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Abstract. In this paper, firstly we have introduced entropy of sequences of fuzzy sets and
given some theorems about it. Secondly, the waves P and T which appear in electrocardio-
grams were transferred to fuzzy sets, by using definition of entropy for sequences of fuzzy sets,
and some numerical values were obtained for sequences of waves P and T . Thus any person
can make a medical predictions for some cardiac problems using numerical values.
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1. Background, Notations and New Definitions

It is known that the theoretical and practical applications of fuzzy set have in-
creased daily after Zadeh’s paper, [23]. There are many theoretical applications of
fuzzy sets, for example, you can see [3], [7, 8], [14] and [24]. Not just theoretical,
the practical applications have been studied in many fields [1], [19], [12] and this
list is too much than given here.
Now, together of our new definitions, we will give some background on fuzzy sets

and entropy of the fuzzy sets in this section.
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Let X be nonempty set. According to Zadeh, a fuzzy subset of X is a nonempty
subset {(x, u(x)) : x ∈ X } of X × [0, 1] for some function u : X → [0, 1], [7]. The
function u is called membership function of the fuzzy set u.
Furthermore, we know that shape similarity of the membership functions does

not reflect the conception of itself, but it will be used for examining the context
of the membership functions. Whether a particular shape is suitable or not can
be determined only in the context of a particular application. However, that many
applications are not overly sensitive to variations in the shape. In such cases, it
is convenient to use a simple shape, such as the triangular shape of membership
function. Let us define fuzzy set u on the set R with membership function as follows:

u(x) =


hu

u1−u0
(x− u0), x ∈ [u0, u1)

−hu

u2−u1
(x− u1) + hu, x ∈ (u1, u2]

0, others

, (1)

where the notations hu denotes height of the fuzzy sets u. For brief, we write triple
(u0, u1 : hu, u2) for fuzzy set u. Notation F be the set of the all fuzzy sets in the
form u = (u0, u1 : hu, u2) on the R. Using to the representation (u0, u1 : hu, u2),
we will construct new algebraic structure for the set F , (see Definition 2.6).
Define the function S as follows,

S : F × F → R, S(u, v) =
min{hu, hv}
max{hu, hv}

[1− 1

3

2∑
k=0

|uk − vk|], (2)

where the notations hu and hv denote maximum height of the fuzzy sets u and v.

Definition 1.1 The function S is called similarity degree between the fuzzy sets
u and v. If S(u, v) = 1 then we say that u is full similar to v or vice versa, we
say that v is completely similar to u. If 0 < S(u, v) < 1 then we say that the fuzzy
number u is S- similar to the fuzzy number v (or the fuzzy number v is S- similar
to the fuzzy number u), if S(u, v) ⩽ 0 we say that, u is not similar to v.

Similar definitions can be found in [18] and [22].
Let us define the following set.

w(F ) = {(uk) | u : N → F, u(k) = (uk) = ((uk0, u
k
1 : huk , uk2))}. (3)

Any element of the set w(F ) is called sequences of fuzzy sets, where uk0, u
k
1, u

k
2 ∈ R

and uk0 ⩽ uk1 ⩽ uk2 and the mean of notation uk1 : huk is the kth term of the sequence
(uk) takes highest membership degree at uk1 and this membership degree is equal
to huk . If for all k ∈ N, huk = 1 then the set w(F ) turns into sequence set of
fuzzy numbers and if uk0 = uk1 = uk2 and huk

1
= 1 the set w(F ) turns into ordinary

sequence space of the real numbers, respectively.
An another important class of the sequence set of the fuzzy sets is defined by

φ(F ) = {(uk) ∈ w(F ) | ∃k0 ∈ N, ∀k ⩾ k0 : u
k = 0}. (4)

Clearly, the sequences of fuzzy sets can be obtained by fuzzification of the term by
term of sequence of real numbers with a suitable method.
Let us define the function S as follows:

S : w(F )× w(F ) → R,S (un, vn) =
inf{hu, hv}
sup{hu, hv}

[1− 1

3
lim
n

2∑
k=0

|unk − vnk |] = λ.(5)
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Definition 1.2 The function S is called similarity degree between sequences of
fuzzy sets (un) and (vn). If S (un, vn) = 1 then we say that (un) is completely
similar to the sequence (vn), if 0 < S (un, vn) = λ < 1 then we say that the
sequence (un) is λ- similar to the sequence (vn), if λ ⩽ 0 we say that, (un) is not
similar to (vn).

