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Abstract. We present a sixth-order non-polynomial spline method for the solutions of two-
point nonlinear boundary value problem u(4) + f(x, u) = 0, u(a) = α1, u′′(a) = α2, u(b) =
β1, u′′(b) = β2, in off step points. Numerical method of sixth-order with end conditions of
the order 6 is derived. The convergence analysis of the method has been discussed. Numerical
examples are presented to illustrate the applications of method, and to compare the computed
results with other known methods.
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1. Introduction

Consider the special nonlinear fourth-order boundary value problem given by

u(4) + f(x, u) = 0, a < x < b, a, b, x ∈ ℜ, (1)

subjected to boundary conditions

u(a) = α1, u
′′(a) = α2, u(b) = β1, u

′′(b) = β2. (2)

It is assumed that f(x, u) is real and continuous on [a, b], and αi, βi, i = 1, 2
are finite real constants. The existence and uniqueness of the real valued function
u(x) which satisfies (1)-(2) has been given in [1]. E. H. Twizell in [20] derived
a fourth-order finite difference method for the numerical solution of (1)-(2). C.
P. Katti [11] has given a sixth order finite difference method for the two-point
boundary value problem (1) with boundary conditions of first-order derivatives.
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In the case of linear differential equations (1), the class of fourth-order two-point
boundary value problems have been solved by some authors see Usmani [22], [23],
[24], and [25], Usmani et al. [26], Rashidinia et al. [16]-[18] and references therein.
Numerical methods based on the finite difference of the various orders by which
the solution of (1) are approximated over a finite set of grid points have been de-
veloped by Chawla et al. [5]-[6], Jain et al. [10]-[9] and references therein. Daele
et al. [7] introduced a new second order method for solving the boundary value
problems (1) based on non-polynomial spline function. Al-Said et al. [2]-[3] de-
veloped numerical methods for solutions of fourth-order obstacle problems with
collocation, finite difference and spline techniques. S. S. Siddiqi and G. Akram [19]
analyzed a system of fourth-order boundary value problems using non-polynomial
spline functions. M.A. Ramadan et al [15] developed quintic non-polynomial spline
solutions for fourth-order two-point boundary value problem. Siraj-ul-Islam et al.
[21] developed numerical methods based on quartic non-polynomial splines for so-
lution of of a system of third-order boundary-value problems. M.A.Khan et al. [13]
developed and analyzed a class of methods based on non-polynomial sextic spline
functions for the solution of a special fifth-order boundary-value problems. Khan
et al.[12] have used parametric quintic spline function for the solution of a system
of fourth-order boundary-value problems. Numerical methods for nonlinear fourth-
order boundary value problems have been study by Mohamed Alihajji and Kamel
Al-khaled [4]. Wazwaz [27] applied ADM for solving a special 2m order boundary
value problem of the form u(2m)(x) = f(x, u), 0 < x < b.
In this paper non-polynomial quintic spline relations have been derived using off-
step points. We apply such non-polynomial quintic spline functions that have poly-
nomial and trigonometric parts to develop new numerical method for obtaining
smooth approximations to the solutions (1)-(2). Non-polynomial quintic spline for-
mulation is derived in section 2. We develop the O(h10) methods at end conditions
in section 3. In section 4, convergence analysis is proved. Finally, in section 5,
Numerical examples are given to illustrate the applications of the method.

2. Non-Polynomial Quintic Spline Functions

We introduce the set of grid points in the interval [a, b]

x0 = a, xl− 1

2
= a+ (l − 1

2
)h, h =

b− a

N
, l = 1, 2, ..., N, xN = b.

Non-polynomial quintic spline function Sl(x) which interpolates u(x) at the mesh
points xl− 1

2
, l = 1, 2, ..., N , depends on a parameter τ and reduces to ordinary

quintic spline Sl(x) in [a, b] as τ → 0.
For each segment [xl− 1

2
, xl+ 1

2
], l = 1, 2, ..., N −1, the quintic spline Sl(x), is defined

as

Sl(x) =

3∑
i=0

ali(x− xl)
i + el sin τ(x− xl) + fl cos τ(x− xl), l = 0, 1, 2, ..., N, (3)

where ali, (i = 0, 1, 2, 3), el and fl are constants and τ is free parameter.
Let ul be an approximation to u(xl), obtained by the segment Sl(x) of the
mixed spline function passing through the points (xl− 1

2
, ul− 1

2
) and (xl+ 1

2
, ul+ 1

2
),

to obtain the necessary conditions for the coefficients introduced in (3), we
do not only require that Sl(x) satisfies interpolatory conditions at xl− 1

2
, xl+ 1

2
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but also the continuity of second and four derivatives at the common nodes (xl, ul).

