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Abstract. In this paper, a numerical method is developed for solving a linear sixth order
boundary value problem (6VBP ) by using the hyperbolic uniform spline of order 3 (lower
order). There is proved to be first-order convergent. Numerical results confirm the order of
convergence predicted by the analysis.
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1. Introduction

When an infinite horizontal layer of fluid is heated from below and is under the
action of rotation, instability sets in when this instability is an ordinary convection,
the ordinary differential equation is a sixth order ordinary differential equation.
Much attention have been given to solve the sixth-order boundary value problems,
which have application in various branches of applied sciences. These problems
are generally arise in the mathematical modeling of viscoelastic flows [4]. A spline
has been widely applied for the numerical solutions of some ordinary and partial
differential equations in the numerical analysis. Many authors have used numerical
and approximate methods to solve sixth-order BVPs. Some of the details about
the numerical methods can be found in references [9-11]. In a series of paper
[2, 3], Caglar et al. solved a two, three, five and six order BVPs by using third,
fourth and sixth-degree splines. Lamnii et al. [6, 7] discussed a boundary-value
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problems based on spline interpolation and quasi-interpolation with second order
convergence. The numerical analysis literature contains little on the solution of
boundary value problems by using the hyperbolic B-splines, generally we find the
splines used in the above mentioned papers are all non hyperbolic B-splines with
higher degrees, which effect the computational efficiency in pratical application.
This motivates us to use hyperbolic B-splines of order 3 (lower order) to solve these
problems. In this paper we study a method based on the hyperbolic B-splines of
order 3 for constructing numerical solutions to six-order boundary value problems
(6BVPs) of the form:

yO0) + £(0)y(6) = 9(6), (1)

with boundary conditions:

"

y(a) = ao, ¥'(a) = a1, y (a) = az, y(b) =bo, ¥'(b) =b1, y (b) =bs,  (2)

where f(6) and g(#) are given continuous functions defined in the bounded interval
[a,b], a;(i = 0,1,2), and b;(i = 0,1,2) are real constants.

The rest of paper is organized as follows. In Section 2, we give a explicit rep-
resentation of B-splines of order 3, for more details see [1, 8]. The interpolation
hyperbolic B-splines is developed in Section 3. Solution and the convergence anal-
ysis is presented in Section 4. Numerical examples are presented in Section 5.

2. Hyperbolic B-splines of order 3

In this section, we briefly give a explicit representation of Uniform Hyperbolic B-
splines of order 3 (UH B-splines) and we give the interesting properties of UH
B-splines of order 3, for more details see [1, 8]. To do this, we need the following

notations. Suppose k be an intergr such that k > 3. Let my, = 2¥ and hy, = %.
Put

9132 - 9111 - 9]5 - a7

0F = a+ih,i=1..my — 3, (3)

the set of knots that subdivide the interval I = [a,b] uniformly. The hyperbolic
tension splines space of order 3 is defined as follows

Ve = {sect(): 8| € I's} where I's = span{1, cosh(#), sinh(0)}.

k gk
1070511

The dimension of V), is my and the third-order hyperbolic B-splines are given by:
fori=0,1,...,my — 5,

2
2 (sinh("tff )) , 0F <0 < 0k, ;

Vin(8) = C 2cosh(hk2 - coshz(ﬁiﬁr2 —0) —cosh(0 —0F, ), 0F,, <O<0F,;
2 (sinh(L;*@)) , Ok, <0 < 0F g

0, otherwise.



J. Dabounou et al./ IJM?C, 03 - 03 (2013) 169-180. 171
with the respective left and right hand side boundary hyperbolic B-splines are

: —Otathy)?2
v_ok(0) = Cy 4 (sinh(=H5+0))", 05 < 0 < oF
7 0, otherwise.

1+ 2cosh(hy) — 2cosh(hy — 0 + a) — cosh(—a + ), 0F < 0 < 0%

vo1k(0) = Cr { 2 (sinh(42hs=0))? ok < 6 < 0%
, otherwise.
. _ 2
2 (sinh(2he=0))" Ok, 4 <0<08 4
Vi —a,k(0) = Ck 1+ 2cosh(hy) — cosh(b — 0) — 2cosh(0 + hy —b), 08, s <0 <Ok _,
0, otherwise.