In the fuzzy set theory, the fuzziness of a fuzzy set is an important matter and
there are many method to measure the fuzziness of a fuzzy set. At first, the fuzziness
was thought to be the distance between fuzzy set and its nearest nonfuzzy set.
Later, the entropy was used instead of of fuzziness [13] and has received attention,
recently [21]. Well, then what is the entropy?

Definition 1.3 [25] Let u ∈ F and u(x) be the membership function of the fuzzy
set u and consider the function H : F → R+. If the function H satisfies conditions
below,

(1) H(u) = 0 iff u is crisp set,
(2) H(u) has a unique maximum, if u(x) = 1

2 , for all x ∈ R
(3) For u, v ∈ F , if v(x) ⩽ u(x) for u(x) ⩽ 1

2 and u(x) ⩽ v(x) for u(x) ⩾ 1
2

then H(u) ⩾ H(v),
(4) H(uc) = H(u), where uc is the complement of the fuzzy set u

then the H(u) is called entropy of the fuzzy set u.

Let suppose that u = u(x) be membership function of the fuzzy set u and the
function h : [0, 1] → [0, 1] satisfies the following properties:

(1) Monotonically increasing at [0, 12 ] and decreasing [12 , 1],

(2) h(x) = 0 if x = 0 and h(x) = 1 if x = 1
2 .

The function h is called entropy function and the equality H(u(x)) = h(u(x)) holds
for x ∈ R. Some well known entropy functions are given as follows:
h1(x) = 4x(1− x), h2(x) = −x lnx− (1− x) ln(1− x), h3(x) = min{2x, 2− 2x}

and

h4(x) =

{
2x, x ∈ [0, 12 ]

2(1− x), x ∈ [12 , 1]
.

Note that the function h1 is the logistic function, h2 is called Shannon function
and h3 is the tent function.

2. Some Basic Theorems and Applications About Entropies of the Sequence
of Fuzzy Sets

We will give some basic theorems about the entropy of the sequence of fuzzy sets,
in this section and suppose that the sequences of fuzzy sets are in the form
u = ((uk0, u

k
1 : huk

1
, uk2)) and uk0 ⩽ uk1 ⩽ uk2 for all k ∈ N.

Let X be a continuous universal set. The total entropy of the fuzzy set u on the
X is defined

e(u) =

∫
x∈X

h(u(x))p(x)dx (6)

where p(x) is the probability density function of the available data in X [15], [16].
If we take p(x) = 1 in the (6) then the e(u) is called entropy of the fuzzy set u. It
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is known that the value of e(u) is depend on support of the fuzzy set u. Let u be
fuzzy set on the set R with membership function (1), then we see that the total
entropy of fuzzy set u is equal to

e(u) = c(2hu − 4

3
h2u)ℓ(u) (7)

for p(x) = c and h = h1, where ℓ(u) = max{x − y : x, y ∈ {x ∈ R : u(x) > 0}}.
We know that each fuzzy set or a fuzzy number correspond to the fuzzy thoughts
in the idea of user. So, any sequence of the fuzzy sets can be seen as sequence of
thoughts or sequence fuzzy information. This sequence of fuzzy information may
contain an useful information or not contain an useful information. But we can use
terms of this sequence to obtain meaningful information from this sequence.
Now, let us give some new definitions as follows:

Definition 2.1 Let h be an entropy function, (uk) be a sequence of fuzzy sets (or
fuzzy thought) and pk(x) be probability density function of the available data in R
for every k ∈ N. Then sequence

e(uk) =

∫
x∈R

h(uk(x))pk(x)dx (8)

is called total entropy sequence of the fuzzy sets (uk). If the probability density
function pk(x) = 1 is fix, for all k ∈ N, then the (8) is called entropy sequence of
the fuzzy sets u = (uk).

Let us suppose that u = (uk) ∈ w(F ), pk(x) = ck ∈ (0, 1]. If we take h(u) =
h1(u) then the (8) turns to

e(uk) = (ck(2huk − 4

3
h2uk)ℓ(uk)), (9)

here and other places in the text, the notation 2h2uk denotes second power of the
huk . If we choose the probability density functions pk(x) = c ∈ (0, 1] for all k ∈ N
and huk = 1 for all k ∈ N in the (9) then we see that e(uk) = 2

3cℓ(u
k).

