb =
λ[λB∗′′

(0)F2 −B∗′
(0)(1 + λB∗′

(0))F3]

2(1 + λB∗′(0))F2

Vb =
λ[2F1F5 − 3λF6]

12(1 + λB∗′(0))2F 2
2

Lv =
λ2(1 + λB∗′

(0))C10

2F2

Vv =
λ2(1 + λB∗′

(0))[6F2C10 − 4λF2C11 − 3λ2(1 + λB∗′
(0))C2

10]

12F 2
2

where

F1 = (1− θ1)V
∗
1 (λ) +

k∑
i=2

(1− θi)V
∗
i (λ)

i−1∏
l=1

θlV
∗
l (λ)

F2 = F1 − λ
[
V ∗′

1 (0) +

K∑
i=2

V ∗′

i (0)

i−1∏
l=1

θl

]
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F3 = λ2
[
V ∗′′

1 (0) +

K∑
i=2

V ∗′′

i (0)

i−1∏
l=1

θl + 2

K−1∑
i=1

V ∗′

i (0)

K∑
n=i+1

V ∗′

n (0)

n−1∏
l=1

θl

]

F4 = −λ3
[
V ∗′′′

1 (0) +
K∑
i=2

V ∗′′′

i (0)
i−1∏
l=1

θl + 3
[K−1∑
j=1

V ∗′′

j (0)
K∑

n=j+1

V ∗′

n (0)
n−1∏
l=1

θl

+

K−1∑
j=1

V ∗′

j (0)

K∑
n=j+1

V ∗′′

n (0)

n−1∏
l=1

θl

]
+ 6

K−2∑
m=1

V ∗′

m (0)

K−1∑
j=m+1

V ∗′

j (0)

K∑
n=j+1

V ∗′

n (0)

n−1∏
l=1

θl

]
F5 = λ2[3λB∗′′2

(0)− 2B∗′′′
(0)(1 + λB∗′

(0))]F2 + 3λB∗′′
(0)(1 + λB∗′

(0))[F2 + F3]

−B∗′
(0)(1 + λB∗′

(0))2[2F4 + 3F3]

F6 = λ2B∗′′2
(0)F 2

2 +B∗′2
(0)(1 + λB∗′

(0))2F 2
3 − 2λB∗′

(0)B∗′′
(0)(1 + λB∗′

(0))F2F3

Case 3: We take θi = 0

Q =
(1 + λ1B

∗′
(0))V ∗

1 (λ2)

F7

Lb =
λ0[λ1B

∗′′
(0)[V ∗

1 (λ2)− λ2V
∗′

1 (0)]− λ2
2B

∗′
(0)V ∗′′

1 (0)(1 + λ1B
∗′
(0))]

2(1 + λ1B∗′(0))F7

Vb =
λ0[2F7F8 − 3λ0F9]

12(1 + λ1B∗′(0))2F 2
7

Lv =
λ0λ2(1 + λ1B

∗′
(0))V ∗′′

1 (0)

2F7

Vv =
1

12F 2
7

{
λ0λ2(1 + λ1B

∗′
(0))[6V ∗′′

1 (0)F7 − 4λ2V
∗′′′

1 (0)F7

− 3λ0λ2(1 + λ1B
∗′
(0))V ∗′′2

1 (0)]
}

where

F7 = [1 + (λ1 − λ0)B
∗′
(0)]V ∗

1 (λ2)− λ0[1 + (λ1 − λ2)B
∗′
(0)]V ∗′

1 (0)

F8 = λ2
1[3λ1B

∗′′2
(0)− 2B∗′′′

(0)(1 + λ1B
∗′
(0))][V ∗

1 (λ2)− λ2V
∗′

1 (0)

+ 3λ1B
∗′′
(0)[1 + λ1B

∗′
(0)][[V ∗

1 (λ2)− λ2V
∗′

1 (0)] + λ2
2V

∗′′

1 (0)]

− λ2
2B

∗′
(0)[1 + λ1B

∗′
(0)]2[3V ∗′′

1 (0)− 2λ2V
∗′′′

1 (0)]]

F9 = λ2
1B

∗′′2
(0)[V ∗

1 (λ2)− λ2V
∗′

1 (0)]2 + λ4
2B

∗′2
(0)[1 + λ1B

∗′
(0)]2V ∗′′2

1 (0)

