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Abstract. The combined effect of non-Newtonian rheology and irreversible boundary reaction
on dispersion in a Herschel-Bulkley fluid through a conduit (pipe/channel) is studied by using
generalized dispersion model. The study explains the development of dispersive transport
following the injection of a tracer in terms of three effective transport coefficients namely
exchange, convective and dispersion coefficients. It is found that the exchange coefficient does
not depend on yield stress and power law index but the convective and dispersion coefficients
depend on yield stress and power law index.
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1. Introduction

The study of longitudinal dispersion of a tracer in a tubular flow when it is ei-
ther irreversibly absorbed or undergoes an exchange process at the boundary has
many applications in the fields of chemical engineering, environmental dynamics,
biomedical engineering and physiological fluid dynamics.
The dispersion of a bolus of a tracer in a straight circular tube was first studied

by Taylor [20]. Using the method of moments, Aris [2] extended Taylor theory by
considering axial diffusion. Bailey and Gogarty [3] made an experimental study on
the dispersion of a solute in a fluid flow through a tube. Ananthakrishnan et al.
[1] obtained the numerical solution for the complete convective diffusion equation,
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which includes the radial and molecular diffusion. Gill [7] generalized Taylor’s work
by proposing a series expansion about the mean concentration to describe the
local concentration distribution. Later Gill and Sankarasubramanian [8] studied
the unsteady convective diffusion problem for laminar flow in a circular tube by
the method of series solution. This model is referred as generalized dispersion
model. By using Taylor’s [20] model Gupta and Gupta [9] analyzed the phenomenon
of dispersion of reactive contaminants in a liquid flowing through a channel in
the presence of first order heterogeneous chemical reaction. Sankarasubramanian
and Gill [16] extended this analysis with the interphase mass transfer. He showed
that the three effective transport coefficients, namely the exchange, the convective
and dispersion coefficients are influenced by the interphase transport. The effect
of boundary absorption on the longitudinal dispersion in shear flow using delay
diffusion equation was studied by smith [19]. Purnama [14] analyzed the case of
wall reaction when the contaminant is chemically reactive. Mazumdar and Das
[12] explained the concept of wall absorption on dispersion in an oscillatory flow
through a pipe.
The study of dispersion through non - Newtonian fluids has abundant applica-

tions in polymer and biochemical processing and in cardio vascular system. Jayara-
man et al. [10] studied the dispersion of a solute in a curved tube with absorbing
walls using two phase models and showed that the influence of secondary flow
on dispersion is reduced if the tracer is very soluble in the wall. In subsequent
papers Balasubramanian et al. [4, 5] studied the boundary retention effects upon
dispersion in secondary flows. In most of the investigations, blood is treated as
a Newtonian fluid. But it is well known that blood being suspension of cells be-
haves like a non-Newtonian fluid at lower shear rates or during its flow through
narrow blood vessels. Nagarani et al. [13] studied the dispersion of a solute in a
Casson fluid flowing in a conduit by including the effect of wall absorption using
the generalized dispersion model.
It is reported [18] that blood obeys Casson equation only in a limited range,

except at very high and very low shear rate and that there is no difference between
the Casson plots and the Herschel-Bulkley plots of experimental data over the
range where the Casson plot is valid. It is observed that the Casson fluid model
can be used for moderate shear rates γ < 10/s in smaller diameter tubes whereas
the Herschel- Bulkley fluid model can be used at still lower shear rate of flow in very
narrow arteries where the yield stress is high [18, 21]. Further, the mathematical
model of Herschel-Bulkley fluid also describes the behaviour of Newtonian fluid,
Bingham fluid and power law fluid by taking appropriate values of the parameters
viz. yield stress and power law index.
In this paper the combined effect of non-Newtonian rheology and irreversible

boundary reaction on dispersion in a Herschel-Bulkley fluid through a conduit
(pipe/channel) is studied by using the generalized dispersion model proposed by
Sankarasubramanian and Gill [16]. In the absence of yield stress and for power law
index is unity the results reduce to those of Sankarasubramanian and Gill [16]. The
mathematical analysis of the problem in pipe flow and channel flow is presented in
sections 2 and 3 respectively. The results showing the effect of yield stress, power
law index of the fluid and the interphase mass transport are presented in section
4. The application of the results of this mathematical model to blood flows is
discussed in section 5. Conclusions are given in section 6.
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2. Pipe Flow Analysis