Let us suppose that u = (uk) be sequences of the fuzzy numbers (that is huk = 1),
h(u) = h1(u) and pk(x) = ck = 1 ∈ (0, 1] for all k ∈ N. Then the entropy e(uk) of
the sequence of fuzzy numbers (uk) is equal to

e(uk) =
2

3
ℓ(uk). (10)

Clearly, if ℓ(uk) = 0 for every k ∈ N then the sequence (uk) returns to sequence
of real numbers. In this case the entropy of the total entropy sequence is zero for
sequences of real numbers. For example, let u = (uk) be ((1, 1 : 1, 1)), then from
(10) we obtain zeros sequence. Furthermore, the entropy sequence (ek) can not be
convergent but be bounded.

Definition 2.2 Let A = (ank) be an lower triangular infinite matrix of real or
complex numbers and

∑
k

ank

∫
x∈R

h(uk(x))pk(x)dx → E, n → ∞. (11)
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The real number E is called total A -entropy of the sequence (uk) of fuzzy sets, if
it exists.

Definition 2.3 Let suppose that the u = (uk) be a sequence of fuzzy sets, pk(x) =
ck, (ck ∈ (0, 1]) for all k ∈ N and

lim
n

∑
k

ank

∫
x∈R

h(uk(x))pk(x)dx = lim
n

∑
k

ankck(2huk − 4

3
h2uk)ℓ(uk) = E1. (12)

The real number E1 is called total A - entropy according to entropy function h and
pk(x) = ck is probability density functions of the sequence u = (uk) of fuzzy sets,
and it is shown by TA

e (uk).

Let n, k ∈ N, α > −1, pk(x) = ck and
(
n−k+α−1

n−k

)
,
(
n+α
n

)
are binomial confidence.

Let us define infinite matrices A = (ank) and Cα = (cαnk) as follows:

ank =

{
1, 0 ⩽ k ⩽ n
0, otherwise

and cαnk =

 (n−k+α−1

n−k )
(n+α

n )
, 0 ⩽ k ⩽ n

0, otherwise
.

If we write the matrices A and Cα instead of A in the expression (12) then we
have

lim
n

n∑
k=0

∫
x∈R

h(uk(x))pk(x)dx = TA
e (uk) (13)

and

lim
n

1(
n+α
n

) n∑
k=0

(
n− k + α− 1

n− k

)∫
x∈R

h(ui(x))pk(x)dx = TCα

e (uk), (14)

respectively.
The expressions (13) and (14) are called A- total entropy and total Cesàro en-

tropy of order α of the sequence u = (uk) of fuzzy sets, according to probability
density functions pk(x), respectively. In the special case for α = 1 and pk(x) = ck
then (14) reduces to

TC1

e (uk) = lim
n

1

n+ 1

n∑
k=0

ck(2huk
1
− 4

3
h2uk

1
)ℓ(uk) (15)

which is called Cesàro normalized entropy of order 1 (shortly, Cesàro entropy) of
the sequence u = (uk) of fuzzy sets.
It is easily prove that, if

TC1

e (uk) = lim
n

1

n+ 1

n∑
k=0

ck(2huk
1
− 4

3
h2uk

1
)ℓ(uk) = a

then

TC1

e (uk) = lim
n

s

n+ r

n∑
k=0

ck(2huk
1
− 4

3
h2uk

1
)ℓ(uk) = a
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where r, s ∈ R. For example, the Cesàro entropy of sequence (uk) = (( k
k+1−t1,

k
k+1 :

1, k
k+1 + t2)) is

TC
e (uk) = lim

n

2(t2 + t1)

3(n+ 1)

n∑
k=0

ck, (16)

where we assume that t1 < t2 and t1, t2 ∈ R and huk = 1 for all k ∈ N. If the series∑
k ck is convergent then the value TC

e (uk) exists every time. As a comment of the
(13) and (16), we point out that we can obtain an useful information from infinite
fuzzy information by a suitable method. But, the total entropy and Cesàro entropy
of the sequence v defined by v = ((vk0 , v

k
1 , v

k
2 )) = ((−k, 1 : 1, k+2)) is infinite. This

means that, the sequence v does not contain any useful information for us.
Since, every real number is also a fuzzy number then we can give following

corollary:

Corollary 2.4 Let the sequence r = (rk) be a convergent or divergent sequence
of real numbers. Then the all entropies of the r = (rk) are zero.

Corollary 2.4 can be interpreted as, in the any information sequence, if the ele-
ments of information sequence are crisp information then we obtain a crisp infor-
mation from this sequence.

Proposition 2.5 If the fuzziness of the any sequence of fuzzy set is constantly in-
creasing then the entropy is constantly grow and maybe is infinite. On the contrary
if the fuzziness of the any sequence of fuzzy set is constantly decreasing then the
entropy decreases and becomes 0.

