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Abstract. This paper analyzes a renewal input working vacations queue with change over
times and Bernoulli schedule vacation interruption under (a, c, b) policy. The service and vaca-
tion times are exponentially distributed. The server begins service if there are at least c units
in the queue and the service takes place in batches with a minimum of size a and a maximum
of size b (a ⩽ c ⩽ b). The change over periods follow if there are (c− 1) customers at vacation
completion instant or (a−1) customers at service completion instant. The steady state queue
length distributions at arbitrary and pre-arrival epochs are obtained. Performance measures
and optimal cost policy are presented with numerical experiences. The genetic algorithm and
quadratic fit search method are employed to search the optimal values of some important
parameters of the system.
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1. Introduction

Working vacation models are widely used to analyze problems in the area of com-
puter communication, manufacturing, production and transportation systems. Un-
like the classical vacation models where the server completely stops service, in work-
ing vacation models service is provided during vacation at a rate usually lower than
the regular service rate as introduced in [18] to analyze anM/M/1 queue with mul-
tiple working vacation (MWV). Later, an extension to GI/M/1/MWV queue is
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carried out in [1]. Further studies related to working vacation are found in [4], [11],
[6], [21], [9], etc.
The concept of vacation interruption was first introduced for an M/M/1 queue,

[10]. Then, [12] generalized their results to a GI/M/1 queue with working vaca-
tions and vacation interruption. A GI/M/1 queue with set-up period, working
vacation and vacation interruption has been studied in [24]. A working vacation
queue with service interruption and multi-optional repair has been discussed in [8].
A MAP/G/1 queue with working vacations and vacation interruption has been
analyzed in [22]. For the Bernoulli schedule vacation interruption, [23] first studied
an M/M/1 queue with vacation interruption under the Bernoulli rule. Recently,
[13] studied a GI/Geo/1 single working vacation queue with start-up period and
Bernoulli vacation interruption using embedded Markov chain technique. Further,
see [5] for a study on M/G/1 queue with single working vacation and Bernoulli
schedule vacation interruption.
In many real-life queueing situations jobs are served with a control limit policy.

For example, in some manufacturing systems it is possible to process jobs only
when the number of units to be processed exceeds a specified level, and when
service starts, it is profitable to continue it even when the queue size is less than the
specified level but not less than a secondary limit. The optimal management policy
for a single server and single or bulk service characterized by the bi-level service
discipline has been discussed in [19]. An optimal control of batch arrival, bulk
service queueing system with N policy has been analyzed in [20]. The infinite buffer
multiple vacations queue with change over times under (a, c, d) policy has been
studied in [3], where the arrivals and service times are exponentially distributed
and the corresponding discrete time queue has been presented in [2].
One of the most fundamental objectives in the performance evaluation of queue-

ing models is to search for an optimal value. Many practical optimal design prob-
lems are characterized by mixing continuous and discrete variables, discontinuous
and non-convex design spaces. In such cases, the standard non linear optimization
techniques will be inefficient, computationally expensive, and in most cases, find
relative optimum that is closest to the starting point. Genetic algorithm (GA) is
well suited for solving such problems and in most cases they find the global opti-
mum solution with high probability. More details on GA can be found in [7], [16],
[14], [15], etc.
Quadratic fit search method (QFSM) is another optimization technique which

can be used when the objective function is highly complex and obtaining its deriva-
tive is a difficult task. Given a 3-point pattern, one can fit a quadratic function
through corresponding functional values that has a unique optimum for the given
objective function. Quadratic fit uses this approximation to improve the current
3-point pattern by replacing one of its points with approximate optimum. For the
details of QFSM one may refer [17].
Motivated by the optimization problem, this paper focuses on an infinite buffer

renewal inputMWV queue with change over times and Bernoulli schedule vacation
interruption under (a, c, b) policy. The inter-arrival time of customers and service
time of batches are respectively, arbitrarily and exponentially distributed. We pro-
vide a recursive method using the supplementary variable technique to develop
the steady state queue length distributions at various epochs. Various performance
measures and a cost model is developed to determine the optimum service rate
and vacation rate using GA and QFSM. Numerical results have been presented to
show the effect of model parameters.
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2. Description of the model

