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Abstract.In this paper, we implement numerical solution of differential equations of frac-
tional order based on hybrid functions consisting of block-pulse function and rationalized
Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are
presented. In addition, the operational matrix of the fractional integration is obtained and is
utilized to convert computation of fractional differential equations into some algebraic equa-
tions. We evaluate application of present method by solving some numerical examples.
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1. Introduction

Recently, differential equations of fractional order have paid attention so much,
since this equations are applied in many science such as fluid mechanics, vis-
coelasticity, biology, physics and engineering [1, 2]. Usually fractional differential
equations are difficult to solve and do not have exact analytical solutions, there-
fore several numerical methods have been presented to solve fractional differential
equations, Legendre wavelet method [3, 4], Haar wavelet [5], Chebyshev wavelets
method [6], fractional differential method (FDM), Adomian decomposition method
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(ADM), the variational iteration method (VIM) [7, 8] and other methods [9 − 12]
but a few articles there are that report hybrid functions to solve fractional equa-
tions. In this work hybrid of block-pulse and rationalized Haar (HRH) functions
method are used to solve fractional differential equations. By using rationalized
Haar functions to solve fractional differential equations to obtain high accurancy
number of term be very large then for reduce term and time we apply HRH func-
tions.
The article is organized as follows:
In section 2, some necessary fundamentals of fractional calculus are pointed out. In
section 3, we present the properties of HRH functions required for our subsequent
development. In section 4, we describe solution of fractional differential equations
and the proposed method are used to estimate the unknown function y(x) and in
section 5, we give some numerical examples to demonstrate the accuracy of the
proposed method.

2. Fundamentals of Fractional Calculus

In this section, we give some definitions and preliminaries in the fractional calculus
theory.
Definition 2.1. The Riemann-Liouville fractional integral operator of order α ⩾ 0
is defined as [2, 13]

Iαy(x) =
1

Γ(α)

∫ x

0
(x− t)α−1y(t) dt, α > 0, x > 0,

I0y(x) = y(x),

whrere Γ(.) is Gamma function.
It has the following properties:

Iαxγ =
Γ(γ + 1)

Γ(α+ γ + 1)
, γ > −1.

Definition 2.2. The Caputo definition of fractional derivative operator is given by
[10, 14]

∗D
αy(x) = In−α

∗D
ny(x) =

1

Γ(n− α)

∫ x

0
(x− t)n−α−1y(n)(t) dt,

where n− 1 ⩽ α < n, n ∈ N, x > 0.
It has following properties

∗D
αIαy(x) = y(x),

Iα∗D
αy(x) = y(x)−

n−1∑
k=0

y(k)(0+)
xk

k!
, x > 0.
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3. Properties of Hybrid Functions

3.1 Hybrid Functions of Block-Pulse and Rationalized Haar Functions

The HRH Functions hnr(x), n = 1, 2, ..., N , r = 1, 2, ...,M − 1, M = 2β+1, β =
1, 2, ..., where n, r are the order of block-pulse functions and rationalized Haar
functions respectively. They are defined on the interval [0, 1) as [15]

hnr(x) =

{
hr(Nx− n+ 1), n−1

N ⩽ x < n
N ,

0, otherwise.
(1)

In equation (1), hr(x) are the orthogonal set of rationalized Haar functions and
can be defined on the interval [0, 1) as [16]

hr(x) =


1, J1 ⩽ x < J 1

2
,

−1, J 1

2
⩽ x < J0,

0, otherwise,

(2)

where, Ju = j−u
2i , u = 0, 12 , 1.

The value of r is defined by two parameters i and j as

r = 2i + j − 1, i = 0, 1, 2, 3, ..., j = 1, 2, 3, ..., 2i,

h0(x) is defined for i = j = 0 and given by

h0(x) = 1, 0 ⩽ x < 1. (3)

since hnr(x) is the combination of rationalized Haar functions and block-pulse
functions which are both complete and orthogonal, thus the set of hybrid functions
are complete orthogonal set. The orthogonality property of HRH functions is given
by [15]

∫ 1

0
hnr(x)hn′r′(x) dx =

{
2−i

N , n = n′, r = r′,
0, otherwise,

where
r = 2i + j − 1, r′ = 2i

′
+ j′ − 1.

