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Abstract. Fuzzy liner systems of equations, play a major role in several applications in
various area such as engineering, physics and economics. In this paper, we investigate the
existence of a minimal solution of inconsistent fuzzy matrix equation. Also some numerical
examples are considered.
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1. Introduction

The concept of fuzzy numbers and fuzzy arithmetic operations with these fuzzy
numbers were first introduced and investigated by Zadeh [26, 10], Dubois and
Prade [13] and Nahmias [19]. Some different approaches to fuzzy numbers and the
structure of fuzzy number spaces were given by Purl and Ralescu [21], Goetschell
and Voxman [16, 17] and Wu and Ma [24, 25]. Fuzzy systems are used to a variety
of problems ranging from control chaotic systems [14] to fuzzy metric spaces [20],
fuzzy linear systems, fuzzy differential equations [3], particle physics [22] and so on.
Treating fuzzy linear systems is one of the major applications of fuzzy arithmetic.
Many problems in various areas such as economics, engineering and physics boil
down to the solution of a linear system of equations. Since Friedman et al [15]
proposed a general model for solving a n x n fuzzy linear systems whose coefficient
matrix is crisp and the right-hand side is an arbitrary fuzzy number vector by the
embedding approach in 1998, a large number of researches have been produced
about how to solve numerically fuzzy linear systems see [1, 2, 5, 6, 7] and [11, 12]
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and so on. Asady et al. [8], who merely considered the full row rank system, used
the same method to solve the m x n fuzzy linear system for mn. Later, Zheng and
Wang [23, 28] discussed the mn general fuzzy linear system and the inconsistent
fuzzy linear system by using generalized inverses of the coefficient matrix. Then,
Abbasbandy et al [4] investigated the minimal solution of the general dual fuzzy
linear system by means of matrix generalized inverses theory. However, for a fuzzy
matrix equation like as AZ = B, which always has a wide use in the control theory
and control engineering, few works have been done over the past decades.

In this paper a numerical method for finding minimal solution of inconsistent
fuzzy matrix equations AZ = B is given. where A is a m x n crisp matrix and the
right-hand side matrix is an arbitrary fuzzy number matrix.

In Section 2, we recall some fundamental results on fuzzy numbers. Taking ad-
vantage of the approach in [15], we use the parametric form of fuzzy numbers to
replace the general fuzzy matrix system AZ = B with a crisp function matrix equa-
tion SX = Y (r) where S is a 2m X 2n crisp matrix in Section 3. Then in section 4
the expression of inconsistent fuzzy matrix equation is given based on generalized
inverses of matrix S. Moreover, the existence condition of strong minimal solution
of inconsistent fuzzy matrix equations is studied. Numerical example are given in
section 5.

2. Preliminaries

The minimal solution of an arbitrary linear system is formally defined such that:

1. If the system is consistent and has a unique solution, then this solution is
also the minimal solution.

2. If the system is consistent and has a set solution, then the minimal solution
is a member of this set that has the least Euclidean norm.

3. If the system is inconsistent and has a unique least squares solution, then
this solution is also the minimal solution.

4. If the system is inconsistent and has a least squares set solution, then the
minimal solution is a member of this set that has the least Frobenius norm.
There are various definitions for the concept of fuzzy numbers (see [2]).

DEFINITION 2.1 26. A fuzzy number is a fuzzy set like which satisfies:

a. u 1s upper semicontinuous,
b. u(z) = 0 outside some interval [c,d],
c. There are real numbers a, b such that ¢ < a <b<d and

1. u(z) is monotonic increasing on [c,al,
2. u(x) is monotonic decreasing on [b,d],
3. u(r) =1, a<z<b.

DEFINITION 2.2 15. A fuzzy number u in parametric form is a pair (u, @) of func-
tions u(r),u(r),0 <r <1
which satisfies the requirements:

a. u(r) is a bounded monotonic increasing left continuous function.
b. @(r) is a bounded monotonic decreasing left continuous function.
c. u(r),a(r),0 <r<1.
A crisp number z is simply represented by (u(r),u(r)) = (z,z), 0 < r < 1. By

appropriate definitions the fuzzy number space {(u(r),u(r))} becomes a convex cone
E' which could be embedded isomorphically and sometrically into a Banach space.
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DEFINITION 2.3 15. Let z = (z(r),Z(r)), y = (y(r),y(r)) € E' 0<r < 1 and real
number k.