2.1 Mathematical Formulation

Let consider the dispersion of a bolus of solute that is initially distributed in a
circular tube of radius ’a’. The flow in the tube is considered to be axi symmetric
fully developed, steady laminar and the fluid is Herschel-Bulkley fluid. The non
dimensional unsteady convective diffusion equation which describes the local con-
centration C of the solute as a function of axial coordinate z, radial coordinate r
and time t can be written in the form

∂C

∂t
+ w

∂C

∂z
=

(
L2 +

1

Pe2
∂2

∂z2

)
C (1)

with the non-dimensional variables

C =
C̄

C0
, w =

w̄

w0
, r =

r̄

a
, t =

Dmt̄

a2
(2)

where L2 = 1
r

∂
∂r (r

∂
∂r ), t is the non-dimensional time, C0 is the reference concen-

tration, w is the non dimensional axial velocity of the fluid in a axial direction z,
w0 = − a2

4µ
dp̄
dz̄ is the characteristic velocity, µ is the Newtonian viscosity of the fluid,

dp̄
dz̄ is the applied pressure gradient along the axis of the pipe, Dm is coefficient
of molecular diffusion (molecular diffusivity) which is assumed to be constant and
Pe = aw0

Dm
, Peclet number. The variables with bars represent the corresponding

dimensional quantities.
Initial and Boundary Conditions
At an instant of time, the amount of tracer left in the system, its convective

velocity, and the extent of shear distribution depend upon the initial discharge.
Following Sankarasubramanian and Gill [16], we consider the initial distribution
at t = 0 as the case when the solute of mass m is introduced instantaneously at
the plane z = 0 uniformly over the cross section of a circle of radius d (where
0 < d ⩽ 1) concentric with the tube. Hence, in terms of nondimensional quantities,
the initial distribution assumed to be in a variable separable form is given by

C(O, z, r) = Ψ(z)Y (r) (3a)

with Ψ(z) =
δ(z)

d2Pe
(3b)

and Y (r) = 1, 0 < r < d (3c)

= 0, d < r < 1

where δ(z) is the Dirac delta function.
In the present model, we consider the reaction mechanism occurring at the wall

of the tube, such that

∂(C)

∂(r)
(t, z, 1) = −βC(t, z, 1) (3d)

where β is the non-dimensional wall absorption parameter.
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As the amount of solute in the system is finite

C(t,∞, r) =
∂C

∂z
(t,∞, r) = 0 (3e)

and C(t, z, 0) = finite (3f)

The constitutive equation for a Herschel-Bulkley fluid relating the stress (τ) and
rate of strain (dwdr ) in the non dimensional form is given by

τ = τy + (−dw
dr

)
1

n if τ ⩾ τy (4a)

dw

dr
= 0, if τ ⩽ τy

where τ =
τ̄

2µ(w0/a)
τy =

τ̄y
2µ(w0/a)

(5)

where ‘n′ is the power law index. τ̄ and τ̄y are the dimensional shear stress and
yield stress respectively. τy is the dimensionless yield stress and is called yield stress
parameter. The above relations correspond to vanishing of velocity gradient in the
region where the shear stress τ is less than the yield stress τy which implies a plug
flow whenever τ ⩽ τy. This model describes the Newtonian fluid if τy = 0 and
n = 1, a power law fluid model by taking τy = 0 and n ̸= 1 and a Bingham plastic
fluid by taking τy ̸= 0 and n = 1.
The velocity distribution for axi-symmetric, fully developed, steady, laminar flow

of a Herschel-Bulkley fluid in a pipe, in non- dimensional form is obtained as

w = w+ =
2

n+ 1

{
(1− rp)

n+1 − (r − rp)
n+1

}
if rp ⩽ r ⩽ 1 (6a)

w = w− = wp =
2

n+ 1
(1− rp)

n+1 if 0 ⩽ r ⩽ rp (6b)

where rp =
aτ̄H
2µw0

= τy (7)

is the dimensionless radius of plug flow region. The subscripts ‘+′ and ‘−′ corre-
spond to the values for the shear flow (rp ⩽⩽ 1) and plug flow (0 ⩽ r ⩽ rp) regions
respectively. The fluid particles in the plug flow region, do not move by themselves,
but are merely carried along by the fluid particles in the adjacent shear flow region
as a solid body with a constant velocity wp which is the plug flow velocity.