We consider a multiple working vacation GI/M (a,c,b)/1 queueing system with
change over times and Bernoulli schedule vacation interruption. It is assumed that
the inter-arrival times of customers are independent and identically distributed
random variables with cumulative distribution function A(x), probability density
function a(x), x ⩾ 0, Laplace-Stiltjes transform A∗(θ), Re(θ) ⩾ 0 and mean
inter-arrival time 1/λ = −A∗(1)(0), where h(1)(x0) denotes the first derivative of
h(x) at x = x0. The service begins only if there are at least c units in the queue.
The customers are served in batches with a minimum size a and a maximum size
b (a ⩽ c ⩽ b). The various states that a server observes are given below: At a
service completion epoch during a regular busy period if the queue size (j) is

• a ⩽ j ⩽ b : the server continues to serve.

• 0 ⩽ j ⩽ a− 2 : the server goes for a working vacation.

• j = a− 1 : server will wait for some time in the system called change over time
which is exponentially distributed with rate α1. It starts service on finding an
arrival during this change over time, otherwise it will go for a working vacation.

On returning from a working vacation, if the queue size j is

• 0 ⩽ j ⩽ c − 2 : another working vacation resumes and this process continues
until at least c− 1 customers are left in the queue.

• j = c− 1 : the server is in change over time, which is exponentially distributed
with rate α2. Service starts on finding an arrival during this period, otherwise
another vacation follows.

• j ⩾ c : min{j, b} customers are served according to first-come, first-served rule.

Service times during regular busy period, during vacation and vacation times
are exponentially distributed with rate µ, η and ϕ, respectively. In the working
vacation, a customer is serviced at a lower rate and at the instants of a service
completion, the vacation is interrupted and the server is resumed to a regular busy
period with probability q̄ = 1−q (if there are at least c customers in the queue), or
continues the vacation with probability q. Further, the inter-arrival times, service
times, change over times and working vacation times are mutually independent of
each other. The traffic intensity is given by ρ = λ/bµ. The state of the system at
time t is described by the following random variables:

• X(t) = number of customers present in the queue,

• U(t) = remaining inter-arrival time for the next arrival,

• Y (t) =

0, if the server is in working vacation,
1, if the server is busy,
2, if the server is in change over times.

At steady state, let us define

ωn(x)dx = lim
t→∞

Pr
{
X(t) = n, x < U(t) ≤ x+ dx, Y (t) = 0

}
, n ≥ 0,

πn(x)dx = lim
t→∞

Pr
{
X(t) = n, x < U(t) ≤ x+ dx, Y (t) = 1

}
, n ≥ 0,

νn(x)dx = lim
t→∞

Pr
{
X(t) = n, x < U(t) ≤ x+ dx, Y (t) = 2

}
, n = a− 1 or c− 1.

Let ω∗
n(θ), π

∗
n(θ) and ν

∗
n(θ) be the Laplace-Stiltjes transforms of ωn(x), πn(x) and

νn(x), respectively so that ωn ≡ ω∗
n(0), πn ≡ π∗n(0), and νn ≡ ν∗n(0) are the steady

state probabilities that n customers are in the queue and the server is in working
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vacation, regular busy period and in change over times, respectively, at an arbitrary
epoch.

3. Analysis of the model

In this section, we shall discuss the evaluation of steady state queue length dis-
tributions at pre-arrival and arbitrary epochs using the supplementary variable
technique and the recursive method. Relating the states of the system at two con-
secutive time epochs t and t+ dt and using the probabilistic arguments, we set up
the following differential-difference equations at steady state:

−ω(1)
0 (x) = µπ0(x) + qη

b∑
n=c

ωn(x),

−ω(1)
n (x) = a(x)ωn−1(0) + ψ(1 ⩽ n ⩽ a− 2)µπn(x) + ψ(n = a− 1)α1νn(x)

+qηωn+b(x), 1 ⩽ n ⩽ a− 1,

−ω(1)
n (x) = a(x)ωn−1(0) + qηωn+b(x), a ⩽ n ⩽ c− 2,

−ω(1)
n (x) = a(x)ωn−1(0) + ψ(n = c− 1)α2νn(x) + qηωn+b(x)− ϕωn(x)