3.2 Function Approximation

A function f(x) ∈ L2([0, 1]) may be expanded into HRH functions as [15]

f(x) =

∞∑
n=1

∞∑
r=0

cnrhnr(x), (4)
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where cnr given by

cnr =
< f, hnr >

∥hnr∥2
= 2iN

∫ 1

0
f(x)hnr(x) dx,

and < ., . > denote the inner product.
If, the infinite series in equation (4) is truncated, then equation (4) can be written as

f(x) ≃
N∑

n=1

M−1∑
r=0

cnrhnr(x) = CTH(x), (5)

The HRH function coefficient vector C and RH function vector H(x) are defined as

C = [c10, c11, ..., c1M−1|c20, c21, ..., c2M−1|...|cN0, cN1, ..., cNM−1]
T , (6)

H(x) = [HT
1 (x)|HT

2 (x)|...|HT
N (x)]T , (7)

where

HT
i (x) = [hi0, hi1, ..., hiM−1], i = 1, 2, ..., N.

Taking the Newton-Cotes nodes as following [17]

xi =
2i− 1

2MN
, i = 1, 2, ...,MN. (8)

ϕMN = [H( 1
2MN ),H( 3

2MN ), ...,H(2MN−1
2MN )],

= diag(ϕ̂M×M , ϕ̂M×M , ..., ϕ̂M×M ),
(9)

where ϕ̂M×M is M-square Haar matrix ([16]).
For example if M = 2 and N = 3 we have

ϕ23 =


1 1 0 0 0 0
1 −1 0 0 0 0
0 0 1 1 0 0
0 0 1 −1 0 0
0 0 0 0 1 1
0 0 0 0 1 −1

 .

Using equation (5) we get

[f(
1

2MN
), f(

3

2MN
), ..., f(

2MN − 1

2MN
)] ≃ CTϕMN . (10)
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3.3 Operational Matrix of the Fractional Integration

The integration of the vector H(x) defined in equation (7) can be defined as [15]∫ x

0
H(t) dt ≃ PH(x), (11)

where P is the MN ×MN operational matrix of integration.
In this section, we want to derive the HRH functions operational matrix of the frac-
tional integration. For this purpose, we consider an m-set of block-pulse functions
as

bi(x) =

{
1, i

m ⩽ x < i+1
m , i = 0, 1, 2, ...,m− 1,

0, otherwise,

where m = MN .
The function bi(x), are disjoint and orthogonal. That is

bi(x)bj(x) =

{
0, i ̸= j,
bi(x), i = j,

∫ 1
0 bi(x)bj(x) dt =

{
0, i ̸= j,
1
m , i = j.

Rationalized Haar functions can be expanded into an m-set of block-pulse functions.
Similarly, HRH functions can be expanded into their block-pulse functions as

H(x) = ϕMNB(x), (12)

where B(x) = [b0(x), b1(x), ..., bm−1(x)]
T and ϕMN is a MN ×MN matrix defined

in equation (9).
In [18], the block-pulse operational matrix of the fractional integration Fα are given
as follows:

IαB(x) ≃ FαB(x), (13)

where

Fα = 1
mα

1
Γ(α+1)



1 ξ1 ξ2 ξ3 · · · ξm−1

0 1 ξ1 ξ2 · · · ξm−2

0 0 1 ξ1 · · · ξm−3
...
...

...
...
. . .

...
0 0 0 0 · · · ξ1
0 0 0 0 · · · 1


, (14)

with m = MN and ξk = (k + 1)α − 2kα+1 + (k − 1)α−1.
Now, we obtain the HRH function operational matrix of the fractional integration.
Let

IαH(x) ≃ PαH(x), (15)
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where Pα is called the HRH functions operational matrix of the fractional
integration.
Using equations (12) and (13), we have

IαH(x) = IαϕMNB(x) = ϕMNIαB(x) ≃ ϕMNFαB(x),

from (12) and (15), we get

PαH(x) = PαϕMNB(x) = ϕMNFαB(x).

Then, Pα is given by

Pα = ϕMNFαϕ−1
MN , (16)

where, ϕ−1
MN is inverse of matrix ϕMN . then, we have found the operational matrix

of fractional integration for HRH functions.
For example if M = 2 and N = 3 we have

Pα = 1
6α

1
Γ(α+1)×



ξ1
2 + 1 − ξ1

2
ξ1
2 + ξ2 +

ξ3
2

ξ1
2 − ξ3

2
ξ3
2 + ξ4 +

ξ5
2

ξ3
2 − ξ5

2
ξ1
2 1− ξ1

2
ξ3
2 − ξ1

2 ξ2 − ξ1
2 − ξ3

2
ξ5
2 − ξ3

2 ξ4 − ξ3
2 − ξ5

2

0 0 ξ1
2 + 1 − ξ1

2
ξ1
2 + ξ2 +

ξ3
2

ξ1
2 − ξ3

2

0 0 ξ1
2 1− ξ1

2
ξ3
2 − ξ1

2 ξ2 − ξ1
2 − ξ3

2

0 0 0 0 ξ1
2 + 1 − ξ1

2

0 0 0 0 ξ1
2 1− ξ1

2


,

and for α = 0.5, the operational matrix is as following

P 0.5 =


0.4343 −0.127 0.3598 0.06024 0.2342 0.0153
0.1272 0.1799 −0.0602 −0.0285 −0.0153 −0.0029

0 0 0.4343 −0.1272 0.3598 0.0602
0 0 0.1272 0.1799 −0.0602 −0.0285
0 0 0 0 0.4343 −0.1272
0 0 0 0 0.1272 0.1799

 .

