
International Journal of

Mathematical Modelling & Computations

Vol. 05, No. 03, Summer 2015, 203- 217

Application of Differential Transform Method to Solve Hybrid

Fuzzy Differential Equations

E. Hajilou a, M. Paripour b,∗ and H. Heidaria

aDepartment of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan,

Iran;
b Department of Mathematics, Hamedan University of Technology, Hamedan, 65155-579,

Iran.

Abstract.In this paper, we study the numerical solution of hybrid fuzzy differential equations
by using differential transformation method (DTM). This is powerful method which consider
the approximate solution of a nonlinear equation as an infinite series usually converging to
the accurate solution. Several numerical examples are given and by comparing the numerical
results obtained from DTM and Predictor corrector method (PCM), we have studied their
accuracy.
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1. Introduction

Hybrid systems are devoted to modeling, designing and validating of interactive
systems of computer programs and continuous systems. That is control systems
that are capable of controlling complex systems which have discrete event dynam-
ics as well as continuous time dynamics which can be modeled by hybrid systems.
The differential systems containing fuzzy valued functions and interaction with a
discrete time controller are named as hybrid fuzzy differential systems (HFDEs).
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Several numerical techniques has been applied to solve hybrid fuzzy differential
equations. For example, Pederson and Sambandham have investigated the numer-
ical solution of this equations by using the Euler and Runge-Kutta methods [7, 8].
Prakash and Kalaiselvi have studied the predictor-corrector method for hybrid
fuzzy differential equations [9]. Also, Fard and Bidgoli have solved HFDEs by Nys-
trom method [3]. Paripour et al. [6] presented a numerical solution for solving
hybrid fuzzy differential equations by Adomian decomposition method.
In this study, we develop numerical method for hybrid fuzzy differential equations
by an application of Differential transformation method. Differential transform
method is one of the analytical method for differential equations. The basic idea
was initially introduced by Zhou [11] in 1986. In [4], the authors gave one of the
applications of differential transformation method for solving fuzzy fractional Heat
equations. Its main application, therein, is to solve both linear and nonlinear initial
value problems in electrical circuit analysis. The structure of paper is organized as
follows:
In Section 2, we provide some basic definitions to fuzzy valued functions. Section

3, contains a brief review of the hybrid fuzzy differential equations. In Sections 4,
hybrid fuzzy differential equations are solved by DTM. Finally, in section 5, we
present two examples to check the accuracy of the method and we compare it with
predictor corrector method.

2. Preliminaries

Definition 2.1. [10] A fuzzy number u is a fuzzy subset of the real line with
a normal, convex and upper semicontinuous membership function of bounded
support. The family of fuzzy numbers will be denoted by E. An arbitrary fuzzy
number is represented by an ordered pair of functions (u(α), u(α)), 0 ⩽ α ⩽ 1,
that satisfies the following requirements:

− u(α) is a bounded left continuous nondecreasing function over [0, 1],
with respect to any α,

− u(α) is a bounded left continuous nonincreasing function over [0, 1], with
respect to any α,

− u(α) ⩽ u(α), 0 ⩽ α ⩽ 1.

Then α- level set

[u]α = {x ∈ R : u(x) ⩾ α},

is a closed bounded interval, denoted

[u]α = [uα, uα].

Definition 2.2. The supremum metric, the space d∞ on E is defined by

d∞(u, v) = sup0⩽α⩽1dH([U ]α, [V ]α),
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and (E, d∞) is a complete metric space.

Definition 2.3. A mapping F : T → E is Hukuhara differentiable at t0 ∈ T ∈ R, if
for some h0 > 0, Hukuhara differences F (t0+△t) ∼h F (t0) and F (t0) ∼h F (t0−△t)
exist in E, for

lim
△t→0+

d∞
(F (t0 +△t) ∼h F (t0)

△t
, F ′(t0)

)
= 0,

and

lim
△t→0+

d∞
(F (t0) ∼h F (t0 −△t)

△t
, F ′(t0)

)
= 0.