2.2 Method of Solution

In order to solve the convective diffusion equation (1) along with the associated
sets of initial and boundary conditions (3a, d, e, f), we introduce the derivative
expansion method developed by Sankarasubramanian and Gill [16]. Following their
solution procedure, we assume the concentration C(r, t, z) as a series expansion in
∂jCm

∂zj and express C(r, t, z) as

C =

∞∑
j=0

fj(t, r)
∂jCm

∂zj
(8)
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where the average concentration Cm is defined as

Cm = 2

1∫
0

Cr dr (9)

Multiplying equation (1) by 2r and integrating with respect to r from 0 to 1, we
get

∂Cm

∂t
=

1

Pe2
∂2Cm

∂z2
+ 2

∂C

∂r
(t, z, 1)− 2

∂

∂z

1∫
0

w(t, r)C(t, z, r)r dr (10)

Introducing (8) into (10), we get the dispersion model for Cm as

∂Cm

∂t
=

∞∑
j=0

Kj(t)
∂jCm

∂zj
(11)

where Kj ’s are given by

Kj(t) =
δj,2
Pe2

+ 2
∂fj
∂r

(t, 1)− 2

1∫
0

fj−1(t, r)w(t, r)r dr j = 0, 1, . . . , f−1 = 0 (12)

δj,2 denotes the Kronecker delta.
It was shown by Gill and Sankarasubramanian [16] that equation (11) can be

truncated after the term involving K2. The resulting model for the mean concen-
tration Cm, can be described by the generalized dispersion model as

∂Cm

∂t
= K0(t)Cm +K1(t)

∂Cm

∂z
+K2(t)

∂2Cm

∂z2
(13)

The term K0(t) corresponds to the absorption parameter. This term arises due to
the nonzero solute flux at the flow boundary and will be zero if there is no wall
absorption. This will be negative in this problem to account for the depletion of
solute in the system with time caused by the irreversible reaction occurring at the
tube wall. If the solute were to be generated at the wall according to first-order
process, β in equation (3d) would assume negative sign and then the exchange
coefficient K0(t) would be positive. K1(t) and K2(t) correspond to the convective
and dispersion coefficients, respectively. The convection coefficient K1(t) accounts
for the velocity of the reactive tracer and the dispersion coefficient K2(t) provides
the modifications in the convective dispersion, occurring because of absorption.
Substituting (8) in equation (1), using (11) and equating the coefficients of ∂′Cm

∂zj ,
j = 0, 1, 2, . . . , gives the partial differential equations for fj as

∂fj
∂t

=
1

r

∂

∂r
(r
∂fj
∂r

)− w(t, r)fj−1 +
1

Pe2
fj−2 −

j∑
i=0

Kifj−i, j = 0, 1, 2, . . . (14)

where f−1 = f−2 = 0.
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From Equation (3) we obtain the initial and boundary conditions on Cm and fj
From (3a) and (9) we get

Cm(0, z) = 2Ψ(z)

1∫
0

Y (r)r dr (15a)

which gives f0(0, r) =
Y (r)

2
∫ 1
0 Y (r)r dr

(15b)

fj(0, r) = 0, j = 1, 2, . . . (15c)

From Equation (5), (6a) and (6b), the boundary conditions are

∂fj
∂r

(t, l) = −βfj(t, l), j = 0, 1, 2, . . . (15d)

fj(t, 0) = finite j = 0, 1, 2, . . . (15e)

Cm(t,∞) =
∂Cm

∂z
(t,∞) = 0 (15f)

Substituting (9) in (8), we get∫ 1

0
fj(t, r)r dr =

1

2
δj,0 for j = 0, 1, 2, . . . (15g)

Since the Equations (12) and (14) are coupled, to determine the dispersion coeffi-
cient K2(t) we need to obtain the pair of functions (fj ,Kj), j = 0, 1, . . . , one after
the other. The function f0 and exchange coefficient K0 are independent of velocity
field and can be solved directly. From (12) we have

K0(t) = 2
∂f0
∂t

(t, 1) (16)

Thus, f0(t, r) has to be evaluated first to determine K0(t). The equation for f0
may be written from Equation (14) as

∂f0
∂t

=
1

r

∂

∂r

(
r
∂f0
∂r

)
− f0K0 (17)

Equations (15b, d, e) are the initial and boundary conditions on f0. From (15g)
we have

1∫
0

f0(t, r)r dr =
1

2
(18)

Using (17), the solution of f0(t, r) satisfying the initial and boundary conditions
(15 b, d, e) and (18) is given by

f0(t, r) =

∑∞
0 AjJ0(µjr)e

−µ2
j

2
∑∞

0 (Aj

µj
)J1(µj)e

−µ2
j t

(19)
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where

Aj =
µ2j

∫ 1
0 rY (r)J0(µjr)dr

(µ2j + β2)J2
0 (µjr)

∫ 1
0 rY (r) dr

(j = 0, 1, 2, . . . ) (20a)