− 2λ1λ
2
2B

∗′
(0)B∗′′

(0)[1 + λ1B
∗′
(0)][V ∗

1 (λ2)− λ2V
∗′

1 (0)]V ∗′′

1 (0)

Case 4: The Service time and Vacation time follows exponential distribution i.e.,

B(x) = 1 − eµx, B∗(s) =
µ

s+ µ
,B∗′

(0) =
−1

µ
,B∗′′

(0) =
2

µ2
, B∗′′′

(0) =
−6

µ3
,Vi(x) =

1−e−ηi(x), V ∗
i (s) =

ηi
s+ ηi

, V ∗′

i (0) =
−1

νi
, V ∗′′

i (0) =
2

ν2i
, V ∗′′′

i (0) =
−6

ν3i
, i = 1, 2, ...,K

Q =
(µ− λ1)F10

F11

Lb =
λ0[λ1F13 + λ2

2(µ− λ1)F12]

(µ− λ1)F11
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Vv =
λ0λ2(µ− λ1)[2λ2F11F14 + F11F12 − λ0λ2(µ− λ1)F

2
12]

F 2
11

where

F10 = (1− θ1)
η1

η1 + λ2
+

K∑
i=2

(1− θi)
ηi

λ2 + ηi

i−1∏
l=1

θl
ηl

λ2 + ηl

F11 = [µ+ (λ0 − λ1)]F10 + λ0[µ+ (λ2 − λ1)]
[ 1

ν1
+

K∑
i=2

1

νi

i−1∏
l=1

θl

]

F12 =
1

ν21
+

K∑
i=2

1

ν2i

i−1∏
l=1

θl +

K−1∑
i=1

1

νi

K∑
n=i+1

1

νn

n−1∏
l=1

θl

F13 = F10 + λ2

[ 1

ν1
+

K∑
i=2

1

νi

i−1∏
l=1

θl

]

F14 =
1

ν31
+

K∑
i=2

1

ν3i

i−1∏
l=1

θl +
[K−1∑
j=1

1

ν2j

K∑
n=j+1

1

νn

n−1∏
l=1

θl +
K−1∑
j=1

1

νj

K∑
n=j+1

1

ν2n

n−1∏
l=1

θl

]

+

K−2∑
m=1

1

νm

K−1∑
j=m+1

1

νj

K∑
n=j+1

1

νn

n−1∏
l=1

θl

F15 = 2λ2
1F13 + λ1(µ− λ1)[F13 + 2λ2

2F12] + λ2
2(µ− λ1)

2[F12 − 2λ2F14]

F16 = λ2
1F

2
13 + λ4

2(µ− λ1)
2F 2

12 + 2λ1λ
2
2(µ− λ1)F12F13

Case 5: The Service time follows exponential distribution

i.e., B(x) = 1− eµx, B∗(s) =
µ

s+ µ
,B∗′

(0) =
−1

µ
,B∗′′

(0) =
2

µ2
, B∗′′′

(0) =
−6

µ3

Q =
(µ− λ1)A

F17

Lb =
λ0[2λ1C2 + (µ− λ1)C3]

2(µ− λ1)F17

Vb =
λ0[2F17F18 − 3λ0F19]

12(µ− λ1)2F 2
17

Lv =
λ0λ2(µ− λ1)C10

2F17

Vv =
λ0λ2(µ− λ1)[6F17C10 − 4λ2F17C11 − 3λ0λ2(µ− λ1)C

2
10]

12F 2
17

where

F17 = [µ+ (λ0 − λ1)]A− λ0[µ+ (λ2 − λ1)]
[
V ∗′

1 (0) +

K∑
i=2

V ∗′

i (0)

i−1∏
l=1

θl

]
F18 = 12λ2

1C2 + 6λ1(µ− λ1)[C2 + C3] + (µ− λ1)
2[2C4 + 3C3]
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F19 = 4λ2
1C

2
2 + (µ− λ1)

2C2
3 + 4λ1(µ− λ1)C2C3

Case 6: The Vacation time follows exponential distribution

i.e., Vi(x) = 1− e−ηi(x), V ∗
i (s) =

ηi
s+ ηi

, V ∗′

i (0) =
−1

νi
, V ∗′′

i (0) =
2

ν2i
,

V ∗′′′

i (0) =
−6

ν3i
, i = 1, 2, ...,K.