−ψ(n ⩾ c)ηωn(x), n ⩾ c− 1,

−π(1)0 (x) = a(x)(νa−1(0) + νc−1(0)) + µ(

b∑
n=a

πn(x)− π0(x)) + (ϕ+ q̄η)

b∑
n=c

ωn(x),

−π(1)n (x) = a(x)πn−1(0) + µπn+b(x) + (ϕ+ q̄η)ωn+b(x)− µπn(x), n ⩾ 1,

−ν(1)a−1(x) = µπa−1(x)− α1νa−1(x),

−ν(1)c−1(x) = ϕωc−1(x)− α2νc−1(x),

where ψ(χ) is equal to 1 when the expression χ is satisfied, otherwise its value is
0. Further, ωn(0), n ⩾ 0; πn(0), n ⩾ 0 and νn(0), n = a − 1 or n = c − 1 are
the respective probabilities with the remaining inter-arrival time equal to zero, i.e.,
an arrival is about to occur. Multiplying the above equations by e−θx, integrating
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with respect to x from 0 to ∞ yields

−θω∗
0(θ) = µπ∗0(θ) + qη

b∑
n=c

ω∗
n(θ)− ω0(0), (1)

−θω∗
n(θ) = A∗(θ)ωn−1(0) + ψ(n = a− 1)α1ν

∗
n(θ) + qηω∗

n+b(θ)

+ψ(1 ⩽ n ⩽ a− 2)µπ∗n(θ)− ωn(0), 1 ⩽ n ⩽ a− 1, (2)

−θω∗
n(θ) = A∗(θ)ωn−1(0) + qηω∗

n+b(θ)− ωn(0), a ⩽ n ⩽ c− 2, (3)

(ϕ− θ)ω∗
n(θ) = A∗(θ)ωn−1(0) + ψ(n = c− 1)α2ν

∗
n(θ) + qηω∗

n+b(θ)

−ψ(n ⩾ c)ηω∗
n(θ)− ωn(0), n ⩾ c− 1, (4)

(µ− θ)π∗0(θ) = A∗(θ)(νa−1(0) + νc−1(0)) + µ
b∑

n=a

π∗n(θ)

+(ϕ+ q̄η)
b∑

n=c

ω∗
n(θ)− π0(0), (5)

(µ− θ)π∗n(θ) = A∗(θ)πn−1(0) + µπ∗n+b(θ) + (ϕ+ q̄η)ω∗
n+b(θ)

−πn(0), n ⩾ 1, (6)

(α1 − θ)ν∗a−1(θ) = µπ∗a−1(θ)− νa−1(0), (7)

(α2 − θ)ν∗c−1(θ) = ϕω∗
c−1(θ)− νc−1(0). (8)

Adding equations (1) - (8), taking limit as θ → 0 and using the normalizing con-
dition,

∑∞
n=0 ωn +

∑∞
n=0 πn + νa−1 + νc−1 = 1, we obtain

∞∑
n=0

ωn(0) +

∞∑
n=0

πn(0) + νa−1(0) + νc−1(0) = λ. (9)

It may be noted here that the left-hand side of (9) represents the probability that
an arrival is about to occur, which is equal to the arrival rate of customers. This
is used in the sequel to obtain a relation between arrival is about to occur and
pre-arrival epoch probabilities.

3.1 Steady state distribution at pre-arrival epochs

Let ω−
n (π−n ) be the probability that n (n ⩾ 0) customers are present in the queue

at pre-arrival epoch and the server is on working vacation (regular busy period)
and ν−n denotes the probability that n (n = a− 1 or c− 1) customers in the queue
at pre-arrival epoch and the server is in change over times. Using Bayes’ theorem
and equation (9), we express the pre-arrival epoch probabilities as below:

ω−
n = ωn(0)/λ, n ≥ 0; π−n = πn(0)/λ, n ≥ 0;

ν−n = νn(0)/λ, n = a− 1, c− 1. (10)