To derive expression for the coefficients, we first denote:

Sl(xl± 1

2
) = ul± 1

2
, S′′

l (xl± 1

2
) =Ml± 1

2
, S

(4)
l (xl± 1

2
) = Fl± 1

2
. (4)

From algebraic manipulation we get the following expression:

al0 = −
(8 + θ2)[Fl− 1

2
+ Fl+ 1

2
] + τ2θ2[Ml− 1

2
+Ml+ 1

2
]− 8τ4[ul− 1

2
+ ul+ 1

2
]

16τ4
,

al1 =
(24 + θ2)[Fl− 1

2
− Fl+ 1

2
] + τ2θ2[Ml− 1

2
−Ml+ 1

2
]− 24τ4[ul− 1

2
− ul+ 1

2
]

24θτ3
,

al2 =
[Fl+ 1

2
− Fl− 1

2
] + τ2[Ml+ 1

2
−Ml− 1

2
]

4τ2
,

al3 =
[Fl+ 1

2
− Fl− 1

2
] + τ2[Ml+ 1

2
−Ml− 1

2
]

6hτ2
,

el =
Fl+ 1

2
− Fl− 1

2

2τ4 sin( θ2)
,

fl =
Fl+ 1

2
− Fl− 1

2

2τ4 cos( θ2)
,

where θ = τh and l = 1, 2, ..., N − 1.

Using the continuity of first and third derivatives at (xl, ul), that are S
′
l−1(xl) =

S′
l(xl) and S

′′′
l−1(xl) = S′′′

l (xl), we obtain the following relations:

Ml− 3

2
+ 22Ml− 1

2
+Ml+ 1

2
=

24

h2
(ul− 3

2
− 2ul− 1

2
+ ul+ 1

2
)− h2[(

24

θ4
− 12

θ3 sin( θ2)

+
1

θ2
)Fl− 3

2
+ 2(−24

θ4
+

12 cos(θ)

θ3 sin( θ2)
+

11

θ2
)Fl− 1

2
+ (

24

θ4
− 12

θ3 sin( θ2)
+

1

θ2
)Fl+ 1

2
, (5)

Ml− 3

2
− 2Ml− 1

2
+Ml+ 1

2
= h2[

1− cos( θ2)

2θ2 cos( θ2)
Fl− 3

2
+ 2(

cos( θ2)− cos(θ)

2θ2 cos( θ2)
)Fl− 1

2
]

+
1− cos( θ2)

2θ2 cos( θ2)
Fl+ 1

2
. (6)
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From (5) and (6) we have

h2Ml− 1

2
=(ul− 3

2
− 2ul− 1

2
+ ul+ 1

2
) + (− 1

τ4
− θ(−24 + θ2)

48τ4 sin( θ2)
)Fl− 3

2
+ (

2

τ4
− θ2

τ4
(7)

+
θ(−24 + θ2) cos(θ)

24τ4 sin( θ2)
)Fl− 1

2
+ (− 1

τ4
− θ(−24 + θ2)

48τ4 sin( θ2)
)Fl+ 1

2
.

The elimination of Ml’s using (6) and (7) gives

ul− 5

2
− 4ul− 3

2
+ 6ul− 1

2
− 4ul+ 1

2
+ ul+ 3

2
=h4[α(Fl− 5

2
+ Fl+ 3

2
) + β(Fl− 3

2
+ Fl+ 1

2
) (8)

+ γFl− 1

2
], l = 3(1)N − 2,

where

α =
1

θ4
− 1

2θ3 sin( θ2)
+

1

48θ sin( θ2)
,

β = − 4

θ4
+

1 + cos(θ)

θ3 sin( θ2)
+

11− cos(θ)

24θ sin( θ2)
,

γ =
6

θ4
− 1 + 2 cos(θ)

θ3 sin( θ2)
+

1− 22 cos(θ)

24θ sin( θ2)
.