µj ’s are the eigne values satisfying the equation

µjj1(µj) = βJ0(µj) (j = 0, 1, 2, . . . ) (20b)

where J0, J1 are Bessel functions of orders zero and one, respectively. From Equa-
tion (16) and (19) the exchange coefficient can be written as

K0(t) = −

∞∑
0
AjµjJ1(µj) exp(−µ2j t

∞∑
0

(
Aj

µj

)
J1(µj) exp(−µ2j t)

(21)

which is exactly the same as derived by Sankarasubramanian and Gill [16].
Asymptotic Expansions for fj’s and Kj’s for j = 0, 1, 2, . . . for steady

flow
To generate the dispersion coefficient, it is necessary to determine the remaining

functions fj introduced in Equation (14). In view of the tedious calculations of
higher order dispersion coefficients and time dependent parts of the dispersion
coefficients, we confine to the asymptotic steady-state representations of fj(t, r)
and Kj(t) for the case of steady flow, as these asymptotic values provide useful
physical insight into the behavior of the system. Hence, we will obtain solutions
(fj ,Kj), j = 0, 1, 2, . . . for large times, so that the dispersion model defined in (13)
is a representation of the asymptotic results under steady state conditions.
As t→ ∞, Equations (19) and (21) give the following asymptotic representation

for f0 and K0:

f0(∞, r) =
µ0

2J1(µ0)
J0(µ0r) (22)

K0(∞) = −µ20 (23)

where is the first root of Equation (20b) with least magnitude. From Equation (14)
the function fj(r) for large values of time, satisfies the equation

1

d

d

dr

(
r
dfj
dr

)
+ µ20fj = w(r)fj−1 −

1

(pe)2
fj−2 +

n∑
i=1

kifj−i, j = 1, 2, 3, . . . (24)

The boundary conditions on fj(r) are

fj(0) = finite f ′j(I) = −βfj(1) j = 1, 2, 3, . . . (25)

1∫
0

fjrdr = 0 (j = 1, 2, 3, . . . ) (26)
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For large times the Equation (12) for Kj ’s reduces to

Kj =
δj,2

(Pe)2
+ 2f ′j(1)− 2

1∫
0

w(r)fj−1(r)dr (j = 1, 2, 3, . . . ) (27)

The use of the solvability condition in Equation (24) gives the expression for Kj

as

Kj =

1∫
0

rJ0(µ0r)

{
1

Pe2 fj−2(r)− w(r)fj−1(r)−
j−1∑
i=1

Kifj−i(r)

}
dr

1∫
0

rf0(r)J0(µ0r)dr

(n = 1, 2, 3, . . . )

(28)

For j = 1, the expression for the asymptotic convective coefficient K1 can be
obtained as

K1 =
−2

n+ 1

(1− rp)
n+1 − 2µ20

(µ20 + β2)J2
0 (µ0)

1∫
r0

[
(r − rp)

n+1rJ2
0 (µ0r)dr

] (29)

For large times, the differential equation for f1 from Equation (24) can be written
as

1

r

d

dr
(r
df1
dr

) + µ20f1 = w(r)f0 +K1f0 (30)

and the boundary conditions for f1 are

f1(0) = finite, f ′1(1) = −βf1(1) (31)

and

1∫
0

f1rdr = 0 (32)

Using equations (29) and (30), we get the solution for f1 satisfying the corre-
sponding boundary conditions (31) and (32) as

f1(r) =

∞∑
j=0

BjJ0(µjr) (33)

With the help of the condition (32) and from equation (33) we get

B0 =
−µ0
J1(µ0)

∞∑
j=1

Bj
J1(µj)

µj
(34)

Using equations (33) and (34), the expression for can be written as
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f1 =
∞∑
j=1

Bj

[
J0(µjr)−

µ0
J1(µ0)

J1(µj)

µj
J0(µ0r)

]
(35)

where

Bj =
2µ2jµ0

(µ20 − µ2j )(µ
2
j + β2)

1

(j + 1)J2
0 (µj)J1(µ)

1∫
r0

[
r(r − rp)

n+1J0(µnr)J0(µ0r)
]
dr

(36)

We obtain the dispersion coefficient by using (28), (35) and (36) as

K2 =
1

Pe2
+

4µ0J1(µ0)

(µ20 + β2)J2
0 (µ0)

∞∑
j=1

Bj

[
2

n+ 1
(P1 + P2− P3) + P4

]
(37)

where

P1 =

1∫
r0

[
r(r − rp)

n+1J0(µjr)J0(µjr)
]
dr (38a)