To obtain ω−
n , π

−
n and ν−n we need to evaluate ωn(0), πn(0) and νn(0) which is

discussed below.
We define the displacement operator E as Exωn = ωn+x, and rewrite equation
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(4) for n ⩾ c as

(η + ϕ− θ − qηEb)ω∗
n(θ) = (A∗(θ)− E)ωn−1(0). (11)

Setting θ = η + ϕ− qηEb in (11), we get

ωn(0) = Crn, n ⩾ c− 1, (12)

where C is an arbitrary constant and r is a real root inside the unit circle of the
equation A∗(η + ϕ− qηzb)− z = 0.
Substituting equation (12) in (11), we obtain

ω∗
n(θ) =

(A∗(θ)− r)Crn−1

τ1 − θ
, n ⩾ c, (13)

where τ1 = η(1− qrb) + ϕ.
Similarly from equation (6) we obtain

πn(0) = kξn − Cτ3r
n+b, n ⩾ 0, (14)

π∗n(θ) =
kξn−1(A∗(θ)− ξ)

µ− θ − µξb
− Cτ3(A

∗(θ)− r)rn+b−1

τ1 − θ
, n ⩾ 1, (15)

where k is a constant, ξ is the unique real root of the equation A∗(µ−µzb)− z = 0
inside the unit circle, τ2 = τ1 − µ(1− rb) and τ3 = (ϕ+ q̄η)/τ2.
Now inserting θ = α1 in equation (7), we get

νa−1(0) = kL1 − CL2, (16)

where

L1 =
µξa−2(A∗(α1)− ξ)

µ− α1 − µξb
and L2 =

µτ3(A
∗(α1)− r)ra+b−2

τ1 − α1
.

Putting θ = µ in (5) and using (13), (14), (15) and (16), νc−1(0) is obtained as

νc−1(0) = kL3 + CL4, (17)

where

L3 =
1

A∗(µ)

(
1−A∗(µ)L1 +

(A∗(µ)− ξ)(ξa−1 − ξb)

ξb(1− ξ)

)
,

L4 =
1

A∗(µ)

(
A∗(µ)L2 − τ3r

b +
µτ3(A

∗(µ)− r)(ra+b−1 − r2b)

(τ1 − µ)(1− r)

−τ3τ2(A
∗(µ)− r)(rc−1 − rb)

(τ1 − µ)(1− r)

)
.
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From (7), (15) and (16) we have

ν∗a−1(θ) =
k

α1 − θ

[
µ(A∗(θ)− ξ)ξa−2

µ− θ − µξb
− L1

]

+
C

α1 − θ

[
L2 −

µτ3(A
∗(θ)− r)ra+b−2

τ1 − θ

]
. (18)

Setting θ = 0 in equation (1), we get

µπ0 = ω0(0)− qηC(rc−1 − rb)/τ1. (19)

From equation (5) setting θ = 0 and using equations (13), (14)-(17), we get

π0 = (kL5 + CL6)/µ, (20)

where

L5 = L1 + L3 − 1 + (ξa−1 − ξb)/(1− ξb)

L6 = L4 − L2 + τ3
(
τ1r

b + τ2(r
c−1 − rb)− µ(ra+b−1 − r2b)

)
/τ1.

From equations (19) and (20) it follows that

ω0(0) = kL5 + CL7, (21)

where

L7 = L6 + qη(rc−1 − rb)/τ1.

Setting θ = 0 in equation (2) for 1 ⩽ n ⩽ a− 2, we get

ωn(0) = k

(
L5 +

1− ξn

1− ξb

)
+ C

(
L7 +

(1− rn)rb

τ1
(qη − µτ3)

)
. (22)

Inserting θ = 0 in equation (2) for n = a− 1, ωa−1(0) can be obtained as

ωa−1(0) = kL8 + CL9, (23)

where

L8 = L5 − L1 +
1− ξa−1

1− ξb
and L9 = L7 + L2 + (qη − µτ3)(r

b − ra+b−1)/τ1.

