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Abstract. The critical exponent of the total number of finite clusters « is calculated directly
without using scaling hypothesis both below and above the percolation threshold p. based
on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can
calculate other critical exponents 3 and 7, and show that the scaling law « + 28 + v = 2 has
been held in the simulation result above the percolation threshold pc.
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1. Introduction

The percolation problem is one of the most basic and important models for various
phase transition phenomena in statistical physics. In a number of fields a variety
of experimental discussions are reported, but Florys discussion [5] on aggregation
in polymer science is the first one directly related to percolation. A mathematical
definition of the percolation problem was given by Broatbent and Hammersley
[2] in 1957. The exact values of threshold concentrations and critical exponents
for the percolation problem are found in only several 2-D lattices [8] from 1965
to 1982. As for the method of the calculation, the series expansion or the Monte
Carlo simulation has mainly been used [4]. The series expansion has been studied
by Sykes et al. [7, 19, 20] powerfully. Using these series expansion some of the
critical exponents were obtained [3, 7 ,21]. The Monte Carlo simulation has been
studied by many researchers. Previous works of the critical exponents v and § were
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reported by Stool and Domb [18], Leath and Reich [12], Nakanishi and Stanley [15,
16] and Hoshen et al. [9]. The critical exponent « was reported by Kirkpatrick [11].

Since Kasteleyn and Fortuin [10] provided the analogy between the percolation
problem and other critical phenomena, a number of studies have been made to
examine the scaling law in the percolation problem.

A kinetic growth percolation algorithm was proposed by Leath [13,14] in 1976,
and Alexandrowicz [1] in 1980 calculated critical exponents from 2 to 8 dimen-
sions. They showed that the threshold value p. and the critical exponents were
corresponding to usual percolation results [17]. However, all the critical exponents
by them were calculated below the threshold p < p., because they thought that the
function type of the distribution function also critical exponents a and v do not
change below and above the threshold. The critical exponent 3 shows the property
of the fraction of sites belonging to the infinite cluster. Therefore we have to cal-
culate the property above the threshold p. < p. It should be decided by using the
results above the threshold whether the scaling law « 4+ 23 + v = 2 has been held.
However, they concluded that the scaling law was held by using the value below
the threshold. They assumed that the function type of the distribution function
obeyed the scaling hypothesis. It is necessary to calculate the critical exponents
independently above the threshold to prove the scaling law. Above the threshold,
however, it is difficult to decide the exponent a because of how the infinite cluster
appears in the usual percolation method. A lot of previous works described only
the exponents § and 7, and the exponent « is derived from scaling assumption
[9]. On the other hand, as the kinetic growth percolation model (KGM) is able to
generate only the finite cluster, we can avoid this difficulty.

In the next section kinetic growth model (Leath algorithm) will be described and
the ritical exponents «, 3, and vy below and above the critical point by using KGM
in two and three dimensions will be given in Sec.3 and Sec.4, respectively. The final
section will present our conclusions and discussion.

2. Kinetic Growth Model (LEATH ALGORITHM)

In a site percolation problem, each site has a prescribed probability p (the same
for each site) of occupying a site by the particle, and a probability of 1 — p of
non-occupying a site by the particle. A bond between the two nearest neighbor
sites is formed when the two nearest neighbor sites are occupied by particles. The
connected sites form a cluster. We obtain the critical probability p., when the
cluster becomes infinitely large. It is known that the same critical value is obtained
by growing up from one site at the origin (KGM [1], Leath algorithm [13,14]) .
KGM (Leath algorithm) is performed on a discrete site percolation as follows:

1) A particle is placed on the origin.

2) One site is selected out of the four (or the six in the case of a 3d-simple
cubic lattice) nearest neighbor sites in the case of a 2d-square lattice. The
site is occupied or empty, with probability p or 1 — p, respectively. The
occupied nearest neighbor sites are linked and construct a cluster.

3) The above processes are repeated until the cluster grows infinitely or the
growth stops.

We repeat above steps (1) to (3) again and again until many sample clusters are
obtained.

Usually, when the probability p is greater than the critical probability p., the
infinite cluster is obtained and when the probability p is less than p., only the
finite size of cluster is obtained. However, in the finite lattice a finite cluster which
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spreads from end to end is regarded as an infinite cluster. Also critical exponents
v for the correlation length of 1.3 (in 2d) and 0.83 (in 3d) are obtained, which are
the same as the exponents obtained from the conventional simulation method [17].

This method of KGM (Leath algorithm) can generate a larger size cluster, which
allows us to simulate a larger size cluster in the same lattice size, because we treat
only a single cluster. Therefore this simulation can be done close to the percolation
threshold p., when we increase p below p.. However, when we decrease p from a
larger probability than p., many clusters created by this simulation spread over
the finite lattice range. This simulation has not been used above p..

