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Abstract. Asymptotically exact and nonlocal fourth order nonlinear evolution equations
are derived for two coupled fourth order nonlinear evolution equations have been derived
in deep water for two capillary-gravity wave packets propagating in the same direction in
the presence of wind flowing over water.We have used a general method, based on Zakharov
integral equation.On the basis of these evolution equations,the stability analysis is made for
a uniform capillary gravity wave train in the presence of another wave train having the same
group velocity. Instability condition is obtained and graphs are plotted for maximum growth
rate of instability and for wave number at marginal stability against wave steepness for some
different values of dimensionless wind velocity.
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1. Introduction

There has been considerable interest in the stability of finite amplitude gravity
wave in deep water.Much of this interest has been focused on the instability of a
uniform wave train to modulational perturbations.
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For small but finite amplitude,the successful approach to studying the sta-
bility of finite amplitude gravity waves in deep water is through the appli-
cation of the lowest order nonlinear evolution equation,which is the nonlinear
Schrödinger equation.This analysis is suitable for small wave steepness and for
long-wavelength perturbations.But for wave steepness greater than 0.15 predictions
from the nonlinear Schrödinger equation do not agree with the result of Longuet-
Higgins[18, 19].Dysthe[10] has shown that a stability analysis made from a fourth-
order nonlinear evolution equation that is one order higher than the nonlinear
Schrödinger equation gives results consistent with the exact results of Longuet-
Higgins[18, 19] and with the experimental results of Benjamin and Feir[2] for wave
steepness up to 0.25.The fourth-order effects give a surprising improvement com-
pared to ordinary nonlinear Schrödinger effects in many respects,and some of these
points have been elaborated by Janssen [15].The dominant new effect that comes
in the fourth order is the influence of wave-induced mean flow and this produces a
significant deviation in the stability character.From these it can be concluded that
a fourth-order evolution equation is a good starting point for studying nonlinear
effects in surface waves.
Fourth order nonlinear evolution equation for deep water surface waves in dif-

ferent contexts and stability analysis made from them were derived by Dhar and
Das[5, 6], Stiassnie [23] and Hogan[14],Hara and Mei[11, 12],Bhattacharyya and
Das[3],Debsarma and Das[4].
All these analyses made by the above mentioned authors are for a single

wave.Stability analysis of a surface gravity wave in deep water in the presence
of a second wave has been made by Roskes[22] based on the lowest-order nonlinear
Schrödinger equations. In his investigation modulational perturbation is restricted
to a direction along which group velocity projections of the two waves overlap and
it is argued that the modulation will grow at a faster rate along this direction when
0 < θ < 70.50,where θ is the angle between the two propagation directions of two
waves.
Dhar and Das[7] made the same analysis of Roskes[22] making use of two coupled

fourth-order nonlinear evolution equations that they derived for two wave pack-
ets having the same characteristic wave number. The same analysis including the
effect of capillarity was later made by Dhar and Das[8] and S. Ahmadi [1] using
the multiple scale method. They observed significant deviations from the results
obtained from coupled cubic nonlinear Schrödinger equations.
Pierce and Knobloch[21] derived third order evolution equations for counterprop-

agating capillary- gravity wave trains having equal characteristic wave number and
frequency propagating over finite depth water.The resulting equations are asymp-
totically exact and nonlocal.Later on, Dhar and Mondal [9]have derived asymptot-
ically exact and nonlocal fourth order nonlinear evolution equations in deep water
for two counterpropagating gravity wave packets in the presence of wind flowing
over water.
In the present paper two coupled fourth order nonlinear evolution equations

are derived in deep water for two capillary-gravity wave packets propagating in the
same direction with unequal wave numbers in the presence of wind flowing over wa-
ter.Here we have used a general method,based on Zakharov integral equation.Unlike
Dhar and Das[7, 8],the evolution equations are derived here using Zakharov inte-
gral equation. Stiassnie[23] and Hogan[14] also used the Zakharov integral equa-
tion for the derivation of fourth order nonlinear evolution equations for a surface
gravity wave packet and capillary-gravity wave packet respectively.In deriving the
two coupled evolution equations,we make an extension of the paper by Hogan et
al.[13],who derived the change in phase speed of one capillary-gravity wave train in
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the presence of another starting from the Zakharov integral equation.The expres-
sion for the change in phase speed for the case of gravity waves was first obtained
by Longuet-Higgins and Phillips[17] by the perturbation method. Onorato et al.[20]
also derived third-order evolution equations to study the problem of interaction of
two wave systems in deep water with equal characteristic wave number and prop-
agating in two different directions. They found that the introduction of a second
wave results in an increase of the instability growth rates and causes enlargement
of the instability region.
In our paper the relative changes in phase speed of each uniform wave train

in the presence of another one have been derived.On the basis of two coupled
nonlinear Schrödinger equations,the stability analysis is made of a uniform surface
gravity wave train in the presence of a uniform capillary-gravity wave train,when
the group velocities of the two wave trains coincide. The instability condition and
an expression for the growth rate of instability are derived for a uniform gravity
wave train in the presence of a capillary-gravity wave train.Stable-unstable regions
and the growth rate of instability against perturbation wave number have been
plotted for two different sets of values of wave numbers and for different values of
wind velocity.