(a) Z(r) =y(r), z(r) =y(r) e z=y
) = (2 + 50, 20) + 5(0)
x—y=(z(r) +g(r), T(r)+y(r))
k kz k>
(o) bafey = [ (2(0), Eal) >0
(kz(r), kz(r)) k<O
DEFINITION 2.4 The matriz system
a1 @12 ccc Gip | | T Ti2 o0 Ty @11 §12 éu
a1 G2 *-- A To1 T2 -+ Tar| | bor bay -+ by 1)
am1 Gm2 *** Gmn Tnl Tn2 -+ Tnl Bml i)mg e Bml

where 1 <1 < m, 1 < j < n are crisp numbers and the elements Bij in the
right-hand matriz are fuzzy numbers, i.e.,

bij € B, 1 <i<m, 1<j<1is called a general fuzzy matriz equation (GFME).
Using matriz notation, we have

Az =B (2)
A fuzzy number matriz
T = (r1,22,...,1)
given by
25 = (@ (r), 21(r), (@2(r) 25 (1), (2 (1), g (1)), 1< <L, 0<r <1

is called a solution of the fuzzy matrix system (2) if

Azj=bj, j=1,2,...,1

Where b; = ((b;(r),b1j(r)) s (ba;(r): 525 (r)) s (B (1), Bing (7)) i the i

column of fuzzy number matrix B.

3. The Model

Using the embedding approach in [17, 24] and the technique applied in [15] by
Friedman et al we extend the matrix systems (1) into a 2m X 2n crisp function
matrix equation.

THEOREM 3.1 The fuzzy matriz equation (1) can be extended into a crisp matrix
equation as follows:
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[ Zy1 Typ o Ty ] Y. Yo 0 Yy
Lor Lzttt Ly Yn Yoo 77 Yy
S11 812 t S1.2n : : : : : : :
S21 S22ttt S22
. . " zfl 2112 zfl = grlzl grlﬂ grlzl (3)
—T1 T2 v Ty —Yi1 —Yi2 © —Yu
S2m,1 S2m,2 *** S2man| | T¥21 T2 T2 =21 —Y22 - —Yu
L —Tn1 —Tnpg * -+ —Tnld | —Ym1 —Ym2 *** —Ymi]
where
irj = (24 (r), Ta;(r)) | kE=1,2,...,nj=12,...,1
gjkj = bkj = (gkj(r),i;kj(r)), k= 1,2,....mj = 1,2,...,1

Where b;, z; denote the jth column of unknown matrix Z and fuzzy number
matrix B, respectively and s = (s;;), 1 < j < 2m, 1 < j < 2n, and s;; are
determined as follows:

aij 20 Sij = Gijy  Smintj = Qij
aij <0 Sijtn = —Qij, Smtij = —G5 1 <j<m, 1<j<n
and any Syl which is not determined by the above items is zero, 1 < k < 2m,1 <

[ < 2n.
Moreover, S is nonnegative and

BC
5= e
where A =B - C.
Writing (3) in matrix form, we have
SX(r)=Y(r) (4)

In order to solve the original fuzzy matrix equation (1), we must consider the model
matrix equation (3). There are some main results about solvability of the Eq. (3)
and the original fuzzy system (1).

LEMMA 3.2 27. The 2m X 2n crisp system of linear equation Sx =y exists solution
if and only if the rank of matriz S equals to that of matriz (S,y), i.e.,
Rank(S)=Rank(S,Y)

when Rank(S)<Rank(S,Y"), the system does not have any solution,

when Rank(S)=Rank(S,Y )= 2n, the system has a unique solution,

when Rank(S)=Rank(S,Y )< 2n, the system has an infinite of solutions.

THEOREM 3.3 The model matriz equation SX =Y (r) has solution if and only if
Rank(s)=Rank(S,Y (r)), r € [0, 1].

COROLLARY 3.4 Let T be p x q real column full rank or row full rank. There exists
a p X p orthogonal matrix U, a q X q orthogonal matriz V and a p X q diagonal
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matriz Y with (3 )i; =0 for i # j and (3 )y = o; > 0 with
o12022...20s20

where s = minp, q, such that the singular value decomposition,

T=U» vt
is valid. And if 3.7 is that q X p matriz whose only non-zero entries are (3 1) =
1/o; for 1 <i< s, then Tt =V Y, U™ is the unique, pseudo-inverse of T.