Q =
(1 + λ1B

∗′
(0))F10

F20

Lb =
λ0[λ1B

∗′′
(0)F13 − 2λ2

2B
∗′
(0)(1 + λ1B

∗′
(0))F12]

2(1 + λ1B∗′(0))F20

Vb =
λ0[2F20F21 − 3λ0F22]

12(1 + λ1B∗′(0))2F 2
20

Lv =
λ0λ2(1 + λ1B

∗′
(0))F12

F20

Vv =
λ0λ2(1 + λ1B

∗′
(0))[2λ2F14F20 + F12F20 − λ0λ2(1 + λ1B

∗′
(0))F 2

12]

F 2
20

where

F20 = [1 + (λ1 − λ0)B
∗′
(0)]F10 + λ0[1 + (λ1 − λ2)B

∗′
(0)]

[ 1

ν1
+

K∑
i=2

1

νi

i−1∏
l=1

θl

]
F21 = λ2

1[3λ1B
∗′′2

(0)− 2B∗′′′
(0)(1 + λ1B

∗′
(0))]F13 + 3λ1B

∗′′
(0)(1 + λ1B

∗′
(0))

× [F13 + 2λ2
2F12] + 6λ2

2B
∗′
(0)(1 + λ1B

∗′
(0))2[2λ2F14 − F12]

F22 = λ2
1B

∗′′2
(0)F 2

13 + 4λ4
2B

∗′2
(0)(1 + λ1B

∗′
(0))2F 2

12

− 4λ1λ
2
2B

∗′
(0)B∗′′

(0)(1 + λ1B
∗′
(0))F12F13

5. Numerical Results

In this section, We present some numerical results in order to illustrate the effect
of various parameters on the performance measures of the models in section 4. The
effect of the parameters arrival rate, service rate, vacation rate and the number
of phases of vacation on the system performance measures (i) the mean number
of customers when the server is busy(Lb), (ii) the mean number of customers in
the queue when the server is on vacation(Lv), (iii) the variance of the number of
customers in the queue when the server is busy(Vb) and (iv) the variance of the
number of customers in the queue when the server is on vacation(Vv) have been
numerically analysed. Figures 1((a), (b), (c)) represents the graph of mean number
of customers when K = 3, 5and 7 by varying the service rate. Tables 1 − 3 shows
the variance of number of customers. In all the figures, it is clear that the mean
number of customers in the queue when the server is busy is decreasing function
with respect to service rate where as its counter part are increasing functions as
expected. The variance value with respect to server busy decreases as the service
rate increases but in the case of variance with respect to vacation we encounters the
contrary concept that is variance increases. For this analysis the values of λ0 = 0.6,
λ1 = 0.8, λ2 = 0.4 are fixed.
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Figure 1. Mean number of customers for K = 3, 5 and 7.

Table 1. Variance for K =

3.

µ Vb Vv

1.1 7.32850 2.07285
1.2 3.86549 2.47989
1.3 2.26881 2.80961
1.4 1.41360 3.08187
1.5 0.90925 3.31033
1.6 0.59128 3.50471
1.7 0.38079 3.67205
1.8 0.23623 3.81760
1.9 0.13409 3.94534
2.0 0.06030 4.05834

Table 2. Variance for K =

5.

µ Vb Vv

1.1 7.32428 2.07904
1.2 3.86168 2.48731
1.3 2.26535 2.81802
1.4 1.41043 3.09109
1.5 0.90632 3.32024
1.6 0.58856 3.51520
1.7 0.37825 3.68305
1.8 0.23385 3.82904
1.9 0.13185 3.95717
2.0 0.05819 4.07051

6. Conclusion

In the foregoing analysis anM/G/1 queue with regular and optional phase vacation
and with state dependent arrival rate is considered. For this model the queue length
distribution and mean queue length are obtained. An extensive numerical work has
been carried out to observe the nature of the operating characteristics.



244 R. Kalyanaraman & R. Shanthi/ IJM2C, 05 - 03 (2015) 231-244.

Table 3. Variance for K =

7.

µ Vb Vv

1.1 7.32416 2.07920
1.2 3.86157 2.48750
1.3 2.26525 2.81823
1.4 1.41034 3.09132
1.5 0.90624 3.32049
1.6 0.58848 3.51547
1.7 0.37818 3.68333
1.8 0.23379 3.82933
1.9 0.13179 3.95747
2.0 0.05813 4.07081
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