When τ → 0, that θ → 0, then (α, β, γ) → 1
1920(1, 236, 1446), and the relations

defined by (8) reduce into quintic polynomial spline function. Now by using the
spline relation (8) and discretize the given system (1) at the grid points xl. We
obtain (N − 4) nonlinear equation in the (N) unknowns ul− 1

2
, l = 1, 2, ..., N as

(ul− 5

2
+ αh4f(xl− 5

2
, ul− 5

2
)) + (−4ul− 3

2
+ βh4f(xl− 3

2
, ul− 3

2
))+ (9)

(6ul− 1

2
+ γh4f(xl− 1

2
, ul− 1

2
)) + (−4ul+ 1

2
+ βh4f(xl+ 1

2
, ul+ 1

2
))+

(ul+ 3

2
+ αh4f(xl+ 3

2
, ul+ 3

2
)) + tl = 0, l = 3(1)N − 2.

Taylor expansion of the local truncation errors tl, l = 3, ..., N−2, associated with
our method are given by

tl = (1− 2α− 2β − γ)h4u
(4)
l +

(
−1

2
+ α+ β +

1

2
γ

)
h5u

(5)
l

+

(
7

24
− 17

4
α− 5

4
β − 1

8
γ

)
h6u

(6)
l +

(
− 5

48
+

49

24
α+

13

24
β +

γ

48

)
h7u

(7)
l +(

23

640
− 353α

192
− 41β

192
− γ

384

)
h8u

(8)
l +

(
− 23

2304
+

1441α

1920
+

121β

1920
+

γ

3840

)
h9u

(9)
l

+

(
2497

967680
− 8177α

23040
− 73β

4608
− γ

46080

)
h10u

(10)
l +O(h11). (10)
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For different choices of parameters α, β and γ we can obtain classes of the meth-
ods such as:
Second-Order Method

For α = 9
240 , β = 1

24000 and γ = 1 − 2α − 2β gives tl =
133
8000h

6u
(6)
l + O(h7), l =

3, ..., N − 2.

Fourth-Order Method
For α = 1

24 , β = 0 and γ = 1−2α−2β gives tl =
−31
720 h

8u
(8)
l +O(h9), l = 3, ..., N−2.

Sixth-Order Method
For α = −1

720 , β = 31
180 and γ = 1 − 2α − 2β gives tl =

1
3024h

10u
(10)
l + O(h11), l =

3, ..., N − 2.

3. End Condition

To obtain the unique solution of the nonlinear system (9) we need four more equa-
tions to be associated with the system. By using Taylor series and method of
undetermined coefficients the boundary formulas associated with boundary condi-
tions for the sixth-order method can be determine as follows. In order to obtain
the six-order boundary formula we define the following identities:

c0u0 +

3∑
j=1

cjuj− 1

2
+ λh2u

′′

0 + ρ0h
4u

(4)
0 + h4

5∑
j=1

ρju
(4)

j− 1

2

+ t′∗1 = 0, (11)

c′0u0 +

4∑
j=1

c′juj− 1

2
+ λ′h2u

′′

0 + h4
6∑

j=1

ρ′ju
(4)

j− 1

2

+ t′∗2 = 0, (12)

c
′∗
0 uN +

4∑
j=1

c
′∗
j uN−j+ 1

2
+ λ

′∗h2u
′′

N + h4
6∑

j=1

ρ
′∗
j u

(4)

N−j+ 1

2

+ t′∗N−1 = 0, (13)

c∗0uN +

3∑
j=1

c∗juN−j+ 1

2
+ λ∗h2u

′′

N + h4ρ∗0u
(4)
N + h4

5∑
j=1

ρ∗ju
(4)

N−j+ 1

2

+ t′∗N = 0. (14)