It is calculated in [20] that the entropy of any fuzzy number is 2c(u2−u0)
3 . There-

fore, in generally, if we take h = h1 and pi(x) = c, for every i ∈ N, then entropy of
the sequence of fuzzy numbers is given with (10).

Definition 2.6 Let u = (u0, u1 : hu1
, u2) and v = (v0, v1 : hv1

, v2) be two fuzzy
sets and define the addition and scalar multiplication as follows: (u+ v) = (u0, u1 :
hu1

, u2) + (v0, v1 : hv1
, v2) = (u0 + v0, u1 + v1 : max{hu1

, hv1
}, u2 + v2) and αu =

α(u0, u1 : hu1
, u2) = (αu0, αu1 : hu1

, αu2) if α ⩾ 0 and αu = α(u0, u1 : hu1
, u2) =

(αu2, αu1 : hu1
, αu0) if α < 0 for α ∈ R.

Let us suppose that (uk) = ((uk0, u
k
1 : huk

1
, uk2)) and (vk) = ((vk0 , v

k
1 : hvk

1
, vk2 ))

be sequences of fuzzy numbers defined by (( k
k+1 ,

3
2 : 1, 3k+2

k+1 )) and ((−3k+2
k+1 ,−

3
2 :

1,− k
k+1)), respectively. (Caution: vk = (−1)uk). As similar to (16), we see that

TC
e (vk) = 4

3 limn
1

n+1

∑n
k=0 ck. Since ((uk + vk)) = ((−2, 0, 2)), it is obtained that

TC
e (uk + vk) = lim

n

1

n+ 1

n∑
k=0

∫
x∈R

h((uk + vk)(x))dx =
8

3
lim
n

1

n+ 1

n∑
k=0

ck. (17)

When does the equality TC
e (uk + vk) = TC

e (uk + (−1)uk) = TC
e (uk) + TC

e ((−1)uk)
valid for sequences of fuzzy numbers? The answer for this question have been given
in the following theorem:

Theorem 2.7 Let us suppose that u = (uk) and v = (vk) be any sequences of fuzzy
numbers and the entropy function h be linear. Then the inequality TC

e ((uk)+(vk)) ⩾
TC
e (uk) + TC

e (vk) holds.
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Proof

TC
e ((uk) + (vk)) = lim

k

1

k + 1

k∑
i=0

ℓ(ui + ui)(2max{hui
1
, hvi

1
} − 4

3
(max{hui

1
, hvi

1
})2)

⩾ lim
k

1

k + 1

k∑
i=0

ℓ(ui)(2hui
1
− 4

3
h2ui

1
) + lim

k

1

k + 1

k∑
i=0

ℓ(vi)(2hvi
1
− 4

3
h2vi

1
)

= TC
e ((uk)) + TC

e ((vk)). (18)

If the sequences u = (uk) and v = (vk) are sequences of real numbers the equality
holds. ■

Similar to Theorem 2.7, we can show that TC1

e (nuk) = |n|TC1

e (uk), where n is
an integer number.

Theorem 2.8 Let λ(F ) be any subset of the set w(F ) and pk(x) = c. If for all
u = (uk) ∈ λ(F ) the limk ℓ(u

k) exists then the λ(F ) either bounded or convergent
sequence sets of sequences of fuzzy sets, an another condition does not exist.

Proof Let us suppose that the (uk) ∈ λ(F ) and limk ℓ(u
k) exists. Since 0 < huk

1
⩽ 1

the series

TA
e (uk) = c lim

k

k∑
i=0

(2huk
1
− 4

3
h2uk

1
)ℓ(uk)

converges, thus we realize that the sequences (ℓ(uk)2huk
1
) and (ℓ(uk)43h

2
uk
1
) of real

numbers are convergent. For every k, using to mid point of the support (shortly,

supp(uk)) and end point closuring of supports of the fuzzy sets ((uk)) we can
construct a sequence membership functions as follows:

uk(x) =


2huk

1
(x−min supp(uk))

ℓ(uk)−2min supp(uk)
, if x ∈ [min supp(uk), ℓ(u

k)
2 ]

huk
1
−

huk
1
(2x−ℓ(uk))

2max supp(uk)−ℓ(uk)
, if x ∈ ( ℓ(u

k)
2 ,max supp(uk))]

0, otherwise

, k ∈ N. (19)

Clearly the sequence (uk(x)) is convergent to a fuzzy set. ■

Theorem 2.9 Let 0 < pk(x) = c ⩽ 1 for all k ∈ N and the sequence ((uk)) of fuzzy
numbers be convergent to fuzzy number u0. Then the TA

e (uk) is not equal e(u0), in
generally.