3. The Critical Exponents and the Percolation Threshold in two Dimensions

In the percolation problem, various amounts indicate singularity at the threshold
pe. Then, critical exponents of those quantities are defined by the similarity with
the critical phenomena of the phase transitions. Typical critical exponents «, £,
and vy can be calculated from the kth moment of cluster size by using the cluster
size distribution ns(p) as follows,

My, =" S*n,(p). (1)

The mean cluster size corresponds to Mo, the strength of the infinite cluster to
M, and the total number of finite clusters to My. From these moments the critical
exponents —y, /5 and 2 — « can be calculated against |p — p.|, respectively.

It is suggested that these critical exponents depend only on the dimension of the
lattice, but not on the lattice structure itself. If we assume the scaling assumption
of the distribution function ns(p), the number of the independent exponents is
two. Then, using the 2d-KGM model, we derive the critical exponents «, 3, and
v independently above the critical point and examine whether the scaling law
o+ 26 + v = 2 has been held.

Below, we further explain the calculation procedures for the exponents «, 3, and

7.
i) The critical exponent f:

The probability P of sites belonging to the infinite cluster shows the critical be-
havior near the percolation threshold p.. It goes to zero by the simple power law,

P~(p-p.)’, (2)

and right at the critical point p = p, we have P = 0. But even below pc we regard
a finite cluster as an infinite one if it touches 2 edges at the top and the bottom,
because of the finite lattice. Therefore, we estimate a value that is smaller than
the true p. to be the percolation threshold. We show the mean value of fraction
P(p, L) for 10000 samples against p in Figure 1 together with the curve obtained
by using the critical parameters estimated below. The fraction P(p, L) is calculated
as a ratio for the cluster to exceed the finite square lattice (L = 3000). The number
of samples is 10000. The fraction P(p, L) becomes non-zero from about p = 0.585,
though the true percolation threshold p. is about 0.5927. When p approaches p.,
critical phenomena are shown, but when p closely approaches the vicinity of p., the
fraction P(p, L) is slightly over counted and deviates from Equation (2) because of
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some finite size effects. When p becomes farther than p., critical phenomena are
not shown. We show the fraction log(P(p, L)) against log(ppc) in Figure 2, where
pe is tuned in order to obtain a straight line. The critical exponent § is calculated
by using values (gray solid circles in Figure 1 or Figure 2) from p = 0.593 to
p = 0.615. When the adjustable value of p, was assumed to be 0.5926, to take into
account some finite size effects [9], the critical exponent 3 becomes 0.139 + 0.001
in Figure 2 (a). When the adjustable value of p. was assumed to be 0.5927, the
critical exponent 8 becomes 0.141 £0.001 in Figure 2 (b). These parameters allow
for the good result even in the 3000 x 3000 square lattice. We believe this is the
first time the exponent 5 has been obtained in KGM.
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Figure 1. The mean value of percolation fraction P(p, L)x is shown by circles. The solid line is obtained
by using the critical parameter of Table 1.
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(a) The percolation fraction log(P(p,L)) is plot-
ted against log(ppc). We try to find the best
straight line by tuning p.. The value of p. ob-
tained is 0.5926 and the slope is obtained g8 =
0.139.

ii) The critical exponent «:

(b) The percolation fraction log(P(p, L)) is plot-
ted against log(ppc). When the adjustable value of
pc is assumed to be 0.5927, the critical exponent
becomes 0.141.

Figure 2.



K. Yamamoto/ IJM2C, 01 - 04 (2011) 217-226. 221

The total number of finite clusters M, varies as
My ~ |p —pe|** (3)

By using KGM, the total number of finite clusters is counted as follows. We name
clusters containing s sites s-clusters. We define ny as the number of s-clusters per
lattice site. The s-cluster consists of s occupied sites and ¢ empty sites. If we make
N sample clusters by using KGM, s-clusters will be counted at the ratio of ngs. N
is determined in the following manner. We sum of each (s + t) sites of the cluster
generated one by one. The simulation is repeated until the total summation of sites
satisfies the Equation (4). (L? = 3000 x 3000 = 9000000).