The fuzzy set F ′(t0) is called the Hukuhara derivative of F at t0.

Theorem 2.1. Let F : R −→ E be a function and set F (t) = (F (t, α), F (t, α)), for
each α ∈ [0, 1]. Then

− If F is differentiable in the first form (i), then F (t, α) and F (t, α)
are differentiable functions and

F ′(t) = (F ′(t, α), F
′
(t, α)).

− If F is differentiable in the second form (ii), then F (t, α) and F (t, α) are
differentiable functions and

F ′(t) = (F
′
(t, α), F ′(t, α)).

Definition 2.4. Triangular fuzzy number is a fuzzy set u in E that is char-
acterized by an ordered triple (ul, uc, ur) ∈ R3 with ul ⩽ uc ⩽ ur such that
[u]0 = [ul, ur] and [u]1 = {uc}.
the α- level set

[u]α = [uc − (1− α)(uc − ul), uc + (1− α)(ur − uc)],

for any α ∈ I = [0, 1].

Remark 2.1. Note that by the above definition, a fuzzy-valued function is
(i)-differentiable (or (ii)-differentiable) of order n if for s = 1, . . . , n, f (s) is
(i)-differentiable (or (ii)-differentiable). It is possible that the different orders
have different types (i or ii) of differentiability, but we do not consider this kind
of function in this paper.

Following [1], we define a first-order fuzzy differentiable equation by

x′ = f(t, x(t)),

where x(t) =
(
xl(t), xc(t), xr(t)

)
is a fuzzy function of t. f(t, x(t)) is a fuzzy-valued

function and the fuzzy variable x′(t) is the defined derivative of x(t). Given an
initial value x(t0) = x0 is given, we obtain a fuzzy Cauchy problem of the first-
order

x′ = f(t, x(t)), x(t0) = x0.
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So, considering derivatives of type (i) or (ii), we may replace the fuzzy initial value
problem (FIVP) by the equivalent system

xl
′

(t) = fl
(
t, xl(t)

)
, xl(t0) = xl0,

xc
′
(t) = fc

(
t, xc(t)

)
, xc(t0) = xc0,

xr
′
(t) = fr

(
t, xr(t)

)
, xr(t0) = xr0,

or

xl
′

(t) = f r
(
t, xr(t)

)
, xl(t0) = xl0,

xc
′
(t) = f c

(
t, xc(t)

)
, xc(t0) = xc0,

xr
′
(t) = f l

(
t, xl(t)

)
, xr(t0) = xr0,

the system represents an ordinary Cauchy problem, to which any convergent clas-
sical numerical procedure can be applied.

3. The Hybrid Fuzzy Differential System

Consider the hybrid fuzzy differential system{
x′(t) = f

(
t, x(t), λj(xj)

)
, t ∈ [tj , tj+1],

x(tj) = xj ,
(1)

where 0 ⩽ t0 < t1 < · · · < tj < · · · , tj → ∞, f ∈ C[R+ × E × E,E], λj ∈
C[E,E].

To be specific, the system would look like:

x′(t) =



x′0(t) = f
(
t, x0(t), λ0(x0)

)
, x0(t0) = x0, t0 ⩽ t ⩽ t1,

x′1(t) = f (t, x1(t), λ1(x1)) , x1(t1) = x1, t1 ⩽ t ⩽ t2,
...

x′j(t) = f (t, xj(t), λj(xj)) , xj(tj) = xj , tj ⩽ t ⩽ tj+1,
...

Assuming that the existence and uniqueness of solutions of (1) hold for each
[tj , tj+1], by the solution of (1) we obtain the following function:

x(t) = x(t, t0, x0) =



x0(t), t0 ⩽ t ⩽ t1,
x1(t), t1 ⩽ t ⩽ t2,

...
xj(t), tj ⩽ t ⩽ tj+1,

...