P2 =
µ0

J1(µ0)

J1(µj)

µj

(µ20 + β2)J2
0 (µ0)

2µ20
(1− rp)

n+1 (38b)

P3 =
µ0

J1(µ0)

J1(µj)

µj

1∫
r0

[
r(r − rp)

n+1J2
0 (µ0r)

]
dr (38c)

P4 = K1

(
µ0

J1(µ0)

J1(µj)

µn

(µ20 + β2)J2
0 (µ0)

2µ20

)
(38d)

The integrals involving in equation (29), (36), (38 a, c ) can be evaluated numeri-
cally.
Solution for mean concentration

The mean concentration Cm is obtained from equation (10) with initial and bound-
ary conditions given by (15a) and (15f) and is given by

Cm(t, z) =
1

2(Pe)
√
πζ

exp(ζ − z21
4ζ

) (39)
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where

ζ(t) =

t∫
0

K0(η)dη (40a)

z1(t, z) = z +

t∫
0

K1(η)dη (40b)

ζ(t) =

t∫
0

K2(η)dη (40c)

3. Channel Flow Analysis

3.1 Mathematical Formulation

We use the Cartesian co-ordinate system (x, y) to describe the dispersion of a
solute in a Herschel-Bulkley fluid flowing in a channel. Assuming that the flow
is steady, fully developed, laminar and axi-symmetric, the unsteady convective
diffusion equation for the dispersion of the solute in the channel flow, in non-
dimensional form is

∂C

∂t
+ w

∂c

∂
z =

(
δ2 +

1

Pe2
∂2

∂z2

)
C (41)

where δ2 = ∂2

∂x2 and

Pe =
aw0

Dm
Peclet number (42)

x is the transverse coordinate, z is the axial co-ordinate and, ‘a’ is half of channel
width, and w0 is the characteristic velocity given by

w0 = − a2

2µ

dp̄

dz̄
(43)

The non-dimensional initial and boundary conditions are

C(0, z, x) = ψ(z)X(x) (44a)

∂C

∂r
(t, z, 1) = −βC(t, z, 1) (44b)

C(t,∞, x) =
∂C

∂z
(t,∞, x) = 0 (44c)

∂C

∂x
(t, z, 0) = 0 (44d)

The expression for the velocity distribution, in non dimensional form, for axi-
symmetric, fully developed, steady, laminar flow of a Herschel-Bulkley fluid in a
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channel, is obtained as

w(x) = w+ =
2

n+ 1

{
(1− xp)

n+1 − (x− xp)
n+1

}
if xp ⩽ x ⩽ 1 (45a)

w(x) = w− = wp =
2

n+ 1
(1− xp)

n+1 if 0 ⩽ x ⩽ xp (45b)

where

xp =
aτ̄y
2µwo

= τy (46)

denotes half of dimensionless thickness of the plug flow region in a channel which
is equal to the dimensionless yield stress τy of the fluid in the channel.

3.2 Method of Solution

To analyze the dispersion of a solute in a Herschel-Bulkley fluid flowing in a chan-
nel, the unsteady convective diffusion equation (41) has to be solved for the local
concentration C subject to conditions (44) with axial velocity w given by equation
(45). In the present analysis the mean concentration is defined as

C=
m

1∫
0

C dx (47)

Following the procedure adopted in the pipe flow analysis to find the solution for
the problem, the expressions for Kj ’s and fj ’s are given by

∂fj
∂t

=
∂2fj
∂x2

− w(r)fj−1 +
1

Pe2
fj−2 −

n∑
i=0

Kifj−i (48)

where j = 0, 1, 2, . . .

Kj =

1∫
0

cos(µ0x)

{
1

Pe2 fj−2(x)− w(x)fj−1(x)−
j−1∑
i=1

Kifj−i(r)

}
dx

1∫
0

f0(x) cos(µ0x)dx

, j = 1, 2, . . . . . .