In order that t′∗1 , t
′∗
2 , t

′∗
N−1 and t′∗N are O(h10) we find that

(c0, c1, c2, c3, λ) = (c∗0, c
∗
1, c

∗
2, c

∗
3, λ

∗) = (−6, 10,−5, 1,
5

4
),

(ρ0, ρ1, ρ2, ρ3, ρ4, ρ5) = (
8041

7620480
,
−16255

43008
,
−293953

1161216
,
2999

71680
,
−3763

301056
,

3035

1741824
),

(ρ∗0, ρ
∗
1, ρ

∗
2, ρ

∗
3, ρ

∗
4, ρ

∗
5) = (

8041

7620480
,
−16255

43008
,
−293953

1161216
,
2999

71680
,
−3763

301056
,

3035

1741824
),

(c′0, c
′
1, c

′
2, c

′
3, c

′
4, λ

′) = (c
′∗
0 , c

′∗
1 , c

′∗
2 , c

′∗
3 , c

′∗
4 , λ

′∗) = (2,−5, 6,−4, 1,
1

4
),

(ρ′1, ρ
′
2, ρ

′
3, ρ

′
4, ρ

′
5, ρ

′
6) = (

−132283

884736
,
−7263443

10321920
,
−1775513

15482880
,
−632117

15482880
, ,

172129

10321920
, ,

−85373

30965760
),

(ρ
′∗
1 , ρ

′∗
2 , ρ

′∗
3 , ρ

′∗
4 , ρ

′∗
5 , ρ

′∗
6 ) = (

−132283

884736
,
−7263443

10321920
,
−1775513

15482880
,
−632117

15482880
, ,

172129

10321920
, ,

−85373

30965760
),
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t′∗l =


336383

371589120h
10u

(10)
0 +O(h11), l = 1,

− 360041
154828800h

10u
(10)
0 +O(h11), l = 2,

− 360041
154828800h

10u
(10)
N +O(h11), l = N − 1,

336383
371589120h

10u
(10)
N +O(h11), l = N.

(15)

4. Convergence Analysis

In this section, we investigate the convergence analysis of the method. The equa-
tions (9) along with boundary condition (11)-(14) yields nine diagonal nonlinear
system of equations, and may be written in matrix form as

A0U
(1) + h4Bf(1)(U (1)) = R(1), (16)

in (16), A0 and B are square matrices of order N and are given by

A0 =



10 −5 1
−5 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 6 −5

1 −5 10


(17)

P is monotone three diagonal matrix defined by

pij =


3 i = j = 1, N,
2 i = j = 2, 3, ..., N − 1,
−1 |i− j| = 1,
0 otherwise.

(18)

and the matrix B in case of sixth-order method defined by

B =



−16255
43008

−293953
1161216

2999
71680

−3763
301056

3035
1741824−132283

884736
−7263443
10321920

−1775513
15482880

632117
15482880

172129
10321920

−85373
30965760

α β γ β α 0

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

0 α β γ β α
−85373
30965760

172129
10321920

632117
15482880

−1775513
15482880

−7263443
10321920

−132283
884736

3035
1741824

−3763
301056

2999
71680

−293953
1161216

−16255
43008



(19)

Theorem 4.1 Let Λ be the N ×N matrix

λij =


ξ i = j = 1, N,
x i = j = 2, 3, ..., N − 1,
−1 |i− j| = 1,
0 otherwise,

(20)
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The sufficient condition for Λ−1 > 0 is that ξ > r where

r = x−
√
x2−4
2 , (x > 2).

Proof Suppose that Λ is nonsingular and we denote Q = (qij)N×N be the inverse
of

∧
. The identity

∧
Q = I is expressed by the equations

ξq1,j − q2,j = δ1,j , (i)

−qi−1,j + xqi,j − qi+1,j = δi,j , i = 2, 3, ..., N − 1, (ii)

ξqN,j − qN−1,j = δN,j , (iii)

(21)

for each j = 1, 2, ..., N, where δi,j is the Kronecker delta. By using [14] the elements
qi,j can be written as:

− ei−1 + xei − ei+1 = 0, i = 2, 3, ..., N − 1, e1 = 0, and eN = 1, (22)

− ti−1,j + xti,j − ti+1,j = δi,j , i = 2, 3, ..., N − 1, t1,j = 0, and tN,j = o, (23)

for each j = 2, 3, ..., N − 1, and ti,1 = ti,N = 0. The solutions to (22) and (23) are
given in [8] and [14]. We have

qi,j = ti,j + ψjeN−i+1 + χjei, (24)

where ψj and χj must be determined. We known that the expression qi,j satisfy
the equations (21)(ii) in general. It satisfies equations (21)(i) and (21)(iii). By
substituting equation (24) into (21)(i) and (21)(iii) we get

(ξ − eN−1)ψj − e2χj = t2,j + δ1,j , (25)

(−e2)ψj + (ξ − eN−1)χj = tN−1,j + δN,j . (26)