Proof Let us consider the sequence (uk) = ((−(k+2)(2k)−1, 0 : 1, (5k+2)(2k)−1))
of fuzzy sets. Limit of sequence (uk) is fuzzy set(fuzzy number) (−1

2 , 0 : 1, 12) and

the entropy of this limit point is e(u0) = 2c
3 with 0 < c ⩽ 1 but TA

e (uk) = ∞ . This

shows to us e(u0) ̸= TA
e (uk), in generally. We also easily see that, this theorem is

valid for TC1

e (uk). ■

Theorem 2.10 Suppose that sequence ((uk)) and ((vk)) be sequences of fuzzy sets,
uk ̸= vk, huk

1
= hvk

1
for all k ∈ N, but |uk1−uk0| = |vk1 −vk0 | and |uk2−uk1| = |vk2 −vk1 |.

Then the TA
e (uk) is equal to TA

e (vk).

Proof The proof is clear from the equality (12) so we omit it. ■



166 M. Şengönül et al./ IJM2C, 06 - 02 (2016) 159-173.

In next section, we will investigate entropy of the electrocardiogram and give
some comments. We know that, an electrocardiogram is an important test for any
relevant heart diasases and the shortest way of identifying heart problems and you
can detects cardiac (heart) abnormalities, as an example heart attacks, an enlarged
heard or abnormal heart rhythms may cause heart failure, abnormal position of
heart can be given., by measuring the electrical activity generated by the heart as
it contacts, (for more, see [2]).

3. The Applications to ECG’s of the Idea Entropy and Some Comments

It is a fact that, the long time can be spent for interpreting electrocardiographs re-
sults by cardiologists and sometimes small but important details can be unnoticed
because of complexity of the ECG. The same situation is also valid for computer-
ized electrocardiography. According to us, numerical values for ECG outputs be
more reliable for cardiologists for interpreting ECG results. Furthermore, if the
outputs are numerical then the consultation may be easy than consultation of the
ECG papers. In this section we have proposed a new consultation method for car-
diac problems which will be based upon numerical value of ECGs, (for ECG, see
[4, 11, 27–29, 31]), see other applications of fuzzy sets to medicine [5], [6], [12], [17].
Quite simply every heart beats can be considered as therm of a sequence. Us-

ing to the waves P , QRS complex and T , we can construct the waves sequence
((Pk, (QRS)k), Tk)), where k is beat number or number of measurements and is
finite. The graphical shapes of the waves P , QRS complex and T can imagine a
membership functions a fuzzy set. With this idea, we can appoint an entropy value
using to these membership functions which will be described below.
The entropy of the sequence ((Pk, (QRS)k), Tk)) can compute for finite or infinite

many k and this computation gives to us a numerical value, not graphical. From
numerical value, we can determine some cardiac problems. Namely, the sequence
((Pk, (QRS)k), Tk)) can divide three part for calculate entropy as follows:

(1) The entropy of the sequence (Pk) waves,
(2) The entropy of the sequence ((QRS)k)) complexes,
(3) The entropy of the sequence (Tk) waves.

In this case, we can assume that the total entropy of the heart is equal to

E = e(Pk) + e((QRS)k) + e(Tk). (20)

Now we will summarize some information about electrocardiographs without
deepening the subject.
The electrocardiograph records the electrical activity of the heart muscle and dis-

plays this data as a trace on a screen or on paper and, later, this data is interpreted
by a medical practitioner. ECG’s from healthy hearts have a characteristic shape.
Any irregular in the heart rhythm or damage to the heart muscle can change the
electrical activity of heart so that the shape of ECG is changed. Using this changes,
we can investigate entropy of the heart rhythm or damage entropy of the heart mus-
cle. It is known that, the QRS complex reflect the rapid depolarization of the right
and left ventricles. The ventricles have a large muscle mass compared to the atria
so the QRS complex usually has a much larger amplitude than the P - wave.
Furthermore, the heart movements are kept in check by various charges and

pulses that change slightly on exertion, blood chemistry and strain. According to
us, residence of skin and conductivity of blood are important for ECG, too. The
conductivity and residence of the skin vary according to some minerals in the blood
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plasma such as calcium, chloride, potassium or glucose concentration in a diabetic
patients blood. So we have to consider the conductivity of blood in the calculations
of transmitting electric current and therefore in the entropy calculations for a heart.
For blood conductivity properties, you can read to [10].