Setting θ = 0 in equation (3) and using equations (13) and (23), we get

ωn(0) = kL8 + C
(
L9 +

qη(1− rn−a+1)ra+b−1

τ1

)
, a ⩽ n ⩽ c− 2. (24)

Using equation (9) we have

kL10 + CL11 = λ, (25)



188 P. Vijaya Laxmi & D. Seleshi/ IJM2C, 03 - 03 (2013) 181-196.

where

L10 = L1 + L3 + (a− 1)L5 + (c− a)L8 +
1

1− ξ
+

1

1− ξb

a−2∑
n=1

(1− ξn),

L11 = L4 − L2 + (a− 1)L7 + (c− a)L9 +
rb

τ1
(qη − µτ3)

a−2∑
n=1

(1− rn)

+
qηra+b−1

τ1

c−2∑
n=a

(1− rn−a+1) +
rc−1

1− r
− τ3r

b

1− r
.

Setting θ = ϕ+ α2 in (4) for n = c− 1 and (8), and after simplification, we get

kL12 + CL13 = 0, (26)

where

L12 = α2L3/ϕ+A∗(ϕ+ α2)L8,

L13 = A∗(ϕ+ α2)

(
L9 +

qη(1− rc−a−1)ra+b−1

τ1

)
+
qη(A∗(ϕ+ α2)− r)rc+b−2

τ1 − ϕ− α2

−rc−1 + α2L4/ϕ.

Solving (25) and (26), we obtain the values of k and C as

k =
λL13

L10L13 − L11L12
and C =

λL12

L11L12 − L10L13
.

We are now in a position to obtain the pre-arrival epoch probabilities ω−
n , π

−
n , ν

−
j

from the probabilities ωn(0), πn(0), νj(0), n ⩾ 0, j = a− 1, c− 1.

Theorem 3.1 The pre-arrival epoch queue length distributions ω−
n that an arrival

sees n customers in the queue and the server is in working vacation, π−n that the
server is busy and ν−j (j = a− 1, c− 1) that the server is in change over times are
given by

ω−
n =

[
k(L5 +

1− ξn

1− ξb
) + C(L7 +

(1− rn)rb(qη − µτ3)

τ1
)
]
/λ, 0 ⩽ n ⩽ a− 2,

ω−
n =

[
kL8 + C(L9 +

qη(1− rn−a+1)ra+b−1

τ1
)
]
/λ, a− 1 ⩽ n ⩽ c− 2,

ω−
n = Crn/λ, n ⩾ c− 1,

π−n =
[
kξn − Cτ3r

n+b
]
/λ, n ⩾ 0,

ν−a−1 =
[
kL1 − CL2

]
/λ,

ν−c−1 =
[
kL3 + CL4

]
/λ.

Proof Using (10) in (12), (14), (16), (17) and (21) - (24), we obtain the result of
the theorem. ■
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3.2 Steady state distribution at arbitrary epochs

To obtain the queue length distribution at arbitrary epochs, we develop the rela-
tions between distributions of number of customers in the queue at pre-arrival and
arbitrary epochs. This is discussed in the following theorem.

Theorem 3.2 The arbitrary epoch probabilities are given by

ωn = Crn−1(1− r)/τ1, n ⩾ c, (27)

πn =
kξn−1(1− ξ)

µ(1− ξb)
− Cτ3(1− r)rn+b−1

τ1
, n ⩾ 1, (28)

νa−1 = kL14 + CL15, (29)

where

L14 =
1

α1

((1− ξ)ξa−2

(1− ξb)
− L1

)
and L15 =

1

α1

(
L2 −

µτ3(1− r)ra+b−2

τ1

)
.

Proof Setting θ = 0 in (13), (15) and (18), we obtain the result of the theorem. ■

One may note here that from Theorem 3.2 we can not get {ωn}c−1
0 , π0 and νc−1.

We have already obtained π0 in equation (20) and the remaining can be obtained
using the following theorem.