By using (25) and (26) we get:(
ξ − eN−1 −e2

−e2 ξ − eN−1

)(
ψj

χj

)
=

(
t2,j + δ1,j

tN−1,j + δN,j

)
, (27)

if equation (27) has a unique solution, then the inverse of matrix
∧

is Q =
(qi,j)N×N . The sufficient condition on ξ and x so that

∧−1 > 0 can be obtained as
follows.
We assume that x > 2 so that ti,j > 0 for i = 1, 2, ..., N, j = 1, 2, ..., N. From
expression (24), the ψj and χj should be nonnegative, thus(

ξ − eN−1 −e2
−e2 ξ − eN−1

)−1

> 0, (28)

by simplified (28) we get (
ξ − r

ξ − r

)−1

> 0, (29)

where r = x−
√
x2−4
2 . If N is sufficiently large, then condition (29) implies condition

(28). Thus x > 2 and condition (29) implies that
∧−1 > 0 for N sufficiently large

if ξ > r.



142 R. Jalilian/ IJM2C, 01 - 02 (2011) 135-147.

Consequently the matrix P which is special case of the matrix
∧

for ξ = 3 and
x = 2 is monotone matrix. Thus the matrix A0 = P 2, is a monotone matrix. By
using Lemma 1, in [24] the symmetric matrix A0, is irreducible and monotone and

∥A−1
0 ∥ 6 [5(b− a)4 + 10(b− a)2h2 + 9h4]

384h4
. (30)

The N components vectors f(1) and R(1), are given by

f(1) = (f
(1)
1

2

, ..., f
(1)

N− 1

2

)t, (31)

where f
(1)
l (U (1)) = f(xl, u

(1)
l ), l = 1

2 ,
3
2 , ..., N − 1

2 , and

R(1) =



6α1 − 5
4h

2α2 − h4( 8041
7620480)f(x0, α1)

−2α1 − h2

4 α2

0
...
0

−2β − 1
4h

2β2
6β1 − 5

4h
2β2 − h4( 8041

7620480)f(xN , β1)


. (32)

A0U
(1)

+ h4Bf(1)(U
(1)

) = R(1) + t(1), (33)

where the vector U
(1)

= u(xl− 1

2
), l = 1, 2, ..., N , is the exact solution and t(1) =

[t
(1)
1

2

, t
(1)
3

2

, ..., t
(1)

N− 1

2

]T , is the local truncation errors.

From (16) and (33) we have:

[A]E(1) = [A0 + h4BFk(U
(1))]E(1) = t(1), (34)

where

E(1) = U
(1) − U (1) = [e

(1)
1

2

, e
(1)
3

2

, ..., e
(1)

N− 1

2

]T , (35)

f(1)(U
(1)

)− f(1)(U (1)) = Fk(U
(1))E(1),

and Fk(U
(1)) = diag{∂f

(1)
l

∂u
(1)
l

}, l = 1
2 ,

3
2 , ..., N − 1

2 , is a diagonal matrix of order N .

�

Lemma 4.2 If M is a square matrix of order N and ∥M∥ < 1, then (I + M)−1

exists and ∥(I +M)−1∥ 6 1
(1−∥M∥) .

Lemma 4.3 The matrix [A0 + h4BFk(U
(1))] in (34) is nonsingular, provided Y <

1981808640
5306209λ , where λ = [5(b − a)4 + 10(b − a)2h2 + 9h4] and Y = max|∂f

(1)
l

∂u
(1)
l

|, l =
1
2 ,

3
2 , ..., N − 1

2 . (The norm referred to is the L∞ norm).

Proof We know that [A0+h
4BFk(U

(1))] = A0[I+h
4A−1

0 BFk(U
(1))]. But the inverse

of A0 exists we have to show that the inverse of [I + h4A−1
0 BFk(U

(1))] exists. By
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using lemma 4.2, we have

h4∥A−1
0 BFk(U

(1))∥ 6 h4∥A−1
0 ∥∥B∥∥Fk(U

(1))∥ < 1, (36)

by using (19) we obtain ∥B∥ 6 5306209
5160960 and also we have ∥Fk(U

(1))∥ 6 Y =

max|∂f
(1)
l

∂u
(1)
l

|, l = 1
2 ,

3
2 , ..., N − 1

2 , and then by using (30) and (36) we obtain

Y <
1981808640

5306209λ
.

As a consequence of Lemmas 4.3 and 4.2 the nonlinear system (16) has a unique
solution if Y < 1981808640

5306209λ . �

To show that the matrix [A = A0 + h4BFk(U
(1))] is monotone.

we will prove the following theorem:

Theorem 4.4 If Y < 1981808640
5306209λ , then the matrix A given by (34) is monotone

where λ = 5(b− a)4 + 10(b− a)2h2 + 9h4.