3.1 The Entropy of The Waves Sequence (Pk) in Lead II and Some
Comments

Primary wave of a heart in ECG, is called P wave and shortly denoted with P ,
have an entropy value and it can be computed as follows:

e(P ) =

∫
x∈R

h1(P (x))r(x)dx, (21)

where the function P (x) is membership function of the fuzzy P set that we will
correspond to wave P and the function r(x) is conductivity function (generally the
function r is fix) of the body.
Experimental measurements showed to us, the wave P has maximal height about

2.5mm (or 0.3mV ), duration is shorter than 0.12 seconds (or 3 small square on the
ECG paper), upright and rounded in lead II [4], [11]. In this section, all entropy
calculations will be performed for ECG signals which come from lead II.
Using the maximal height of P wave as 0.3, the membership function P (x) of

the fuzzy P set which is correspond to wave P can write as follows:

P (x) =

 5x, x ∈ [0, 0.06]
0.6− 5x, x ∈ (0.06, 0.12]

0, otherwise
. (22)

It is clear that the support of the fuzzy set P is duration of the wave P and height
is maximum height of wave P .
Let us take suppP ≈]0, 0.12[ and closure of the suppP be suppP = [0, 0.12]

where the notation suppP denotes support of the P.

In this case, we see that h1(P (x)) =

 20x− 100x2, x ∈ [0, 0.06]
0.96 + 7x− 100x2, x ∈ (0.06, 0.12]

0, otherwise
. If we

choose r(x) = c in (21) then the the entropy of wave P is equal to

e(P ) = 576× 10−4c (23)

for normal wave P .
Let sequence (Pk) = ((0, ak1 : hak

1
, ak2)) be finite sequence of the waves P , where

the 0 denotes initial place of the wave P . The membership functions of sequence
(Pk) are given as follows:

Pk(x) =


hak

1

ak
1
x, x ∈ [0, ak1)

hak
1
−

hak
1

(ak
2−ak

1)
(x− ak1), x ∈ [ak1, a

k
2]

0, otherwise

, k = 1, 2, ..., n (24)

where 0 < a2k ⩽ 0.12 is formation time of the kth waves Pk as support of the fuzzy

set which correspond to wave P , a1k = ak
2

2 and 0 < hak
1
⩽ 0.3 is height of the waves

P at the kth place. Using to equality (13) and membership functions of the wave
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Table 1. Non-clinical P waves data

Gender: Male Age:xx Weight:xx Height:xx

Days 1 2 3 4 5 6 7 8 9 10

m(ha1
k
) 0.23 0.24 0.22 0.2 0.23 0.23 0.21 0.21 0.19 0.15

m(ak2) 0.11 0.09 0.05 0.07 0.09 0.11 0.10 0.09 0.11 0.11
e(Pk)

a 0,0428 0,0362 0,0187 0,0242 0,0350 0,04284 0,0361 0,0325 0,0365 0,0297
S(Pk, P )a 0,7628 0,788 0,7076 0,65 0,7551 0,7628 0,693 0,6895 0,6301 0,4975

aThis values are approximate values of e(Pk) and S(Pk, P ) .

P which is given in (24), we can give the total Cesàro entropy definition for the
sequences of waves Pk as follows:

Definition 3.1 Let (Pk) be finite sequence of the waves P and the membership
functions of (Pk) be as in the (24). Then total Cesàro entropy of the sequence (Pk)
is

TC1

e (Pk) =
1

k + 1

k∑
i=0

cia
i
2(2hai

1
− 4

3
h2ai

1
)S(Pk, P ), (25)

where ci is resistance of the dry skin in the i. sample, k is number of sample of P
wave and S(Pk, P ) is similarity degree between of the waves Pk and P .

Let the resistance of the dry skin be fix that is if ci equal to c at the each every
i. place then the (25) is turn to

TC1

e (Pk) =
c

k + 1

k∑
i=0

ai2(2hai
1
− 4

3
h2ai

1
)S(Pk, P ). (26)

Example 3.2 Let us suppose, the wave P values as height and width as given in
Table 1 for 10 measurements with fix conductivity of blood and residence of the
skin. Note that these data are not clinical measures. In this mean, the sequence
(Pk) is in the set φ(F ).
The notations m(ha1

k
) and m(ak2) in Table 1 denotes measured height and dura-

tions of the wave P in day. Then from (26), we see that the Cesàro total entropy
of the wave P is

TC1

e (Pk) = 23, 472× 10−4c (27)

for 10 beats. If we compare (23) and (27), the P wave properties of the hearth
which given above example is very low than normal value. Using to (7), we can
give a graphic (see, Figure 2) for 10 sample of P wave which given in the Table 1
as follows:

Entropy zones

0.2990 0.2992 0.2994 0.2996 0.2998 0.3000

0.11990

0.11992

0.11994

0.11996

0.11998

0.12000

Figure 1.