(49)

and

K0 =
∂f0(t, 1)

∂x
(50)

The initial and boundary conditions are
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f0(0, x) =
X(x)

2
1∫
0

X(x) dx

(51a)

fj(0, x) = 0, j = 0, 1, 2 . . . (51b)

∂fj
∂x

(t, 1) = −βfj(t, 1), j = 0, 1, 2, . . . (51c)

∂fj
∂x

(t, 0) = 0, j = 0, 1, 2, . . . (51d)

Cm(t,∞) =
∂Cm

∂z
(t,∞) = 0 (51e)

1∫
0

fj(t, x) dx = δj0 (51f)

The change in the definition of Cm and the operator L2 will necessitate some
minor modifications in the solvability condition and the expression for Kj , j =
0, 1, 2 . . . .
With out going into details again, the solutions for K0, K1, K2 and f0, f1 are
written as given below:

f0(x, t) =

∑∞
0 Aj cos(µjx)e

−µ2
j t∑∞

0 (Aj/µj) sin(µj)e
−µ2

j t
(52)

K0(t) =
−
∑∞

0 Ajµj sin(µj)e
−µ2

j t∑∞
0 (Aj/µj) sin(µj)e

−µ2
j t

(53)

where Aj =
2µ2j

µ2j + β cos2(µj)

∫ 1
0 X(x) cos(µjx)dx∫ 1

0 X(x)dx
(54)

and µj ’s are the roots of the equation

µj sin(µj) = β cos(µj) (55)

Same as in the case of pipe flow analysis, the absorption, convection and disper-
sion coefficients are obtained for large times. Hence, the asymptotic expansions for
fj ’s and Kj ’s for j = 0, 1, 2 in channel analysis are

f0(∞, x) =
µ0 cos(µ0x)

sinµ0
(56)

K0(∞) = −µ20(µ1 > µ0) (57)

K1 =
−2

n+ 1

{
(1− xp)

n+1 − 2µ20
µ20 + β cos2 µ0

∫ 1

xp

(x− xp)
n+1 cos2(µ0x)dx

}
(58)

f1 =

∞∑
1

Bj [cos(µjx)−
µ0

sinµ0

sinµj
µj

cos(µ0x)] (59)
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where Bj ’s are given by

Bj =
−2µ2j

(µ20 − µ2j )(µ
2
j + β cos2 µj)

µ0
sinµ0

2

n+ 1

1∫
xp

(x− xp)
n+1 cos(µ0x) cos(µjx)dx

(60)

K2 =
1

pe2
+

2β cosµ0
(µ2j + β cos2 µj)

∞∑
1

Bj

[
2

n+ 1
(C1 − C2 + C3) + C4

]
(61)

where

C1 =

1∫
xp

(x− xp)
n+1 cos(µ0x)dx cos(µjx)dx (62a)

C2 =
µ0

sinµ0

sinµj
µj

1∫
xp

(x− xp)
n+1 cos2(µ0x)dx (62b)

C3 =
µ0 sinµj
sinµ0µj

µ20 + β cos2 µ0
2µ20

(1− xp)
n+1 (62c)

C4 = K1

(
µ0 sinµj
sinµ0µj

µ20 + β cos2 µ0
2µ20

)
(62d)

The integrals involving in equation (58), (60), (62a,b) can be evaluated numeri-
cally.

4. Results and Discussions

In the present investigation, the development of the dispersive transport following
the injection of a chemically active tracer in a solvent flowing through a conduit
(pipe/channel) with a reactive boundary wall has been analyzed. The study uses
the generalized dispersion model proposed by Sankarasubramanian and Gill [16].
The effect of moderate boundary absorption through Herschel-Bulkley fluid on the
three effective transport coefficients, viz. the exchange (absorption), the convective
and dispersion coefficients is studied. Integrals involved in obtaining the transport
coefficients are evaluated numerically using Simpson’s rule.
The value of wall absorption parameter β is taken to range from 0.01 to 100 to

account for small to large absorption, rp (plug flow radius) and xp (half thickness
of the plug flow region) varying from 0.02 to 0.2 in pipe and channel for the power
law index n = 1, 2. The results correspond to the case of (i) Newtonian fluid for
n = 1 and rp(xp) = 0, (ii) Power law fluid for n = 2 and rp(xp) = 0, (iii) Bingham
plastics for n = 1 and rp(xp) = 0.1 are compared.
Asymptotic Absorption Coefficient K0

Due to irreversible reaction occurring at the boundary wall, the total amount of
solute is no longer a conserved quantity. The coefficient K0(t) accounting for this
non-zero solute flux at the tube wall is negative indicating the depletion of solute
in the system. For large times the absorption coefficient is K0

∼= −µ20. Figure 1
presents the variation of negative asymptotic coefficient −K0 with β for large
times in a pipe and channel. The magnitude of the absorption coefficientK0steadily
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Figure 1. Variation of negative asymptotic absorption coefficient-K0 with absorption parameter β in pipe
and channel.