Proof : From (34) we have

A = A0 + h4BFk(U
(1)) = P 2 + h4BFk(U

(1)),

hence AP−2 = I + h4BFk(U
(1))P−2, so that

P 2A−1 = (I + h4BFk(U
(1))P−2)−1 =

= I − (h4BFk(U
(1))P−2) + (h4BFk(U

(1))P−2)2 − (h4BFk(U
(1))P−2)3 + . . .

= [I − (h4BFk(U
(1))P−2)][I + (h4BFk(U

(1))P−2)2 + (h4BFk(U
(1))P−2)4 + . . . ].

Also if

ρ(h4BFk(U
(1))P−2) < 1

then, the two infinite series convergence. Let

∥Fk(U
(1))∥ 6 Y = max|

∂f
(1)
l

∂u
(1)
l

|, l = 1

2
,
3

2
, ..., N − 1

2
,

then

A−1 = [P−2−P−2h4BFk(U
(1)P−2)][I+(h4BFk(U

(1))P−2)2+(h4BFk(U
(1))P−2)4+....],

where the infinite series is nonnegative. Hence to show that A is monotone, it
sufficient to show that [P−2 − P−2h4BFk(U

(1))P−2] > 0. Here we have

P−2 > P−2h4BFk(U
(1))P−2 ⇒ I > h4BFk(U

(1))P−2 ⇒
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∥h4A−1
0 BFk(U

(1))∥ 6 h4∥A−1
0 ∥∥B∥∥Fk(U

(1))∥ < 1. (37)

By substituting ∥B∥, ∥P−2∥ and ∥Fk(U
(1))∥ into (37) we get

Y <
1981808640

5306209λ

�

Theorem 4.5 Let u(xl− 1

2
) be the exact solution of the boundary value problem (1)

with boundary conditions (2) and we assume ul− 1

2
, l = 1, 2, ..., N be the numerical

solution obtained by solving the nonlinear system (16). Then we have

∥E(1)∥ ≡ O(h6), (provided Y < 1981808640
5306209λ , α = −1

720 , β = 31
180 , γ = 79

120).

Proof We can write the error equation (34) in the following form

E(1) = (A0 + h4BFk(U
(1)))−1t(1) = (I + h4A−1

0 BFk(U
(1)))−1A−1

0 t(1),

∥E(1)∥ 6 ∥(I + h4A−1
0 BFk(U

(1)))−1∥∥A−1
0 ∥∥t(1)∥∥,

It follows that

∥E(1)∥ 6 ∥A−1
0 ∥∥t(1)∥

1− h4∥A−1
0 ∥∥B∥∥Fk(U (1))∥

, (38)

provided that h4∥A−1
0 ∥∥B∥∥Fk(U

(1))∥ < 1. Also we have

∥t(1)∥ 6 360041

154828800
h10M10, (α =

−1

720
, β =

31

180
, γ =

79

120
), (39)

where M10 = max|u(10)(ξ)|, a 6 ξ 6 b.
Substituting ∥A−1

0 ∥, ∥Fk(U
(1))∥, ∥B∥ and ∥t(1)∥ from above relations in (38) and

simplifying we obtain

∥E(1)∥ 6 1858157199360λh6M10

306841053560832000− 821553972019200λY
≡ O(h6), (40)

where λ = 5(b − a)4 + 10(b − a)2h2 + 9h4. It is a sixth-order convergent method
provided

Y <
1981808640

5306209λ
(41)

�

Consequently it follows that the numerical method under consideration is sixth-
order convergent process.
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5. Numerical Results

In this section we present the results obtained by applying the numerical method
discussed in pervious sections to the following two-point boundary-value problems.

Example 5.1 We consider the differential equation

u(4) + u2 = −8x cos(x)− 13 sin(x) + x2 sin(x) + (x2 − 1)2(sin(x))2,

0 < x < 1, (42)

with the boundary conditions:

u(0) = u(1) = 0, u′′(0) = 0, u′′(1) = 2 sin(1) + 4 cos(1). (43)

The analytical solution is u(x) = (x2 − 1) sin(x).

Example 5.2 Consider the differential equation

u(4) − 6e4u = − 12

(1 + x)4
, 0 < x < 1, (44)

with the boundary conditions:

u(0) = 0, u(1) = ln(2), u′′(0) = −1, u′′(0) =
−1

4
. (45)

The analytical solution is u(x) = ln(1 + x).