Graphical representation of e(Pk) of the
normal P wave.

Entropy zones

0.16 0.18 0.20 0.22

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Figure 2.

Graphical representation of e(Pk) for
Table 1 values.
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Entropy zones

0.16 0.18 0.20 0.22

0.1190

0.1192

0.1194

0.1196

0.1198

0.1200

Figure 3.

The values ha2
k
nearly fix but values ak2
variable.

Entropy zones

0.2290 0.2292 0.2294 0.2296 0.2298 0.2300

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Figure 4.

The values ak2 nearly fix but the values
ha2

k
variable.

The Figure 1 is called entropy graphic for the normal wave P . If we compare
the Figures 1 and 2 then we see that the height and duration of the P wave when
changed with any effect, the all entropy zones are curl to upward. It can be consider
that the magnitude of the curl is P wave degenerations.

If the ha1
k
is fix but the value ak2 be variable and conversely the ha1

k
is variable

but the value ak2 be fix then graphical representation of the entropy zones showed
in Figure 3 and Figure 4, respectively.
As similar to (25), the A- entropy of the sequence wave P is

TA
e (Pk) = 2347, 21× 10−4c (28)

from (13). But normal A-entropy value for 10 beats should be 5760 × 10−4c and
the P wave value in (28) very low than 5760× 10−4c, where c is resistance of the
dry skin in the ith time.
From Example 3.2 and explanations is that given above, we give an important

definition as follows:

Definition 3.3 Let ϵ > 0 be very small positive real number and n ∈ N. If

|e(P )− e(Pk)| < ϵ, k = 1, 2, ..., n (29)

for every finite sequence of the wave P then the P wave properties of the heart is
normal.

Comment 1.

From Definition 3.3, and the (27), we can determine that the wave P properties
which was given in the Example 3.4 is not normal.

Comment 2.

We know that the value of the S(Pk, P ) must be 0 ⩽ S(Pk, P ) ⩽ 1 for every
k ∈ N. After a certain place, if Pk waves do not exists, or the similarity values
S(Pk, P ) nearly to the zero then the entropy of atrial depolarization of the heard,
the TA

e (Pk) is near to zero. In this case we can say that this is a risk (for example,
it can indicate hyperkalemia or hypokalemia or right atrial enlargement [30]) for
this heart in the future.
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Comment 3.

If the values of the TA
e (Pk) less than 234, 72× 10−4c then, we can say that, there

is a risk (for example, it can indicate hyperkalemia or hypokalemia or right atrial
enlargement [30]) for this heard in the future.

3.2 The Entropy of The Sequence (Tk) and Some Comments

No widely accepted criteria exist regarding T wave amplitude. As a general rule, T
wave amplitude corresponds with the amplitude of the preceding R wave, though
the tallest T waves are seen in leads V3 and V4 [26]. But many medical sources
claim that the duration of the T wave is 0.10 to 0.25 seconds or greater and the
amplitude of the T wave is less than 5 mm (or 0.5mV ) [4], [11]. Therefore we will
calculate two different entropy (T1 and T2) for wave T after we will use arithmetic
mean of the two different entropy values in our comparisons.
Firstly, if we consider equality (6) then entropy of the wave T , for duration 0.10

and amplitude 0.5 with membership functions T1(x) =

 10x, x ∈ [0, 0.05]
1− 10x, x ∈ (0.05, 0.10]

0, otherwise
,

T2(x) =

 4x, x ∈ [0, 0.125]
1− 4x, x ∈ (0.125, 0.25]

0, otherwise
and r(x) = c fix, then

e(T1) = 66.6667× 10−4c (30)

and secondly, for duration 0.25 and amplitude 0.5 the e(T ) is

e(T2) = 166.667× 10−4c, (31)

where h(x) = h1(x). Therefore, it can be chosen
for entropy of the wave T as reference interval

66.6667× 10−4c ⩽ e(T ) ⩽ 166.667× 10−4c (32)

for diagnosis of some cardiac wave T problems. Probably, the best value for

e(T ) = 116, 66685× 10−4c

as arithmetics mean of the e(T1) and e(T2). If we compare the Figures 5 and 6 then

0.5 0.5 0.5 0.5 0.5 0.5

0.00

0.02

0.04

0.06

0.08

0.10

Figure 5.