Theorem 3.3 The arbitrary epoch probabilities {ωn}c−1
0 and νc−1 are given by

ω0 = −kL16 − C
[
L17 +

qη(rc−1 − rb)τ4
1− r

]
, (30)

ωn = k

[
L5

λ
+

1− ξn−1

λ(1− ξb)
− ξn−1λ(1− ξ)− µ(1− ξb)

λµ(1− ξb)2
− L14ψ(n = a− 1)

]
+C

[
L7

λ
− L15ψ(n = a− 1) +

rb(qη − µτ3)(1− rn−1)

λτ1

+rb+n−1τ4[µτ3 − qη]

]
, 1 ⩽ n ⩽ a− 1, (31)

ωn =
(
1− ϕ

α2 + ϕ
ψ(n = c− 1)

)(
k
[L8

λ
+
L3

α2
ψ(n = c− 1)

]
+C
[
L(n) +

L4

α2
ψ(n = c− 1)

])
, a ⩽ n ⩽ c− 1, (32)

νc−1 =
ϕ

α2 + ϕ

(
k
[L8

λ
− L3

ϕ

]
+ C

[
L(c− 1)− L4

ϕ

])
, (33)
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where

τ4 =
λ(1− r)− τ1

λτ21
,

L16 =
L5

µ
− L1

λ
− L3

λ
+
µ(ξa−1 − ξb)[λ(1− ξ)− µ(1− ξb)]

λµ2(1− ξ)(1− ξb)2
,

L17 =
L6

µ
+
L2 − L4

λ
+

τ3τ4
1− r

(
τ2(r

c−1 − rb)− µ(ra+b−1 − r2b)
)
,

L(n) =
1

λ

(
L9 +

qηra+b−1(1− rn−a(1 + λτ1τ4))

τ1

)
.

Proof Differentiating equations (13), (15), (7) and (5), and setting θ = 0 yields

ω∗(1)
n (0) = Crn−1

(
λ(1− r)− τ1

λτ21

)
, n ⩾ c,

π∗(1)n (0) = kξn−1

(
λ(1− ξ)− µ(1− ξb)

λµ2(1− ξb)2

)
− Cτ3r

n+b−1τ4, n ⩾ 1,

ν
∗(1)
a−1(0) =

k

α1

(ξa−2[λ(1− ξ)− µ(1− ξb)]

λµ(1− ξb)2
+ L14

)
− C

α1

(
µτ3r

a+b−2τ4 − L15

)
,

µπ
∗(1)
0 (0) = kL16 + CL17.

Differentiating (1) - (3), setting θ = 0, using the above derivatives and the proba-
bilities ωn(0), πn(0), νj(0), n ⩾ 0, j = a−1, c−1, we get (30) - (32), respectively.
Adding and differentiating (4) for n = c− 1 and (8) and setting θ = 0, we get

ωc−1 + νc−1 = −A∗(1)(0)ωc−2(0)− qηω
∗(1)
c+b−1(0). (34)

Setting θ = 0 in equation (8) yields

α2νc−1 = ϕωc−1 − νc−1(0). (35)

By combining equations (34) and (35) one can obtain ωc−1 and νc−1. ■

This completes the evaluation of the arbitrary epoch probabilities.

4. Special cases

The following special cases are deduced from our model by taking specific values
of the parameters a, c, b, q, α1, α2, ϕ and η.
Case 1: a = c = b = 1, q = 1 and α1, α2 → ∞, that is, the batch size is one, no
change over time and no vacation interruption. The model reduces to GI/M/1/∞
queue with multiple working vacations and our results match numerically with [1].
Case 2: If q = 1, a = c and α1, α2 → ∞ then the model reduces to
GI/M (a,b)/1/∞/MWV queue.
Case 3: q = 1, a = c = b = 1, ϕ → ∞, η = 0 and α1, α2 → ∞ that is, the batch
size is one, the average duration of working vacation is zero and no change over
time. In this case, the system reduces to GI/M/1/∞ queue and our results match
with the results available in the literature.
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5. Performance measures and cost model

Once the queue length probabilities are known, we can evaluate the various perfor-
mance measures. The average queue length when the server is on working vacation
(Lqv), the average queue length when the server is busy (Lqb), the average queue
length when the server is in change over times (Lqc) and the average number of
customers in the queue at an arbitrary epoch (Lq) are given by

Lqv =

∞∑
n=0

nωn, Lqb =

∞∑
n=0

nπn, Lqc = (a− 1)νa−1 + (c− 1)νc−1, Lq = Lqv + Lqb + Lqc.