N
D (s + i) 22 9000000. (4)
i=1

The frequency distribution f(s) of the s-cluster proportional to ngs against size
s is obtained. Then we sum up f(s)/s by over the size s. We obtain the total
number of finite clusters M. This process corresponds to counting the number
of finite clusters in the usual percolation problem. This total number decreases
because of the appearances of larger clusters by increasing the correlation length,
when p approaches below the threshold p.. As the correlation length becomes
infinite above p., infinite clusters appear. However, the finite clusters still appear
above p.. We show the total number of finite clusters My against p in Figure 3
together with the curve obtained by using the critical parameters estimated as
below. The total number of finite clusters is estimated slightly larger because only
small clusters in the finite lattice were counted. The threshold p. is estimated
to a slightly different value from 0.5927 depending on the direction approached
from above and from below p.. Therefore, when p approaches the threshold from
below, the threshold p.(L) is estimated a slightly larger than p.(L = co). When
p approaches the threshold from above, the threshold p.(L) is estimated slightly
smaller than p.(L = 0o). We show log(M)) against log |p.p| in Figure 4, where each
pe is tuned in order to obtain a straight line. As shown in Figure 3 and Figure 4,
the power law is valid considerably in the large range below the threshold p..
Therefore, the power law exponent « does not greatly depend on the threshold
(gray solid circles in Figure 4). The critical exponent alpha is calculated by using
values from p = 0.450 to p = 0.587 below the threshold p.. When the adjustable
value of p, was assumed to be 0.5927, the critical exponent o becomes 0.66 + 0.02
below the threshold p. (gray solid circles in Figure 4 (a)). On the other hand,
the critical exponent a becomes 0.31 4+ 0.03 above the threshold p. as shown in
Figure 4 (a) with gray solid squares. As our simulation is done in the range of p
near p. from p = 0.597 to p = 0.610, the critical exponent a greatly depends on the
value of p.. When the range of the calculation is extended, the critical exponent «
shows a tendency to increase. When the adjustable value of p. was assumed to be
0.5918, to take into account some finite size effects, the critical exponent o becomes
0.66 £+ 0.02 above the p. in Figure 4 (b) with gray solid squares and 0.66 + 0.02
below the threshold p. in Figure 4 (b) with gray solid circles, respectively.

iii) The critical exponent +:

When p approaches the threshold p. the mean cluster size diverges as follows

S~ lp—pel 7 (5)
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Figure 3. The total number of finite clusters My is plotted against p by circles (below p.) and by squares
(above p¢). The solid line is obtained by using the critical parameters of Table 1.
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(a) The total number of finite clusters log(Mp) is
plotted against log(|ppc|). When the adjustable p.
is assumed to be 0.5927, from the slope we have
obtained o = 0.66 (below p.) and o = 0.31 (above
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(b) The total number of finite clusters log(Mpy)
is plotted against log(|ppc|). We try to find the
best straight line by tuning p., below and above
Pe,, respectively. From the slope we have obtained
a = 0.66 both below and above p..

Figure 4.

The shift of the percolation threshold p. to take into account some finite size effects
is similar to the total number of finite clusters. We show the mean cluster size S
for 10000 samples against p in Figure 5 together with the curve obtained by using
the critical parameters estimated as below. The shape of this curve is like the well
known susceptibility £ in magnetization. As shown in Figure 6 (a), when p,. is
assumed to be 0.5927, exponent v becomes 2.30 4+ 0.01 approaching p. from p < p,
(gray solid circles) and 2.03 £ 0.02 from above (gray solid squares), respectively.
As shown in Figure 6 (b), both exponents v become 2.38 if we assumed p,. to be
0.5934 when p approaches to p. from below (gray solid circles) and to be 0.5918
when p approaches from above (gray solid squares), respectively [9]. These critical
exponents in two dimensions are shown in Table 1.
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Table 1. The critical exponents are given below and above p. in two
dimensions.
Pe P < pe Pe <P previous work[17]
0.5927 —0.66+0.02 —0.31+0.03 L
®  0.5918 —0.6640.02 —0.66 % 0.03 3
0.5927  2.30 4 0.01 2.03 + 0.02 3
705934 2.3840.01 - 18
0.5918 - 2.38 4+ 0.03
g 08927 - 0.141 + 0.001 5
0.5926 - 1.39 4 0.001 36
40000 .
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Figure 5. The mean cluster size S is plotted against p by circles (below p.) and by squares (above pc).

The solid line is obtained by using the critical parameters of Table 1.
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(a) The mean cluster size log(.S)

log(|ppc|). When the adjustable value of p. is as-
sumed to be 0.5927, from the slope we have ob-
tained v = 2.30 (below p.) and v = 2.03 (above
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(b) The mean cluster size log(S) is plotted against
log(|ppc|). We try to find the best straight line by
tuning p., below and above p., respectively. From
the slope we have obtained v = 2.38 both below

and above pc.

Figure 6.