Graphical representation of e(T )of the
Twave for duration 0.10 and amplitude

0.5.

0.5 0.5 0.5 0.5 0.5 0.5

0.00

0.05

0.10

0.15

0.20

0.25

Figure 6.

Graphical representation of e(T ) of the
Twave for duration 0.25 and amplitude

0.5.

we see that entropy graphics for two different values are almost same. That is to
say normal wave T entropy graphic should be as in Figure 5 or Figure 6.
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Table 2. Non-clinical data for waves T

Gender: Male Age:xx Weight:xx Height:xx

Days 1 2 3 4 5 6 7 8 9 10

m(ha1
k
) 0.43 0.42 0.40 0.49 0.47 0.47 0.45 0.48 0.49 0.50

m(ak2) 0.22 0.24 0.25 0.25 0.20 0.21 0.19 0.17 0.11 0.1
e(Tk)

b 0,1349 0,1451 0,1466 0,1649 0,1387 0,1355 0,1197 0,1109 0,0725 0,0733
S(Tk, T )b 0,6627 0,6714 0,7012 0,5724 0,6127 0,6095 0,6433 0,6093 0,6091 0,597

bThis values are approximate values of e(Pk) and S(Pk, P ) .

If the duration is very short and the amplitude is 0.5 then the peak of the wave
T is sharped. If, also the duration is 0.10 (or 0.25) and the amplitude is very low
(to say that 0.1) then the peak of the wave T is flattened. Under these conditions,
the entropy value and graphics of this wave T showed in Figure 7 and Figure 8.

0.100 0.102 0.104 0.106 0.108 0.110

0.00

0.02

0.04

0.06

0.08

0.10

Figure 7.

Graphical representation of e(T ) of the
T wave for duration 0.10 and amplitude

low (0.1-0.11).

0.5 0.5 0.5 0.5 0.5 0.5

0.17000

0.17002

0.17004

0.17006

0.17008

0.17010

Figure 8.

Graphical representation of e(T ) of the
T wave for duration very low (0.0001)

and amplitude 0.5.

Example 3.4 Let us suppose, the wave T values as height and width as given in
Table 2 for 10 measurements with fix conductivity of body. Note that these data
are not clinical measures. In this mean, the sequence ((Tk)) is in the set φ(F ).
The notations m(ha1

k
) and m(ak2) in Table 2 denotes measured height and dura-

tions of the wave T in day, respectively. Then from (26), we see that

TA
e (Tk) = 77, 8642358× 10−4c (33)

for 10 beats. If we compare (32) and (33), the T wave properties of the hearth
which given above example is normal. Using to (7), we can give a graphic (see,
Figure 9) for 10 value which given in the Table 2. The graphic is called entropy

0.40 0.42 0.44 0.46 0.48 0.50

0.12

0.14

0.16

0.18

0.20

0.22

Figure 9.

Graphical representation of e(T ) of the
wave T for Table 2.

graphic for the wave T which shown in the Figure 2. If we compare the Figures 1
and 2 then we see that the height and duration of the T wave when changed with
any effect, the all entropy zones are curl to upward. It can be consider that the
magnitude of the curl is T wave degenerations.
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Comment 4.

The graphical representation of the normal wave T must be similar to Figures 5
and 6 for upper bound and lower bound of wave T . Otherwise, for example, it is
similar to Figure 9 then we have to think that there is a cardiac problem.

Comment 5.

The inequality 66.6667 × 10−4c ⩽ e(T ) ⩽ 166.667 × 10−4c must be satisfy for the
wave T , otherwise, again we should think that there is a deformation for wave P .

4. Conclusions and Suggestions

The conclusions can be summarized as follows:

(1) The entropy of the wave P for normal heart should be 61.056× 10−4c.
(2) The graphical representation of the normal wave P should similar to Figure

1.
(3) If the duration is fix but height is being altered by any reason then lines in

graphical representation of the wave P becomes steeper.
(4) The lines in the graphical representation of the wave T should be almost

parallel to horizontal axis.

As a suggestion, clearly, one can define entropy value and graphical representations
of QRS complex to similar entropy value wave P or wave T . So any numerical value
can obtain for (20). If entropy value of the QRS complex is calculate then we can
give a numerical entropy value for (20).
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