We refer the reader to [9] for more information on finding pseudo-inverse of an
arbitrary matrix, and when we work with full rank matrices, there are not any
problem and all calculations are stable and well-posed.

COROLLARY 3.5 The matriz S is row full rank (for m < n) or column full rank
(for n < m) if and only if the matrices A = B — C and B + C are both row full
rank (for m < n) or column full rank (for n < m).

In order to solve the linear fuzzy system (1). we must calculate S*. The next
result is taken from the theory of block matrices and provides the structure of S*.
For finding ST, we must find the pseudo-inverse of two real full rank m x n matrices
by following theorem.

THEOREM 3.6 The pseudo-inverse of nonnegative full rank matrix
BC
5= (¢5)
18
DE
5t = ( b D) 5)

where

1

D=[(B+C)" +(B-0)"], E=[(B+C)" —(B-0)"]

Proof Let ST be the pseudo-inverse, it is unique. Without loss of generality, sup-

pose that
DFE
+ _
5= (25)

We know SS*TS =S Hence
BC\ (DE\ (BC\ (BC
C B E D CB)] \CB

BDB + BEC + CDC + CEB = B, BDC + BEB+ CDB+CEC=C (6)

and get
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By adding and then by subtracting the-two parts of (6), we obtain
(B+C)D+E)B+C)=(B+C), B-C)(D-E)(B-C)=(B-0)

also, we can show

(D+E)(B+C)D+E)=(D+E), (D - E)(B—-C)D—E)=(D—-E)
[(B+C)(D+ E)'=(B+C)(D+E), [(B-C)D-E)]'=(B-C)(D-E)
(D+E)YB+C)'=(D+E)(B+C), [(D-E)(B-C)] =(D—-E)B-C)

Thus ST must have the structure. given by (5). In order to calculate E and D in
(5), we have
(B+C)"=D+E, (B-C)'=D-E

and consequently,

D= [(B+O) +(B-C)Y], E=_[(B+C)"—(B-0))

COROLLARY 3.7 18. The minimal solution of SX =Y is obtained by
X =8"Y (7)

The following result provides necessary and coefficient conditions for existing a
fuzzy matriz solution.

THEOREM 3.8 The solution X of (7) is a fuzzy matriz for an arbitrary fuzzy matriz
Y if and only if ST is non-negative, i.e.

(7)) <0, 1<i<2m,1<j<2n

Proof The same as the proof of Theorem 3 in [4]. [ |

4. Inconsistent Fuzzy Matrix Equation

DEFINITION 4.1 29. If the crisp matriz equation (3) does not have solution, the
associated fuzzy matriz equation AT = B, i.e.,

ai; a2 +-+ A, | | T11 Ti2 c0c Ty bii big -+ by
a1 a2 -+ A2n T21 T22 *°° T2 bay bog -+ by
Gml Gm2 * - Qmp Tnl Tnz "+ Tpl b1 bmo <+ by

where the coefficient matriz A = (a;;), 1 <1 < m, 1 < j < niscrisp and the
right-hand matriz B = (b;j) is fuzzy, i.e.,

bij € B, 1<i<m,1<j<n
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is called an inconsistent fuzzy matriz equation (IFME). Let’s consider the following
examples.

Ezample 4.2 The matrix A of the fuzzy matrix system

11 1 11 T12 (1+7‘,3—T) (2+7‘, 3)
I 1 =1] [z21 22| = (r2—r) (=1,-r)
1—1-1| |z31 232 4+r8—=2r)(r,2—r)

is nonsingular, while

[111000]
110001
100011
000111
001110
010101

in its extended matrix equation SX = Y(r) is singular. This example illustrates
that a fuzzy matrix system, which is represented even if by a nonsingular matrix
A, may has no solution or has an infinite number of solutions.

Ezample 4.3 Consider the fuzzy matrix system

11 1] [P0 E20 S 2—7) (=147 —r)
11 -1 [*272 = \(0,1-7) (L+73—7)
31 32

The extended 4 x 6 matrix is

111000
110001
000111
001110

and the augmented matrix is

111000 » —1+r7r
110000 0 1+4r
000111r—2 r

001110r—1-3+r

Actually, the original system is inconsistent since

Rank(S,Y(r)) =4, Rank(S)=3

The above two examples show that the fuzzy matrix equation without solution
exists in some cases. So it is very necessary to seek their minimal solution for this
type of fuzzy matrix system.