increases with the absorption parameter β and attains a value 5.7(2.4) as β assumes
very large values (say 100) in pipe (channel). As β increases, the reaction at the
wall of the conduit consumes the material more rapidly than it can be supplied
by molecular diffusion. Thus, the process of mass transport in the system becomes
diffusion controlled. The behaviour of −K0 in a channel is similar to that of pipe
and the values are less than half of the corresponding values in the pipe flow.
Thus, there is more absorption of solutes at the wall in pipe when compared to
channel. It is evident from equation (21) the asymptotic absorption coefficient K0

is independent of the yield stress and nature of fluid.
Asymptotic convective coefficient K1

Figure 2(a,b) shows the variation of negative asymptotic convective coefficient
−K1 versus wall absorption parameter β for various central core radii rp(xp). Fig-
ure 3(a) and 3(b) presents the comparative behaviour of −K1 for Newtonian, Power
law, Bingham plastics and Herschel-Bulkley fluid in pipe and channel. For different
vessels in the cardiovascular system the possible values of the plug core radii are in
the range 0.0112-0.0737 [17]. When the plug radius rp(xp) is one tenth of the tube
(channel) radius and β = 100 in the tube (channel) −K1 is observed to be increased
by 1.4(1.21) times of the values corresponding to β = 0.01. For a Newtonian fluid
the corresponding enhancement in pipe (channel) is observed to be 1.56(1.29). This
enhancement is due to the depletion of solute as a consequence of wall reaction in
the slower moving shear region and hence the solute distribution is weighted in
favor of the faster moving central region. Thus the solute is convected along at a
velocity higher than the average velocity of flow. The more rapid the wall reaction,
the greater this effect will be. With increase in rp(xp) it is found that −K1 reduces
significantly due to the reduction in velocities. These values are found to be lesser
in the case of Casson fluid [13]. The values of −K1 are (1.41 – 1.52) times higher
than those corresponding to the case of Bingham plastic, (1.30-1.33) times higher
than in the case of Power law fluid when compared to Herschel-Bulkley fluid case
when β ranges from 0.01 to 100. In all cases the values of −K1 in channel are
higher than those of the pipe.
Asymptotic Dispersion coefficient K2 The asymptotic dispersion coefficient
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Figure 2. Variation of negative asymptotic convection coefficient-K1 with absorption parameter β for
different values of (a) rp in pipe when n = 2 (b) xp in channel when n = 2.

K2 (from which the additive contribution of the axial diffusion 1/Pe2 has been
deducted) against the wall absorption parameter β is plotted in figures 4(a, b)
and 5 (a, b) for different values rp(xp) and other fluids respectively. It is seen that
the axial dispersion is significantly decreased with an increase in the absorption
parameter.
When the plug radius rp(xp) is one tenth of the tube (channel) radius and β = 100

the dispersion coefficient is reduced by 7.9(14.32) times of the corresponding value
for β = 0.01. In a Casson fluid for the same value of yield stress, the dispersion
coefficient when β = 100 is reduced by 14.62 (28.93) times of the corresponding
value for β = 0.01 [13]. For a Newtonian fluid the corresponding reduction in pipe
(channel) is found to be 3.95 (6.71). The values of dispersion coefficient are (3.29
– 5.36) times higher than in the case of Bingham plastic, (1.91-2.36) times higher
than in the case of Power law fluid when compared to Herschel-Bulkley fluid case
when β ranges from 0.01 to 100.
Mean Concentration
The variation of mean concentration (Cm × Pe) versus time for β = 0.01 is

plotted in Figure 6(a, b) for different fluids at z = 0.5 in pipe (channel).These
profiles are obtained by solving equation (39). The transport coefficients involved
are approximated by the corresponding asymptotic equivalents.
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Figure 3. Variation of negative asymptotic convection coefficient-K1 with absorption parameter β for
different fluids (a) in pipe (b) in channel.

The mean concentration Cm reduces with time due to the constant depletion
taking place at the boundary. It is seen that the peak mean concentration decreases
as plug width increases. It is observed that the peak concentration in the case of
Herschel-Bulkley fluid is almost double to that in the case of Newtonian fluid and
it is 2.36 (1.15) times in a Bingham fluid (Power law fluid).
However, in channel case it is noticed that the absorption in the channel is

more when compared to pipe. In the case of Newtonian and Bingham fluids this
enhancement is very marginal, while in Power law fluid the peak concentration in
pipe (channel) it is 8.649 (6.52) and in Herschel-Bulkley fluid it is 10.02 (8.124).
From Figure 7(a, b), as β increases we notice that the concentration decreases and
the absorption is found to be more in non-Newtonian fluids.