The Critical Exponents and the Percolation Threshold in three

Using the same calculation procedures in the previous section, we obtain the critical

exponents «, (3, and 7.
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i) The critical exponent f:

The fraction P(p, L) is calculated as a ratio for the cluster to exceed the finite cubic
lattice (L = 200). The number of samples is 10000 for each value of p. We show
the fraction log(P(p, L)) against log(pp.) in Figure 7, where p. is tuned in order to
obtain a straight line. The critical exponent §3 is calculated by using values (gray
solid circles in Figure 7) from p = 0.313 to p = 0.333. When the adjustable value
of p. was assumed to be 0.3114, to take into account some finite size effects, the
critical exponent 3 becomes 0.409 + 0.004 in Figure 7. When the adjustable value
of p. was assumed to be 0.3116, the critical exponent 8 becomes 0.392 + 0.004.
Good results were obtained even in the 200 x 200 x 200 cubic lattice.

p=0.3114

p=0.409+0.004 M

3 ol
£ 0.1: /.),r
= F O/
0.01 N L i
0.0001 0.001 001 01
p-pe

Figure 7. The percolation fraction log(P(p, L)) is plotted against log(ppc). We try to find the best straight
line by tuning p.. The value of pc obtained is 0.3114 and the slope is obtained g = 0.409.

ii) The critical exponent «:

The simulation is repeated until the total summation of sites satisfies the
Equatin (5). (L? = 200 x 200 x 200 = 8000000).

N
D (s + i) 2 8000000. (6)
i=1

We show log(M)) against log |pcp| in Figure 8 , where p, is tuned in order to obtain
a straight line, below and above p., respectively. When the adjustable value of p,
was assumed to be 0.308, to take into account some finite size effects, the critical
exponent o« becomes 0.62 4+ 0.04 above the p. in Figure 8 with gray solid squares.
When the adjustable value of p. was assumed to be 0.318, the critical exponent «
becomes 0.63 =+ 0.03 below the threshold p. in Figure 8 with gray solid circles.

iii) The critical exponent :

The mean cluster size S is calculated for 10000 samples for each value of p. We
show log(S) against log|pp.| in Figure 9, where p. is tuned in order to obtain a
straight line, below and above p., respectively. When p,. is assumed to be 0.3126,
the exponent vy becomes 1.796 £ 0.005 approaching to p. from p < p. (gray solid
circles). When p. is assumed to be 0.3012, the exponent vy becomes 1.79 + 0.02
approaching to p. from above (gray solid squares).

These critical exponents in three dimensions are shown in Table 2.
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Figure 8. The total number of finite clusters log(Mp) is plotted against log(|ppc|). We try to find the best
straight line by tuning p., below and above p., respectively. From the slope we have obtained a = 0.63
(below p¢) and a = 0.62 (above pc).
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r v=1.7910.02

10 NS

[p-pc]

Figure 9. The mean cluster size log(S) is plotted against log(|ppc|). We try to find the best straight line
by tuning p., below and above p., respectively. From the slope we have obtained v = 1.79 both below and
above pc.

Table 2. The critical exponents are given below and above p. in three
dimensions.

Pe P < pe Pe <P previous work[17]
0.318  —0.63£0.03 . 062
0.308 } ~0.62 + 0.04 :
0.3126  1.796 + 0.005 . 180
7 0.3102 . 1.79 £ 0.02 :
B 0.3114 . 0.409 + 0.004 0.41

5. Conclusion and Discussion

In two dimensions as shown in Table 1, critical exponents above the threshold
pe are sensitive to the adjustable value of the threshold p.. When the adjustable
value of the threshold p,. is assumed to be 0.5918, we obtain the same critical
exponent « = 0.66 £ 0.02 below and above p.. This exponent o = 0.66 £+ 0.02
above p, will be a value that we obtained for the first time in KGM. For the
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critical exponent -y, we obtain the same value 2.38 + 0.03 below and above p.,
when the adjustable value of the threshold p. is assumed to be 0.5918 above p.
and 0.5934 below p.. For the critical exponent 8, when the adjustable value of the
threshold p. is assumed to be 0.5926, we obtained the value 0.139 &+ 0.001. This
exponent is a value obtained for the first time in KGM. For above p. the scaling
law o + 28 4+ v = 0.66 + 2 x 0.139 + 2.38 = 1.998 which is almost 2 within the
error range. When the adjustable value of the threshold p. is assumed to be 0.5927
(pe(L = 8)), we obtain o = 0.31 £ 0.03, v = 2.03 £ 0.02 and 5 = 0.141 £ 0.001.
The scaling law o 4 23 + v becomes 2.002 also.

In three dimensions as shown in Table 2, when the adjustable value of the thresh-
old p. is assumed to be 0.308 above p. and 0.318 below p., the critical exponent
a = 0.62 + 0.04 above p. and o = 0.63 & 0.03 below p., respectively. We obtain
the almost same value for the critical exponent v both 1.796 + 0.03 below and
1.79 4+ 0.02 above p., when the adjustable value of the threshold p. is assumed
to be 0.3126 below pc and 0.3102 above p.. For the critical exponent 5, when the
adjustable value of the threshold p. is assumed to be 0.3114, we obtained a value of
0.409£0.004. Above p. the scaling law a+28+v = 0.624+2 x 0.409+1.79 = 1.988
which is almost 2 within the error range.

Therefore, we may conclude that the scaling law is held in two and three dimen-
sions.
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