4. Solution of Fractional Differential Equation

In this section we consider the solution of fractional differential equations of linear
and nonlinear type.

4.1 Linear Differential Equations of Fractional Order

Consider the following differential equations of fractional order

∗D
αy(x) = a1∗D

β1y(x) + ...+ ak∗D
βky(x) + ak+1y(x) + ak+2f(x), (17)
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0 ⩽ x ⩽ 1, n− 1 < α ⩽ n, n ∈ N, 0 < β1 < β2 < ... < βk < α,

with initial conditions

y(i)(0) = δi, i = 0, 1, 2, 3, ..., n− 1, (18)

where aj , j = 1, 2, ..., k + 2 are real constant coefficients.
To solve this problem, we approximate ∗D

αy(x) as following

∗D
αy(x) ≃ CTH(x), (19)

where C is unknown vector and H(x) is HRH functions vector defined in (7).
Also, we let

f(x) ≃ F TH(x). (20)

where F is known vector that defined in equation (6). By using properties of
Caputo derivative we can expanding other terms as following

∗D
β1y(x) = Iα−β1∗D

αy(x) ≃ CTPα−β1H(x),

∗D
β2y(x) = Iα−β2∗D

αy(x) ≃ CTPα−β2H(x),
...

∗D
βky(x) = Iα−βk∗D

αy(x) ≃ CTPα−βkH(x),

(21)

and if βj = q ∈ N0 = {0, 1, 2, ...}, j = 1, 2, ..., k, then for expanding ∗D
qy(x),

q = 0, 1, ..., n − 1, by using equation (19) and properties of Caputo derivative we
have

∗D
n−1y(x) = Iα−n+1

∗D
αy(x) ≃ CTPα−n+1H(x) + δn−1,

∗D
n−2y(x) = Iα−n+2

∗D
αy(x) ≃ (CTPα−n+2 + δn−1e

Tϕ−1
MNP 1)H(x) + δn−2,

...

y(x) ≃ (CTPα + eTϕ−1
MN

n−1∑
i=0

δi(P
1))H(x),

(22)
where
e = (1, 1, ..., 1)T , (P 1) is operational matrix of HRH functions defined in equation
(11) and P 0 = I is MN ×MN -dimensional identity matrix.
By substituting equations (19)−(22) in equation (17), we obtain a system of linear
equations can be solved for unknown vector C easily.

4.2 Nonlinear Differential Equations of Fractional Order

Consider the nonlinear differential equations of fractional order

∗D
αy(x) = f(x, y(x), ∗D

β1y(x), ∗D
β2y(x), ..., ∗D

βky(x)), (23)

0 ⩽ x ⩽ 1, n− 1 < α ⩽ n, n ∈ N, 0 < β1 < β2 < ... < βk < α,
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with initial conditions

y(i)(0) = δi, i = 0, 1, 2, 3, ..., n− 1. (24)

Similarly to linear fractional differential equations we first approximate ∗D
αy(x),

∗D
βjy(x) for j = 1, 2, ..., k and y(x) as equations (19), (21) and (22). Then we

substituting these equations in equation (23) and to find solution y(x), we collocate
this equation in the Newton-Cotes nodes defined in equation (8). So, we get MN
nonlinear equations which can be solved for unknown vector C.

5. Numerical Examples

In this section we applied the HRH functions method to solve some numerical
examples.

Example 5.1 Consider the following Relaxation equation of fractional order ([3, 8])

∗Dy(x)− a∗D
αy(x)− by(x) = 0, x > 0, 0 < α ⩽ 1,

with initial condition

y(0) = 1.

In particular, we assume a = b = −1 and in this case when α = 1, the exact

solution is y(x) = e−
1

2
x.

We have solved this example for N = 3 and M = 8 and have compared it with
VIM method of [8]. The comparison is shown in Table 1.