5. Applications to Blood Flows

The present mathematical model may be relevant to understand several physiolog-
ical processes such as dispersion of drugs and nutrients in the human circulatory
system. This also has applications in artificial blood such as blood oxygenators.
It is known that the blood flow in the human circulatory system is affected by

several complexities that arise due to the elastic properties of the arterial wall,
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Figure 4. Variation of asymptotic dispersion coefficient (K2 − 1/Pe2) with absorption parameter β for
different values of (a) rp in pipe when n = 2 (b) xp in channel when n = 2.

branching and curvature pulsatile flow etc. Besides the influence of these complex-
ities on the transfer of any passive species in blood stream, the non Newtonian
character of the blood also plays a vital role on the transport.
Lighthill [11] discussed the applicability of the Taylor-Aris’s theory dispersion in

the study of the dispersion phenomenon in cardiovascular system. The theoretical
work of Ananthakrishnan et al. [1] experimental computational study of Reejhsing-
hani et al. [15] revealed that the analysis of Taylor-Aris’s gives a good description
of the dispersion process provided the time after injection of the solute is greater
than 0.5(a2/Dm) that corresponds to a very large time of dispersion in actual blood
flow conditions. However, the typical dimensionless time for oxygen transport in
aorta is of the order of 10−5 [6] which are very small compared to the value 0.5.
The applicability condition of the Taylor-Aris’s study to the dispersion process

in the cardiovascular system makes the analysis valid for very small flow rates. In
view of these limitations, a more general analysis than the Taylor-Aris’s analysis
to study the dispersion is required. By using the dispersion model of Gill and
Sankarasubramanian, the entire dispersion process describes appropriately in terms
of a simple diffusion process with effective dispersion coefficient K2 as a function of
time t. This facilitates the validity of the results for times smaller than 0.5(a2/Dm).
This may correspond to relatively higher rates of flow, i.e. blood flow in small
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Figure 5. Variation of asymptotic dispersion coefficient (K2 − 1/Pe2) with absorption parameter β for
different fluids (a) in pipe (b) in channel.

arteries where blood is modeled as Herschel Bulkley fluid. The dispersion coefficient
is influenced by non-Newtonian rheological parameters and power law index.
As the dispersion coefficients Ki, i ⩾ 2 are evaluated as functions of time, and

they become negligible at higher values of time, this model can be considered to
describe the entire process of dispersion to a first approximation for small time.
i.e. t < 0.5, but exact for large time i.e. t > 0.5.
Although the present study explains the effects of non-Newtonian rheology on

the dispersion of a passive species in a Herschel Bulkley fluid flowing through a
pipe with boundary reaction, this model can be further redefined by including
the transport of some solutes like oxygen combining with hemoglobin resulting in
oxyhemoglobin, may increase the complexities in the analysis of dispersion.

6. Conclusions

Dispersion of a solute in a Herschel-Bulkley fluid with boundary retention effects
in a conduit is discussed using the generalized dispersion model of Sankarasubra-
manian and Gill [16]. Thus the dispersion process is described through the three
transport coefficients viz., exchange (absorption) coefficient, convection coefficient
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Figure 6. Variation of mean concentration Cm with time t for different fluids when β = 0.01, Pe = 1000
(a) in pipe (b)in channel.

and dispersion coefficient. The absorption coefficient is seen to be independent of
non-Newtonian rheology. The convection coefficient is influenced by the yield stress
and Power law index. The negative asymptotic convection coefficient decreases with
increase in yield stress and increases with wall absorption parameter. The power
law index also shows similar impact. It is observed that the convection coefficient
reduces in magnitude in Bingham, Power law and Herschel-Bulkley fluid consecu-
tively. When the plug radius rp(xp) is one tenth of the tube (channel) radius and
β = 100 in the tube (channel) −K1 is observed to be increased by 1.4(1.21) times
of the values corresponding to β = 0.01. For a Newtonian fluid the corresponding
enhancement in pipe (channel) is observed to be 1.56(1.29). It is seen that the axial
dispersion is significantly decreased with an increase in the absorption parameter.
When the plug radius rp(xp) is one tenth of the tube (channel) radius and β = 100

the dispersion coefficient is reduced by 7.9(14.32) times of the corresponding value
for β = 0.01. For a Newtonian fluid the corresponding reduction in pipe (channel)
is found to be 3.95 (6.71). The mean concentration Cm reduces with time due to the
constant depletion taking place at the boundary. As β increases we notice that the
concentration decreases and the absorption is found to be more in non-Newtonian
Fluids.
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Figure 7. Variation of mean concentration Cm with time t for different fluids when β = 1, Pe = 1000 (a)
in pipe (b)in channel.
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