We note that the solutions of (1) are piecewise differentiable in each interval for
t ∈ [tj , tj+1], for a fixed xj ∈ E and j = 0, 1, 2, . . ..
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4. Differential Transform Method for a Hybrid Fuzzy Differential System

The basic definitions and fundamental operations of differential transform are
given in [2]. In this section, we apply DTM to solve equation (1).

Definition 1.3. If x(t) is strongly generalized differentiable of order k in the
time domain T then If f is (i)-differentiable,

φl(t, k) =
dk(xl(t))

dtk
, ∀t ∈ T,

X l
i(k) = φ(ti, k) =

dk(xl(t))

dtk

]
t=ti

, ∀k ∈ K,

φc(t, k) =
dk(xc(t))

dtk
, ∀t ∈ T,

Xc
i (k) = φ(ti, k) =

dk(xc(t))

dtk

]
t=ti

, ∀k ∈ K

φr(t, k) =
dk(xr(t))

dtk
, ∀t ∈ T,

Xr
i (k) = φ(ti, k) =

dk(xr(t))

dtk

]
t=ti

, ∀k ∈ K,

and if f is (ii)-differentiable,

φl(t, k) =
dk(xr(t))

dtk
, ∀t ∈ T,

X l
i(k) = φ(ti, k) =

dk(xr(t))

dtk

]
t=ti

, ∀k is odd,

φc(t, k) =
dk(xc(t))

dtk
, ∀t ∈ T,

Xc
i (k) = φ(ti, k) =

dk(xc(t))

dtk

]
t=ti

, ∀k is odd,

φr(t, k) =
dk(xl(t))

dtk
, ∀t ∈ T,

Xr
i (k) = φ(ti, k) =

dk(xl(t))

dtk

]
t=ti

, ∀k is odd,

So, if f is (i)-differentiable, then x(t) can be represented as

xl(t) =
∞∑
k=0

(t− ti)
k

k!
X l(k),

xc(t) =

∞∑
k=0

(t− ti)
k

k!
Xc(k),

xr(t) =

∞∑
k=0

(t− ti)
k

k!
Xr(k),
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or if f is (ii)-differentiable, as

xl(t) =

∞∑
k=1,odd

(t− ti)
k

k!
Xr(k) +

∞∑
k=0,even

(t− ti)
k

k!
X l(k),

xc(t) =

∞∑
k=1,odd

(t− ti)
k

k!
Xc(k) +

∞∑
k=0,even

(t− ti)
k

k!
Xc(k),

xr(t) =
∞∑

k=1,odd

(t− ti)
k

k!
X l(k) +

∞∑
k=0,even

(t− ti)
k

k!
Xr(k),

(2)

The above set of equations is known as the inverse transformation of X(k).

From definition 1.3, it can be proven that the transformation function has
the basic mathematical properties shown in table 1.

By using Differential transform formulas in table 1 to solve equation (1),
for each interval [tj , tj+1], j = 0, 1, 2, . . . we obtain the following relation

(k + 1)X l(k + 1) = F l
(
t,X l(k), λj(xj)

)
(k + 1)Xc(k + 1) = F c

(
t,Xc(k), λj(xj)

)
(k + 1)Xr(k + 1) = F r

(
t,Xr(k), λj(xj)

)
∀k is even,

(3)

or

(k + 1)X l(k + 1) = F r
(
t,Xr(k), λj(xj)

)
(k + 1)Xc(k + 1) = F c

(
t,Xc(k), λj(xj)

)
(k + 1)Xr(k + 1) = F l

(
t,X l(k), λj(xj)

)
∀k is odd,

(4)

where F indicates differential transform f . From the initial condition given by Eq.
(1) we have

X l(0) = xl(t0), Xc(0) = xc(t0), Xr(0) = xr(t0) (5)

Substituting Eq. (5) into (4) and (3), we get

X l(k), Xc(k), Xr(k)

now, with replace X l(k), Xc(k), Xr(k) in Eq. (2), will be obtained numerical
solution which is convergent to exact solution.
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Table 1. The fundamental mathematical operations.