The average waiting time in the queue (Wq) of a customer using Little’s rule is
given by Wq = Lq/λ. The probability that the server is on working vacation (Pwv),
the probability that the server is busy (Pb) and the probability that the server is
in change over times (Pc) are respectively, given by

Pwv =

∞∑
n=0

ω−
n , Pb =

∞∑
n=0

π−n and Pc = ν−a−1 + ν−c−1.

Cost model

We develop the total expected cost function per unit time with an objective to
determine the optimum values of µ, ϕ, a and c so that the expected cost function
is minimized. Let us define
C1= the unit time cost of every customer in the queue,
C2= the service cost per unit time when the server is in normal busy period,
C3= the service cost per unit time when the server is in working vacation,
C4= fixed cost per unit time when the server is in working vacation,
C5= fixed cost per unit time when the server is in change over time (after service
completion epoch),
C6= fixed cost per unit time when the server is in change over time (after vacation
completion epoch).
Let F be the total expected cost per unit time. Using the definitions of each cost
element and its corresponding system characteristics, we have

F = C1Lq + C2µPb + (C3η + C4ϕ)Pwv + (C5α1 + C6α2)Pc.

We have considered the following optimization problems:

• Minimize F (ϕ) subject to the constraint 0.1 < ϕ ⩽ 2.

• Minimize F (µ) subject to the constraint 0.5 < µ ⩽ 1.5.

• Minimize F (a, c) subject to the constraint 1 ⩽ a, c ⩽ 17 and a < c.

The numerical searching approach is implemented using quadratic fit search
method and genetic algorithm on the computer software Mathematica with µ, ϕ, a
and c as the decision variables. We have used these two optimization techniques so
as to ensure the reliability of the results and the numerical results obtained from
these two techniques are very close as shown in Tables 2 and 3.
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Table 1. Optimal values (a∗, c∗) and F∗ for different pairs of µ and ϕ.

b = 20, η = 0.2, Erlang-3
(µ, ϕ) (0.25, 2.5) (0.3, 2.5) (0.45, 2.5) (0.3, 3.0) (0.3, 3.5)

MWV (a∗, c∗) (13,17) (9,11) (3,5) (8,10) (6,8)
F ∗ 370.49 251.50 149.57 254.92 260.40

VI (a∗, c∗) (13,17) (8,10) (3,5) (8,10) (7,9)
F ∗ 373.16 252.94 149.71 255.65 260.54

Table 2. The optimal values ϕ∗ and F∗ for various values of η.

q = 1, MWV q = 0, VI
QFSM GA QFSM GA

η ϕ∗ F ∗ ϕ∗ F ∗ ϕ∗ F ∗ ϕ∗ F ∗

0.2 1.1646 118.60 1.1646 118.60 1.1930 119.01 1.1929 119.01
0.4 0.9326 117.53 0.9316 117.53 0.9989 118.58 0.9989 118.58
0.6 0.6862 116.10 0.6886 116.10 0.8048 118.15 0.8048 118.15
0.8 0.4146 114.00 0.4172 114.00 0.6110 117.72 0.6134 117.72
1.0 0.0810 110.15 0.1076 110.18 0.4174 117.29 0.4175 117.29

Table 3. The optimal values µ∗ and F∗ for various values of λ.

q = 1, MWV q = 0, VI
QFSM GA QFSM GA

λ µ∗ F ∗ µ∗ F ∗ µ∗ F ∗ µ∗ F ∗

1.2 0.5099 74.13 0.5101 74.13 0.5206 72.97 0.5206 72.97
1.4 0.5790 78.00 0.5791 78.00 0.5906 76.96 0.5912 76.96
1.6 0.6449 82.05 0.6440 82.05 0.6573 81.01 0.6574 81.01
1.8 0.7071 86.29 0.7072 86.29 0.7210 85.11 0.7211 85.11
2.0 0.7657 90.72 0.7635 90.72 0.7822 89.27 0.7840 89.27