2
B 4 (sinh(ZHe=b))* gk <0 <0k _
. 9) =C D) » Vmp—3 my—2
Vg —3,k(0) k {07 othkerwise. '

1
4(sinh(%k))”
The hyperbolic B-splines of order 3 possess all the desirable properties of classical
polynomial B-splines, see [8]. In this paper, we limit ourselves to list some of them

where C), =

e v;;(0) is supported on the interval [6F, 6F, ,];

e Positivity : v;,(0) >0, V6 € [0F,6F,,];
mk.—3

e Partition of unity: Z vik(0) =1.

i=—2

Table 1. The values of v; j(0) and u:k(e) at the knots.

0? Hﬁl 0?+2 91’-“+3 else
vir(0) 0 1 1 0 0
v, (0) 0 L =1 0 0

2tanh(h7k) 2tanh(h7k)

In Figure 1, we present the graphs of the hyperbolic B-spline v; ;. of order 3, for
i=—2,---,5, with k = 3 and [a,b] = [0, 1].

! ! ! !
0.1667 0.3333 0.5 0.6667 0.8333 1

Figure 1. Hyperbolic B-spline v; i of order 3, for k = 3 and [a,b] = [0, 1].
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3. Hyperbolic B-splines interpolation

In this section, we will construct an approximate of y(ﬁ)(Q;?) by using Taylor series
expansion.

According to Schoenberg-Whitney theorem (see [? ]), for a given function y(0)
sufficiently smooth there exists a unique hyperbolic spline

mk—3
s(0) = > pivig(8) € Vi

i=—2

satisfying the interpolation conditions:

s(OF) =y(0)), j=0,1,--+ mp—2 (4)
s'(a) =y'(a), s'(b) =1 (b). (5)
s"(a) = y"(a), s"(b) =y"(b). (6)

For 7 =0,1,--- ,m; — 3, let mj:s'(ﬁf) and for j =1,2,--- ,my — 3, let

8(9;g + hk) — 28(95) + 8(95 - hk)
Jj= h2
k

By using the Taylor series expansion we have:

’ ’ 1
mj =5 (0)) = v/ (0F) — g5 hkv® (0F) + Ohf); (7)

1

" 1

hiy'®(07) + O(hY); (8)
Now we can apply M; to construct y(3)(9§“) and y(4)(9}“) for j =2,3,--- ,my — 4,
y®) (0;“) and y(© (9;") for j = 3,4,--- ,my — 5, as follows, where the errors obtained
by Taylor series expansion.

M1 — M

1
— .,(3)pk 2,.(5)(pk 4y.
g = v D) + hiy 6 + O ©)

Mj+1 — 2Mj + Mj,1
h2
k

1
=y (0%) + <hty® (0F) + O(hg); (10)

Mo —2Mj +2M;_y — Mj_o

o — 49 (8}) + OUiR); (1)
k

Mj+2 — 4Mj+1 + 6M] — 4Mj_1 + Mj_g
i

=y O 0%) + O(h}); (12)

By Table 1 and the equations (9), (10), (11) and (12), we get:
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Table 2. Approximation values of y(@f),y/(G?), and y/l(G;-c).

Approximate value Representation in pu; Order
o
y(0%) s(0%) tiatriol O(hd)
’ . —_ .
ok ) Hj—17Hj—2 O(h4
4 ( ]) M 2tanh(%) ( k)

"ok _ Sj41—2sj+s5-1 Hj—3—Hj—2—pj—1FH; 2
Yy ('93') M; = hg J J ]2hi J J O(hk)

Table 3. Approximation values of y(3)(0;), and y(4)(9;-€)‘

Approximate value Representation in p; Order

3) rpk Mjt1—M;_ —pj—atpi 3250 —2p5 1 —piFRi41 2

y )(Gj) 2hy an3 O(h{)
M1 —2M;+M;_ Ga—3pj 34205 _o42pi 1 —3uj+pu;

y(4)(0§c) 1 hij+ j—1 Pj—a—3kj—3+20; 22%’ Hj—1 73Kt Hj+1 O(hd)

Table 4. Approximation values of y(5>(6f), and y(G)(O;?).