Original function Transformed function
u(x) = f(x)± g(x) U(k) = F (k)±G(k)
u(x) = λg(x) U(k) = λG(k)

u(x) =
∂g(x)

∂x
U(k) = (k + 1)G(k + 1)

u(x) =
∂mg(x)

∂xm
U(k) = (k+1) . . . (k+m)G(k+m)

u(x) = xm U(k) = δ(k −m) =

{
1 k = m,
0 otherwise

u(x) = f(x)g(x) U(k) =
∑k

r=0 F (r)G(k − r)

u(x) = sin(ωx+ α) U(k) =
ωk

k!
sin(

kπ

2
+ α)

u(x) = cos(ωx+ α) U(k) =
ωk

k!
cos(

kπ

2
+ α)

5. Numerical Examples

Here, we consider two examples to illustrate the DTM. Their computations have
been carried out using MATLAB.

Example 6.1. Consider the initial value problem,

{
x′(t) = x(t) +m(t)λk(xtk), t ∈ [tk, tk+1], tk = k, k = 0, 1, . . . ,
x(0) = [0.75, 1, 1.125],

(6)

where

m(t) =

{
2
(
t(mod 1)

)
, t(mod 1) ⩽ 0.5,

2
(
1− t(mod 1)

)
, t(mod 1) > 0.5,

(7)

and

λk(µ) =

{
0̂, k = 0,
µ, k ∈ {1, 2, . . .}, (8)

for which 0̂ ∈ En is defined as 0̂(x) = 1 if x = 0 and 0̂(x) = 0 if x ̸= 0.
The hybrid fuzzy initial problem (6) is equivalent to the following system of fuzzy
initial value problems:

 x′0(t) = x0(t), t ∈ [0, 1],
x(0) = [0.75, 1, 1.125],
x′i(t) = xi(t) +m(t)xi(ti), t ∈ [ti, ti+1].
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In Eq. (6), x(t)+m(t)λk(xtk) is a continuous function of t, x and λk(xtk). Therefore,
by Example 6.1 of Kaleva [5], for each k = 0, 1, 2, . . . , the fuzzy initial value problem{

x′(t) = f
(
t, x(t), λk(xk)

)
, t ∈ [tk, tk+1],

x(tk) = xk,

has a unique solution on [tk, tk+1].
For [0, 1], the exact solution of Eq. (6) satisfies,

x(t) = [0.75et, et, 1.125et].

For [1, 1.5] the exact solution of (6) satisfies,

x(t) = x(1)(3et−1 − 2t).

For [1.5, 2] the exact solution of (6) satisfies,

x(t) = x(1)
(
2t− 2tet−1.5(3

√
e− 4)

)
.

Taking the differential transform of (6) for t ∈ [0, 1] leads to

(k+1)X l(k+1) = X l(k), (k+1)Xc(k+1) = Xc(k), (k+1)Xr(k+1) = Xr(k),

and for t ∈ [1, 1.5], we have

(k + 1)X l(k + 1) = X l(k) + 2(δ(k − 1)− δ(k))x(1).

(k + 1)Xc(k + 1) = Xc(k) + 2(δ(k − 1)− δ(k))x(1).

(k + 1)Xr(k + 1) = Xr(k) + 2(δ(k − 1)− δ(k))x(1).

If we consider the interval [1.5, 2], we have

(k + 1)X l(k + 1) = X l(k) + (4δ(k)− 2δ(k − 1))x(1.5).

(k + 1)Xc(k + 1) = Xc(k) + (4δ(k)− 2δ(k − 1))x(1.5).

(k + 1)Xr(k + 1) = Xr(k) + (4δ(k)− 2δ(k − 1))x(1.5).