Table 1. Comparison of the solutions of VIM and HRH for different α of Example 5.1.
x α = 0.25 α = 0.5 α = 0.75 Exact

yV IM yHRH yV IM yHRH yV IM yHRH for α = 1
0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.751577 0.914585 0.662104 0.923203 0.566982 0.935891 0.951229
0.2 0.605730 0.846942 0.543694 0.863216 0.493983 0.883039 0.904837
0.3 0.499314 0.791889 0.463863 0.813022 0.443495 0.836268 0.860708
0.4 0.417812 0.746231 0.404072 0.769780 0.403821 0.793990 0.818731
0.5 0.353711 0.707633 0.356911 0.731715 0.370859 0.755230 0.778801
0.6 0.302381 0.675023 0.318509 0.698085 0.342608 0.719648 0.740818
0.7 0.260714 0.646904 0.286543 0.667854 0.317909 0.686629 0.704688
0.8 0.226518 0.622594 0.259495 0.640587 0.296016 0.655952 0.670320
0.9 0.198191 0.601421 0.236315 0.615841 0.276413 0.627360 0.637628
1.0 0.174535 0.582772 0.216243 0.593195 0.258722 0.600581 0.606531

Numerical results in Table 1 show that proposed method is very useful in comput-
ing, because in fractional calculus theory, we know when exact solution is unknown,
as α (n − 1 ⩽ α < n) approaches to positive integer number n, the numerical so-
lution converges to the exact solution of the problem with derivation n ([10]). So,
we can conclude HRH function method is better than VIM method since HRH
functions has this property but VIM method do not has.

Example 5.2 Next, we consider the following linear equation of fractional order
([8, 9])

∗D
2y(x)− a∗D

αy(x)− by(x) = g(x), x > 0, 0 < α ⩽ 2,
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with initial condition

y(0) = 0 y′(0) = 0.

We assume a = b = −1, α = 1
2 and g(x) = 8 for x ∈ [0, 1]. The exact solution is

the closed form series solution given in [8]. In Table 2, we present numerical results
obtained by HRH functions method and methods of [8, 9] such as FDM method,
ADM method and VIM method . We have solved this example for N = 3 and
M = 8 results show that our method is very better than above mentioned methods.

Table 2. Estimated for N = 6 and M = 16 with comparison methods of [8, 9].
x yFDM [9] yADM [8] yV IM [8] yHRH yexact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.039473 0.039874 0.039874 0.039848 0.039750
0.2 0.157703 0.158512 0.158512 0.157092 0.157036
0.3 0.352402 0.353625 0.353625 0.347414 0.347370
0.4 0.620435 0.622083 0.622083 0.604751 0.604695
0.5 0.957963 0.960047 0.960047 0.921737 0.921768
0.6 1.360551 1.363093 1.363093 1.290470 1.290457
0.7 1.823267 1.826257 1.826257 1.701990 1.702008
0.8 2.340749 2.344224 2.344224 2.147250 2.147287
0.9 2.907324 2.911278 2.911278 2.616960 2.617001
1.0 3.517013 3.521462 3.521462 3.101840 3.101906

Example 5.3 Let us consider the nonlinear fractional differential equations ([12])

∗D
2y(x) + g(x)∗D

3

2 y(x) + y2(x) = 2 + 2x+ x4,

where g(x) = Γ(32)x
1

2 and subject to the initial conditions

y(0) = y′(0) = 0.

The exact solution is y(x) = x2.
We have solved this example for M = 32 and different N and have compared it
with method of [12] comparison show in Table 3.

Table 3. Absolute error for Example 5.3
x Method of Present method

[12] N = 3,M = 32 N = 4,M = 32
0.0 2.74260× 10−5 0 0
0.1 4.20794× 10−5 2.69071× 10−5 1.02893× 10−5

0.2 3.76716× 10−5 1.93434× 10−5 1.58345× 10−5

0.3 8.44125× 10−5 2.04899× 10−5 1.65120× 10−5

0.4 3.27010× 10−5 3.02811× 10−5 1.22849× 10−5

0.5 3.61133× 10−5 5.26161× 10−6 3.12358× 10−5

0.6 1.94954× 10−5 3.21831× 10−5 1.34117× 10−6

0.7 2.95780× 10−5 2.41830× 10−5 1.87026× 10−5

0.8 4.92488× 10−5 2.46014× 10−5 1.89602× 10−5

0.9 2.83224× 10−5 3.33725× 10−5 1.41488× 10−5

1.0 7.73238× 10−5 7.02804× 10−6 4.22857× 10−6

CPU - 2.5617s 4.0370s

6. Conclusion

In the present work a fractional operational matrix of HRH functions is obtained
and is used to estimated numerical solution of linear and nonlinear differential
equations of fractional order. In this method time and computations are small,
because the matrices ϕMN and Pα introduce in equations (9) and (16) have many
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zeros, then proposed method is fast and easy to use. Numerical examples are given
to show the efficiency of the present method.
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