DEFINITION 4.4 Let X = {(z;;(r), —%i(r))}, 1 < i < n, 1 < j <[ denote the



206 M. Mosleh et al./ ILIM?C, 01 - 03 (2011) 199 -210.

minimal solution of Eq. 4. The fuzzy number matriz

defined by

ug;(r) = min{z;;(r), @i (r), 2;;(1), 24 (1)}

5(r) = max{z;;(r), z;;(r), z;;(1), ;5 (1)}

is called the minimal fuzzy solution of Eq. 4. If {(z;;(r),zij(r))} are all fuzzy
numbers then U is called a strong minimal fuzzy solution. Otherwise, U s a weak
minimal fuzzy solution.

5. Numerical Examples
Ezample 5.1 Consider the following fuzzy systems

I i S e it

The extended 4 x 4 matrix S is

1001
0110
0110
1001)

and the augmented matrix is

100114r—-1+r
0110 r 0

0110r—3 r—2
1001lr—-2 r—1

The original system is inconsistent, therefore we have
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—0.7071 0 07071 0
0 0.7071 0 07071
0 0.7071 0 —0.7071
—0.7071)0 —0.7071 0

0.5000 0 00

St =

0 0.500000
0 0 00
0 0 00
—0.7071 0 0 —=0.7071
0 0.7071 0.7071 0
0 —0.7071 0.7071 0

—0.7071)0 0 0.7071

Thus

21157“; 21257“;
X=| 22100 “2n(r)
—To1 (7“) —.’Z‘QQ(T)
= STY(r)
l+7r =147
T 0

—3+r 247
—24+r—-1+r

=St

++ + 4
Il et L Nl o

X 3 3 3
30303

<3

[Nl Nl Nl N oy

ol Lol e
o =" IS

ie.,

which is a strong minimal fuzzy solution.

Ezample 5.2 Consider the fuzzy matrix system
11 1 i“i” ((r2=r) (1 +r3—7)
11-1) 2 ) = \0,1-7r) (r,2-7)
T31 32

The extended 4 x 6 matrix is
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111000
110001
000111
001110

and the augmented matrix is

111000 r 1+7r
110001 O T

000111 —-24r—-3+r
001110—-1+r—-2+r

Which implies that the original system is in consistent since

St =

Rank(S) = 3, Rank(S,Y (r)) = 4

—0.4082 0.5000 —0.0000 0.4964 0.4105 0.4105
—0.4082 0.5000 —0.0000 —0.7608 —0.0476 —0.0476
—0.4082 —0.0000 —0.7071 0.2644 —0.3629 —0.3629
—0.4082 —0.5000 0.0000 —0.1322 0.6815 —0.3185
—0.4082 —0.5000 0.0000 —0.1322 —0.3185 0.6815
—0.4082 0.0000 0.7071 0.2644 —0.3629 —0.3629

0.4082 0 0 0
0 05000 0 O
0 0 070710
0 0 0 0
0 0 0 0
0 0 0 0

—0.5000 0.5000 —0.5000 —0.5000
—0.5000 0.5000 0.5000 0.5000
—0.5000 —0.5000 0.5000 —0.5000
—0.5000 —0.5000 —0.5000 0.5000

Then the minimal solution of system is

ie.,

r r—1
1+r r
_ qQt _ qQt
X=5"Y(r)=S r_ 3y _9
r—3r—1
Py BTy
sTs" 13T37
1 P
o 57“ g—i-gr
I B e
—gt+sr—5ts3r
1 R
1—57” —g—i—g’r
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T11 T12 (5+5m8—3r) (5 +35m1 —37)
s | = [+ ln-t0 g+ In - 1)
L s (L=3m51)  (G+3m5—357)

Obviously, z3; is not fuzzy number and hence we can obtain the weak minimal
fuzzy solution as follows:

6.

u1] U2 (%4‘%7”7%—%7”)(%4‘%7”71—2—%7”)

ugruze | = | (g +5mg—57) (1—% + §r, i 37)

U3l U32 (r,1—34r)  (5+3m3—37)
Conclusions

In this paper, we propose a general model for solving a fuzzy matrix equation
with n x [ variables. The original system with matrix coefficient A is replaced
by a (2m) x (2n) crisp linear matrix equation S which may singular even if A is
nonsingular. For finding the pseudo-inverse of S, we find the pseudo-inverse of two
m X n matrices. Also, a condition for the existence of a fuzzy solution to the fuzzy
general linear system, is presented.
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