Using the above process, xl, xc and xr are obtained. to solve this problem, we use
only the first ten terms of the differential transform series. The results of Example
6.1 on [0, 2], by using DTM and PCM , are shown in Fig. 1. and the numerical
results are shown in Table 2, 3 and 4. The results show that this method is reliable
and efficient techniques to find analytic solutions for HFDEs. The approximate
solution of this problem by DTM is nearly similar to those obtained by PCM.
In this example, the results were in excellent agreement with those of the exact
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Table 2. Comparison of approximation solutions with exact solution for xl of Example 1.

t Exact PCM DTM
0.0 0.750000 0.750000 0.750000
0.1 0.828878 0.828878 0.828878
0.2 0.916052 0.916052 0.916052
0.3 1.012394 1.012396 1.012394
0.4 1.118868 1.118874 1.118868
0.5 1.236540 1.236550 1.236540
0.6 1.366589 1.366602 1.366589
0.7 1.510314 1.510333 1.510314
0.8 1.669155 1.669180 1.669155
0.9 1.844702 1.844734 1.844702
1.0 2.038711 2.038752 2.038711
1.1 2.274208 2.290615 2.274208
1.2 2.577355 2.604161 2.577355
1.3 2.955267 2.985790 2.955266
1.4 3.415808 3.442668 3.415805
1.5 3.967666 3.977376 3.967662
1.6 4.554410 4.533824 4.578274
1.7 5.210226 5.113589 5.210222
1.8 5.865754 5.719217 5.865749
1.9 6.547343 6.423019 6.547337
2.0 7.257731 7.295736 7.257725

solution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

 

 
Exact
PCM
DTM

Figure 1. Comparison between the exact solution and behavior of the solution obtained by
DTM and PCM of Example 1.

Example 6.2. Consider the initial value problem, x′(t) = −x(t) +m(t)λk(xtk), t ∈ [tk, tk+1], tk = k, k = 0, 1, . . . ,
x(0) = [0.75, 1, 1.125], (9)
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Table 3. Comparison of approximation solutions with exact solution for xc of Example 1.

t Exact PCM DTM
0.0 1.000000 1.000000 1.000000
0.1 1.105170 1.105170 1.105170
0.2 1.221402 1.221402 1.221402
0.3 1.349858 1.349862 1.349858
0.4 1.491824 1.491832 1.491824
0.5 1.648721 1.648733 1.648721
0.6 1.822118 1.822137 1.822118
0.7 2.013752 2.013777 2.013752
0.8 2.225540 2.225574 2.225540
0.9 2.459603 2.459646 2.459603
1.0 2.718281 2.718336 2.718281
1.1 3.032278 3.054154 3.032277
1.2 3.436474 3.472214 3.436474
1.3 3.940357 3.981054 3.940358
1.4 4.554410 4.590224 4.554413
1.5 5.290221 5.303169 5.290226
1.6 6.104371 6.045098 6.104376
1.7 6.946969 6.818119 6.946974
1.8 7.821006 7.625623 7.821013
1.9 8.729790 8.564025 8.729797
2.0 9.676975 9.727648 9.676983

Table 4. Comparison of approximation solutions with exact solution for xr of Example 1.

t Exact PCM DTM
0.0 1.125000 1.125000 1.125000
0.1 1.243317 1.243317 1.243317
0.2 1.374078 1.374078 1.374078
0.3 1.518591 1.518594 1.518591
0.4 1.678302 1.678311 1.678302
0.5 1.854811 1.854825 1.854811
0.6 2.049883 2.049904 2.049883
0.7 2.265471 2.265500 2.265471
0.8 2.503733 2.503771 2.503733
0.9 2.767053 2.767102 2.767053
1.0 3.058067 3.058128 3.058067
1.1 3.411312 3.435923 3.411312
1.2 3.866033 3.906241 3.866034
1.3 4.432901 4.478686 4.432904
1.4 5.123712 5.164003 5.123717
1.5 5.951499 5.966065 5.951508
1.6 6.867417 6.800736 6.867427
1.7 7.815340 7.670384 7.815351
1.8 8.798632 8.578826 8.798644
1.9 9.821014 9.634529 9.821028
2.0 10.886597 10.943604 10.886612
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where

m(t) = | sin(πt)|, k = 0, 1, . . . , (10)

λk(µ) =

{
0̂, k = 0,
µ, k ∈ {1, 2, · · · },

For [0, 1], the exact solution of (9) satisfies,

x(t) = [−0.1875et + 0.9375e−t, e−t, 0.1875et + 0.9375e−t].