Approximate value Representation in p; Order
Hj

5) (pk Mjyo—2M; 41 +2M;_1—M;_o —Hj—5+3pj_a—pi—3—5puj_o+5ui_1+p;—3pip1tpu42 2

Y )(ej) 2h3 4h3 O(hy)

6)/nk Mjpo—4Mj1+6M; —4M; _1+M;_o Hj—5—5pj—a+9mj—3—5puj_o—bpj_1+9u; —5pjp1+pjy2 2
y( )(gj) j j &) J J i—5 j J J J g j j O(hk)

6
hi 2h},

4. Hyperbolic B-splines solutions of 6 BVP

mk—?)
Let s(f) = Z pivik(0) be the approximate solution of (1) and s(f) =

i=—2
mk73

Z fiv; k(0) be the approximate spline of s(f) . Discretize (1) at 9;“ for j =
i=—2
3,---,mp — 5, we get :

Now, by using Table 2 and 3, the equation (13) becomes

Mj—5 — Sptj—a + Opj—3 — Spj—2 — Spri—1 + 9y — dpj1 + fjvo

Hj—2 + Hj—1
570 +fi= I— = g;+0(h})
k

2
(14)

where f; = f(@;“) and g; = 9(9}“). Consequently,

(j—5—Dhj—a+9pj -3 52— 5tj— 1+t =Bpj i1 +j2) + PR (j—a+ij—1) = 2g;h5+O(hY)

(15)
By dropping O(h{) from (15), we yield a linear system with my, — 7 linear equations
in my, unknowns p;, j = —2,—1,--- ,my — 3. So seven more equations are needed.

On the other hand, by using the sixth boundary conditions (2), we get

{M—2 = ao;
H_1 — ph—2 = 2aq tanh(%).
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Thus,

H—2 = Qo;
{'ul =ag + 2a1 tanh(%). (16)
By using a similar technique, we get:

{Mmk—3 = bo;
HUm,—3 — Ubmy—4 = 2b1 tanh(%).

Thus,

Hm,—3 = bO
{Mmk—4 = by — 2by tanh(%) (17)

To build the three other equations we propose the following formulas

/ ’ ’ 3
Yj1 4y + Y0 = hfk(yjﬂ —yj—1) + O(hy) (18)
and
1" " 12 12 4
Yi—1 +10y; + Y40 = ﬁ(yjﬂ —2y;j +yj—1) + O(hy) (19)
k

which can be easily demonstrated using a Taylor series expansion. By formulas (18)

and (19), Table 2 and 3, we can construct an approximate formulae for 3 (a), as
follows

. 10Ms5 — 61 My + 180M3 — 286 Mo + 250M71 — 45My — ]-QQhk

6)
Y (a)
hi;

+O(h3)  (20)

with Qp, = h%(mg — mg). By using My = az,mp = a1 and tanh(%") ~ %" for

smaller hy, and by turning (20), the coefficients are determined as follows

288410+223 411 —39512+231 13— T1pua+10pu5 = 2k go—2h] foao—250p_2+536u_1+90hias—T2ha; +O(hy)
(21)

The two other equations we need are an approximate of y(G)(Hg) and y(ﬁ)(ﬁfnk _4),

by using Mgy = ag, Mm,—2 = by and Table 4, we yield :

My — 4Msg + 6 My — 4M7q + a9
VO (0h) = o o) (22)
k

and

by —4Mp,, —3 + 6My, 4 — 4Mpy, 5 + My, 6

6) (gk _
Y (O —a) =
hi

+ O(h3) (23)

By turning (22), (23) and (13), the coefficients are determined as follows

—6pt0 — 5pi1 + iz — Bpus + pa+ fohy (1 + pio) = 2RG.ga +4p_o —10u_1 —2hjaz +O(h}) (24)
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and