Example 5.3 We consider the differential equation

u(4) − 5u3 = 96x cos(x)− 16x
(
−1 + x2

)
cos(x) + 24 sin(x)− 48x2 sin(x)

− 24
(
−1 + x2

)
sin(x) +

(
−1 + x2

)2
sin(x)− 5

(
−1 + x2

)6
sin(x)3,

0 < x < 1, (46)

with the boundary conditions:

u(0) = u(1) = 0, u′′(0) = 0, u′′(1) = 8 sin(1). (47)

The analytical solution is u(x) = (x2 − 1)2 sin(x).
We solved examples 5.1, 5.2 and 5.3 by using non-polynomial quintic spline method
with step lengths h = 2−m,m = 2, 3, 4, 5, 6, 7 for α = −1

720 , β = 31
180 , γ = 79

120 . The
maximum absolute errors in solutions for our method are listed in table 1.

Table 1. Maximum absolute errors in solution.

m Example 5.1 Example 5.2 Example 5.3

3 5.22793×10−10 3.38556×10−7 3.56386×10−8

4 8.07062×10−12 1.18519×10−9 5.78254×10−10

5 1.85186×10−13 3.83505×10−11 1.30425×10−11

6 3.61431×10−15 1.01539×10−12 2.18424×10−13

7 8.01699×10−15 1.81576×10−14 2.61800×10−16
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Example 5.4 Consider the differential equation

u(4) + xu = −(8 + 7x+ x3)ex, 0 < x < 1, (48)

with the boundary conditions:

u(0) = u(1) = 0, u′′(0) = 0, u′′(1) = −4e. (49)

The analytical solution for this boundary value problem is u(x) = x(1− x)ex.

Example 5.5 Consider the following problem ,

u(4) − u = −8x cos(x)− 12 sin(x), 0 < x < 1, (50)

with the boundary conditions:

u(0) = u(1) = 0, u′′(0) = 0, u′′(1) = 4 cos(1) + 2 sin(1). (51)

The exact solution is given by u(x) = (x2−1) sin(x). Examples 5.4 and 5.5 solved by
using non-polynomial quintic spline method with step lengths h = 2−m,m = 3, 4, 5
for α = −1

720 , β = 31
180 , γ = 79

120 . The maximum absolute errors in solutions for our
method are listed in table 2.

Table 2. Maximum absolute errors in solu-

tion.

m Example 5.4 Example 5.5

3 1.691902×10−9 5.248385×10−10

4 2.23407×10−11 8.071303×10−12

5 2.020517×10−13 1.990957×10−14

Table 3. Maximum absolute errors in solution Example 5.2

m Second-order in [20] Fourth-order in [20] Method A in [1] Method B in [1]

3 1.9×10−4 3.7×10−6 1.4×10−5 1.4×10−5

4 4.6×10−5 2.9×10−7 8.3×10−7 8.3×10−7

5 1.1×10−5 1.9×10−8 5.4×10−8 5.4×10−8

Table 4. Maximum absolute errors in solution Example 5.4

m Sixth-order in [17] Sixth-order in [10] Sixth-order in[23] Sixth-order in [23]

3 2.47×10−9 1.91×10−7 2.66×10−6 3.86×10−7

4 3.93×10−11 3.12×10−9 4.68×10−8 6.59×10−9

5 3.25×10−13 4.98×10−11 7.72×10−10 1.05×10−10

6 - - 8.01×10−12 9.81×10−12

Table 5. Maximum absolute errors in solution Example 5.4 and 5.5 in [15].

Example 5.4 Example 5.4 Example 5.5 Example 5.5
m Fourth-order (1) Fourth-order (2) Fourth-order (1) Fourth-order (2)

3 1.91×10−7 2.09×10−7 5.96×10−8 6.48×10−8

4 3.12×10−9 7.92×10−9 9.10×10−10 2.29×10−9

5 5.02×10−11 1.27×10−9 1.42×10−12 3.66×10−10
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6. Conclusion

We have developed new non-polynomial quintic spline method at mid point for
finding the numerical solution of nonlinear fourth-order boundary value problems.
The boundary condition corresponding to the sixth-order method is developed. The
convergence analysis of our presented method is discussed based on monotonicity
of the coefficient matrix.
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