For [1, 2], the exact solution of (9) satisfies,

x(t) =

[
− 0.1875

(
et +

1

1 + π2

(
e
(
sin(πt) + π cos(πt)

)
+ πet

))
+ 0.9375

(
e−t − 1

1 + π2

(
e−1

(
sin(πt)− π cos(πt)

)
− πe−t

))
, e−t

− 1

1 + π2

(
e−1

(
sin(πt)− π cos(πt)

)
− πe−t

)
, 0.1875

(
et

+
1

1 + π2

(
e
(
sin(πt) + π cos(πt)

)
+ πet

))
+ 0.9375

(
e−t − 1

1 + π2

(
e−1

(
sin(πt)− π cos(πt)

)
− πe−t

))]
.

The hybrid fuzzy initial value problem (9) is equivalent to the following system:

xl0
′

(t) = −xr0(t), t ∈ [0, 1],

xc0
′
(t) = −xc0(t),

xr0
′
(t) = −xl0(t),

x(0) = [0.75, 1, 1.125],

xli
′

(t) = −xri (t) +m(t)xli(ti), t ∈ [ti, ti+1],

xci
′
(t) = −xci (t) +m(t)xci (ti),

xri
′
(t) = −xli(t) +m(t)xri (ti).

(11)

The system is simplified as follows:

xl0
′′

(t) = xl0(t), t ∈ [0, 1],

xc0
′
(t) = −xc0(t),

xr0
′′
(t) = xr0(t),

x(0) = [0.75, 1, 1.125],

xli
′′

(t) = xli(t) +m(t)xli(ti), t ∈ [ti, ti+1],

xci
′
(t) = −xci (t) +m(t)xci (ti),

xri
′′
(t) = xri (t) +m(t)xri (ti).

(12)

Taking the differential transform of (12) for xl and xr ∀t ∈ [0, 1] leads to

(k + 1)(k + 2)X l(k + 2) = X l(k),
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(k + 1)(k + 2)Xr(k + 2) = Xr(k),

and for t ∈ [1, 2], we have

(k + 1)(k + 2)X l(k + 2) = X l(k)− πk

k!
sin(

kπ

2
)x(1),

(k + 1)(k + 2)Xr(k + 2) = Xr(k)− πk

k!
sin(

kπ

2
)x(1),

Also, taking the differential transform of (12) for xc,∀t ∈ [0, 1] leads to

(k + 1)Xc(k + 1) = −Xc(k),

and for t ∈ [1, 2]

(k + 1)Xc(k + 1) = −Xc(k)− πk

k!
sin(

kπ

2
)x(1),

To solve this problem, we use only the first ten terms of the differential transform
series.
The comparison between the exact and numerical solutions on [0, 2] is shown in
Fig. 2 and the numerical results are shown in Table 5, 6 and 7. The approximate
solution of this problem by TDM is nearly similar to those obtained with the exact
solution, But the results of PCM weren’t in excellent agreement with the exact
solution. From Fig. 2, it’s clear that DTM works better than PCM.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−3

−2

−1

0

1

2

3

4

 

 
DTM
Exact
PCM

Figure 2. Comparison between the exact solution and behavior of the solution obtained by
DTM and PCM of Example 2.
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Table 5. Comparison of approximation solutions with exact solution for xl of Example 2.