My, —9 — 5,Umk—8 + 9#77%—7 - 5,“77%—6 - 6,Umk—5 + h(]ifmk—4(,umk—5 + ,Umk—ﬁ) =
208 G —4 + Aty —3 — 104, —a — 2h3bo + O(RY) (25)
Take (21),(24),(15) and (25), we get my — 4 linear equations with p;, i =
0,1,---,my — 5, as unknowns since p_o, ft—1, fm,—4 and f,, —3 have been yielded
from (16)and (17).
Let C = [,u07,u17 t 7/"Lmk75]T? C= [ﬁ(]aﬁla o 7ﬁmk*5]T , D= [d()v dy, -+ 7dmk*5]T7
E =eg,e1, -+ ,em,—5]" and using equations (15), (16), (17) and (21), we get
(A+hFB)C = D + F; (26)
(A+ h$FB)C = D, (27)

where A and B are the following (mg — 4) x (my — 4) matrix:
288 223 —395 231 —71 10

—6 -5 9 —5 1
9 -5 =5 9 -5 1 1
59 -5 —5 9 —5 1 11
1 -5 9 -5 -5 9 -5 1 11
A= . B=
1 -5 9 —=5-59 —5 1 11
1 =5 9 -5-5 9 —5 11
1 =59 -5-59
1 -5 9 —5—6

and where D, F' and E are the following matrix

2h8 go — 2h8 foag — 250p—2 + 53611 + 90hZas — T2hay
2h8go 4+ 4pu_o — 10p_1 — 2has
2h$gs — p—2 + Sp_1
2h8 s — p1—1
2h gs

2h29mr7
2h29mk76 — HMm,—4
‘ 2h8 G5 — fme—3 + Dlbmy—a
218 Gy —4 + Aty —3 — 104, —a — 2h2bo

F= dlag(ov f27 f3a o 7fmk*4) and £ = [O(hi)v O(hi)v o aO(hi)]T

After solving the linear system (27), f;, i = 0,1, ,mg —5, fi_o = pi—9, fi—1 =
U1,y fmy—4 = fm—4 5 and fim,,—3 = fm,—3 Will be used together to get the ap-

mk73
proximation spline solution s(6) = Z Rivi g (0).
i=—2
In order to determine the bound of ||C' — C||ss, we need the following lemma.

LEMMA 4.1 The matriz A is inversible.

Proof
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It suffices to prove that for all D = [dy,dy,--- ,dmk_5]T € R™% such that
A D =0, we have D = 0. Indeed, If we put

my—7 mg—3
200 =Y diravin®) + Y 0w(0),
j:—2 j:mk—ﬁ

then z(ﬁ)(Gf) =0, forallt=5,6,---,m — 7.

On the other hand, using the fact that z is hyperbolic spline function of C!, we
deduce that z(8) = a + Bcosh(f) + vysinh(f) in [0, 0E]. From 2 (6%) = 0 and
2(6)(9]6“) =0, we have,

B cosh(0%) + ~sinh(6%) = 0;
B cosh(0) + v sinh(0F) = 0;

we deduce 8 = 0 and v = 0. Consequently, 2(®)(8) = 0 and 2/(f) = 0 in all the
interval [%, 6f]. In a same way , we have in all the other subintervals of [6%,6% ],
2(6)(6) = 0 and 2/(6) = 0.

Consequently, we have

2 (085)=0
(05) =0
Z (97131,;8) =
(B —7) =0
thus,
(_dg—dy  _
Qtanh(%‘)
d7—d5
Qtanh(%‘) 0
Ay —7=dmy -8 _
Qtanh(%) B
dmy, =6 —dmy -7 _
2tanh(h7’“) 0
sods =dg =dy =+ =dm,—7 = dm, —¢, we have also
288dy + 223dy — 395ds + 231d3 — 71dy 4+ 10ds =0
—6dy — bd1 +9dy — 5ds +dy =0
9dy — bdy — bds + 9d3 — bdy + d5 = 0
—bdy +9d1 — 5dy — bd3 4+ 9dy — bds + dg =0 (28)
dmy,—10 — 9dm, —9 + Ydp, 8 — 5dpm, —7 — dpm, —6 + 9dm, —5 = 0
dmk—g - 5dm;€—8 + gdmk—7 - 5dmk—6 + dmk—S == 0
finally we have dy = dy =da = ... = dm,—5 = 0 which in turn gives D = 0. [ |

PROPOSITION 4.2 If we assume that hY|| A7 oo || Blloo|| Fllc < 3, then there exists
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a constant K which depends only of the functions f and g such that
HC - CHOO < Khy.