6. Numerical results

To demonstrate the applicability of the theoretical investigation made in the pre-
vious sections, we present some numerical results in the form of tables and graphs.
We have considered the following cost parameters: C1 = 15, C2 = 50, C3 =
25, C4 = 35, C5 = 5 and C6 = 8. We have taken a = 3, c = 6, b = 10, λ =
3.5, ρ = 0.2, ϕ = 0.2, η = 0.5, α1 = 1.5, α2 = 2.5 for all the tables and figures,
unless they are considered as variables or their values are mentioned in the respec-
tive figures and tables. The optimal values (a∗, c∗) and F ∗ for different pairs of µ
and ϕ which are obtained by employing genetic algorithm are shown in Table 1.
One can see that (i) as µ increases the average cost decreases, the optimal values
a∗ and c∗ also decrease, (ii) as ϕ increases the average cost increases, the optimal
values a∗ and c∗ decrease.
Using QFSM and GA, the optimal values of ϕ (µ) and the minimum expected cost

F ∗ are shown in Table 2 (3) for various values of η (λ) and for hyperexponential
(exponential) inter-arrival distribution with µ = 0.8 for Table 2. From Table 2
we observe that both the optimal mean vacation rate and the minimum expected
cost decrease as η increases. From Table 3 one can see that as the mean arrival
rate increases both the optimal mean service rate and the minimum expected cost
increase. Here, one may note that the increase in the optimal service rate with λ
is as expected in view of the stability of the system.
Figure 1 illustrates the influence of the minimum threshold c on the expected
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Figure 3. Average cost vs µ. Figure 4. Impact of ϕ on Lq.

queue length for different values of λ and vacation interruption probability, q, with
exponential inter-arrival distribution and b = 15. Here, Lq increases with c, λ and
q. Since c is the minimum threshold to start service, increasing c will result in
greater accumulation of customers in the queue thereby increasing Lq. From the
figure one can also infer that Lq is low for the model with vacation interruption
for fixed λ and c.
Figure 2 provides the expected queue length with a change of service rate in

working vacation η at different q for exponential inter-arrival time distribution. As
expected, Lq decreases with the increase of η and the larger the probability q is, the
larger Lq becomes. That is the model with vacation interruption (q = 0) performs
better than the model without vacation interruption (q = 1). Moreover, when η is
zero then clearly q has no effect on the average queue length.
Figure 3 shows the average cost as a function of the mean service rate µ for

different values of q with exponential inter-arrival time distribution. The figure
demonstrates that there is an optimal mean service rate and the average cost
increases with q.
The effect of ϕ on Lq for different values of q is presented in Figure 4 for Erlang-

3 inter-arrival time distribution. We see that Lq decreases with the increase of ϕ.
This is due to the fact that mean vacation time decreases and the server is available
with shorter breaks.
Figures 5 and 6 depict the impact of α1 and α2 on Wq for multiple working

vacations without and with vacation interruption models, respectively. The inter-
arrival time considered is deterministic. In both the cases, Wq increases with α1

and α2. As α1 (α2) gets larger the mean duration of change over times becomes
smaller so that the server will go for another vacation with out waiting for an
arrival for some reasonable duration of time. This contributes for Wq to increase.

From the above numerical discussion we note the following:
In terms of Lq, the model with vacation interruption performs better. Therefore

to offer a better service under the working vacation policy, one can consider vacation
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interruption policy which utilizes the server and decreases the queue size effectively.

7. Conclusion

In this paper, we have analyzed a renewal input batch service multiple working
vacations queue with change over times and Bernoulli schedule vacation interrup-
tion that has potential applications in production, manufacturing, traffic signals
and telecommunication systems, etc. We have developed a recursive method, using
the supplementary variable technique and treating the remaining inter-arrival time
as the supplementary variable, to find the steady state queue length distributions
at pre-arrival and arbitrary epochs. The recursive method is powerful and easy to
implement. Some special cases of the model have been discussed. Various perfor-
mance measures such as the average queue length and the average waiting time in
the queue have been obtained along with a suitable cost function. The quadratic fit
search method and genetic algorithm are applied to search for the optimal values of
the system parameters. The method of analysis used in this paper can be applied
to GIX/M (a,c,b)/1 and MAP/M (a,c,b)/1 queues with multiple working vacations
that are left for future investigation.
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