t Exact PCM DTM
0.0 0.750000 0.750000 0.750000
0.1 0.641065 0.641065 0.641065
0.2 0.538547 0.538547 0.538547
0.3 0.441418 0.435666 0.441418
0.4 0.348707 0.335927 0.348707
0.5 0.259487 0.238110 0.259487
0.6 0.172863 0.141043 0.172863
0.7 0.087970 0.043541 0.087970
0.8 0.003956 -0.055610 0.003956
0.9 -0.080016 -0.157676 -0.080016
1.0 -0.164790 -0.263982 -0.164791
1.1 -0.254229 -0.382524 -0.251300
1.2 -0.353721 -0.516839 -0.340830
1.3 -0.465896 -0.670146 -0.434733
1.4 -0.592617 -0.844844 -0.534310
1.5 -0.734925 -1.042712 -0.640790
1.6 -0.893071 -1.264997 -0.755319
1.7 -1.066635 -1.512581 -0.878962
1.8 -1.254716 -1.786223 -1.012720
1.9 -1.456183 -2.183149 -1.157558
2.0 -1.669959 -2.653593 -1.314439

Table 6. Comparison of approximation solutions with exact solution for xc of Example 2.

t Exact PCM DTM
0.0 1.000000 1.000000 1.000000
0.1 0.904837 0.904837 0.904837
0.2 0.818730 0.818730 0.818730
0.3 0.740818 0.740822 0.740818
0.4 0.670320 0.670328 0.670320
0.5 0.606530 0.606542 0.606530
0.6 0.548811 0.548825 0.548811
0.7 0.496585 0.496601 0.496585
0.8 0.449328 0.449346 0.449328
0.9 0.406569 0.406587 0.406569
1.0 0.367879 0.367898 0.367879
1.1 0.338415 0.363150 0.338415
1.2 0.322120 0.366600 0.322120
1.3 0.316184 0.373792 0.316184
1.4 0.317201 0.380288 0.317201
1.5 0.321465 0.382036 0.321465
1.6 0.325294 0.375775 0.325296
1.7 0.325361 0.359321 0.325369
1.8 0.318987 0.331754 0.319022
1.9 0.304378 0.325420 0.304508
2.0 0.280777 0.3262256 0.281206



216 E. Hajilou et al./ IJM2C, 05 - 03 (2015) 203-217.

Table 7. Comparison of approximation solutions with exact solution for xr of Example 2.

t Exact PCM DTM
0.0 1.125000 1.125000 1.125000
0.1 1.055504 1.055504 1.055504
0.2 0.996573 0.996573 0.996573
0.3 0.947615 0.953376 0.947615
0.4 0.908142 0.920938 0.908142
0.5 0.877757 0.899155 0.877757
0.6 0.856158 0.888004 0.856158
0.7 0.843127 0.887585 0.843127
0.8 0.838534 0.898134 0.838534
0.9 0.842334 0.920027 0.842334
1.0 0.854564 0.953791 0.8545645
1.1 0.888758 1.063430 0.875792
1.2 0.957697 1.204215 0.908407
1.3 1.058741 1.371007 0.955100
1.4 1.187370 1.557884 1.018214
1.5 1.337673 1.759031 1.099586
1.6 1.502999 1.969576 1.200445
1.7 1.676689 2.186309 1.321378
1.8 1.852819 2.408264 1.462371
1.9 2.026894 2.793312 1.622898
2.0 2.196416 3.265266 1.802044

6. Conclusion

In this paper, differential transform method has been presented for solving
hybrid fuzzy differential equations. This method is so powerful and efficient that it
give approximations of higher accuracy. Moreover, the DTM, which is based on the
Teylor series expansion, constructs an analytical solution in the form of polynomial
series solution by means of an iterative procedure. It’s rapid convergence show
that the method is reliable and introduces a significant improvement in solving the
HFDEs. In this method, the accuracy of the obtained solution can be improved
by taking more trems in the solution. Two examples were tested by applying the
DTM and PCM and the results have shown remarkable performance.
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