Proof
From (26), (27) and Lemma 1, we have

C—C=(I+hA'BF)"'A7'E. Since E = O(hY), there exists a constant K
such that ||E||oc < K1h§. Consequently

IC = Clloe < Kth| A |oolI(1 + BEAT BF) ™.

Using the inequality h$||A™||oo|| Blloc || Floe < 3, and || Bljoc = 2 , we deduce that

. RTIAY oo Ki(b—a)
C—-Clo < K3 k hy < ———hy.
le=cl T ROA Y Bl Fl ™ S T2Fla
o . mk—3 "
Hence, |s(0) — s(0)| < |[|C — Ol Z vik(0) = ||C — Clloc >~ O(hg).
1=—2

Therefore, we get

1y(8) — 5(0)] < [y(8) — s(8)] + |5(8) — 5(8)] < O(hi) + Ohy) = O(hy).

5. Numerical results

To test our method, we considered three examples of sixth-order boundary value
problems (6BVPs) of the form ((2),(1)).

Example 5.1
We consider the following boundary-value problem

YO 4oy = —(24 4 11z +23)e*, € 0,1];
= 0)=1, 3" (0) =0, (29)
1

The exact solution is y(x) = z(1 — x)e”.

As an example, we give in Figure 2, the graph of the exact solution and the
graph of hyperbolic-spline solution with & = 5. In Table 5, we give the maximum
absolute errors computed at various points of the interval [0, 1], for problem (29),
and the convergence order.

Table 5. Maximum absolute error and order of convergence for Problem (29).

k 4 5 6 7 8 9
Error  6.501e-002  3.093e-002  1.509e-002  7.461e-003  3.709e-003  1.844e-003

Order 1.0717 1.0346 1.0168 1.0083 1.0079
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ine solution
ict solution

Figure 2. Exact solution and hyperbolic-spline solution for k = 5.

Example 5.2

Consider the following boundary-value problem

Y —y =6(1 —22) smh(x) — 21 cosh(x), x € [0,1];
y(0)=0, y'(0) =1, y'(0) = (30)
y(1) =0, /(1) = —cosh(l) ( ) = —2(cosh(1) + sinh(1)),

The exact solution is y(x) = z(1 — x) cosh(x).
Result has been shown for different values of £ in Table 6.

Table 6. Maximum absolute error and order of convergence for Problem (30).

k 4 5 6 7 8 9
Error  4.433e-002  2.095e-002  1.010e-002  4.881e-003  2.314e-003  1.047e-003

Order 1.0813 1.0525 1.0491 1.0767 1.1441

Example 5.3

Consider the following boundary-value problem

y©) —y = —6cosh(x), xz € [0,1];
y<0) =0, y,<0) =1, y”(O) - _//27 : (31)
y(1) =0, ¢'(1) = —sinh(1), y (1) = —2cosh(1),

The exact solution is y(x) = (1 — z) sinh(x).
Result has been shown for different values of k£ in Table 7.

Table 7. Maximum absolute error and order of convergence for Problem (31).

k 4 5 6 7 8 9

Error  3.887e-002  1.828e-002  8.878e-003  4.376e-003  2.172e-003  1.088e-003

Order 1.0883 1.0419 1.0206 1.0105 0.9973
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6. Conclusion

Numerical results confirm the order of convergence predicted by the analysis. Ex-
perimental results demonstrate that our method is more effective for the problems
where the exact solution is hyperbolic (see Tables 6 and 7). The construction of
this type of approximants requires the solution of linear systems of lower order
compared with the methods given in the literature, see for example [6, 7]. So,
its extension to general linear and nonlinear boundary value problems using the
hyperbolic (tension) B-splines of order more than 4, 5, - - - is under progress.
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