2. Basic Concept and Basic Equations

The common horizontal interface between air and water in the undisturbed state
is considered as z = 0 plane.Here x and y are the horizontal coordinates and z
is the vertical coordinate which is taken positive in the upward direction.In the
undisturbed state air flows over water with a velocity v in a direction that is taken
as the x- axis. We take z = β(x, t) as the equation of the common interface at any
time t in the perturbed state.
The perturbed velocity potentials ϕ(x, z, t) and ϕ

′
(x, z, t) of water and air

respectively satisfy the following Laplace equations

∇2ϕ = 0 in −∞ < z < β (1)

∇2ϕ′ = 0 in β < z <∞ (2)

The kinematic boundary condition for water is given by

∂ϕ

∂z
− ∂β

∂t
=
∂ϕ

∂x

∂β

∂x
at z = β (3)

which gives a necessary condition for equality of water velocity at the interface
normal to it to the normal velocity of the interface.
Similar condition for air is the following

∂ϕ ′

∂z
− ∂β

∂t
− v

∂β

∂x
=
∂ϕ ′

∂x

∂β

∂x
at z = β (4)
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The condition of continuity of pressure at the interface gives

∂ϕ

∂t
− γ

∂ϕ ′

∂t
+ (1− γ)gβ − γv

∂ϕ ′

∂x

= −1

2
(∇ϕ)2 + γ

2
(∇ϕ′

)2 + s
∂2β

∂x2
/{1 + (

∂β

∂x
)2}

3

2

at z = β

(5)

where γ = ρ
′
/ρ is the ratio of densities of air to water, g is the acceleration due

to gravity and s is the ratio of surface tension coefficient Ts to the water density
ρ.
Also ϕ and ϕ

′
should satisfy the following conditions at infinity

ϕ → 0 as z → −∞, ϕ
′ → 0 as z → ∞ (6)

We look for solutions of the above equations in the form

P = P00+

∞∑
m=−∞

∞∑
n=−∞

[Pmn exp i(mψ1+nψ2)+P
∗
mn exp − i(mψ1+nψ2)] (7)

where ψ1 = k1x−ω1t , ψ2 = k2x−ω2t and P stands for ϕ, ϕ′ and β. In the above
summation on the right hand side of equation (7), (m,n) ̸= (0, 0). The Fourier
coefficients ϕ00, ϕ

′
00, ϕmn, ϕ

′
mn, ϕ

∗
mn, ϕ

′∗
mn are functions of z , x1 = ϵx,

t1 = ϵt and β00, βmn, β
∗
mn are functions of x1, t1. Here * denotes complex conjugate,

ϵ is a small ordering parameter measuring the weakness of wave steepness and ω, k
satisfy the following linear dispersion relation for capillary gravity waves

(1 + γ)ω2 − 2γωkv + γk2v2 − (1− γ)gk − sk3 = 0. (8)

3. Derivation of Evolution Equations

In this section, we derive the two coupled nonlinear evolution equations using
Zakharov’s integral equation given by

i
∂A(k, t)

∂t
=

∫ ∫ ∫ ∞

−∞
T (k,k1,k2,k3)A

∗(k1, t)A(k2, t)A(k3, t)

× δ(k+ k1 − k2 − k3) exp[i{ω(k) + ω(k1)− ω(k2)− ω(k3)}t]dk1dk2dk3

(9)

where A(k, t) is related to the free surface elevation β(x, t) by

β(x, t) =
1

2π

∫ ∞

−∞
{ |k|
2ω(k)

}
1

2 {A(k, t)exp[i{k.x− ω(k)t}] + c.c. }dk (10)

In the above k = (k, l) is the wave vector, x = (x, y) is the horizontal spatial vector,
c.c. denotes complex conjugate and the kernel T (k,k1,k2,k3) is a scalar function
used by Krasitskii[16].
The linearized wave frequency ω(k) connected to k through the following linear
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dispersion relation given by

ω(k) = [
|k|

1

2

1 + γ
{γ|k|

1

2 v + [(1− γ2)g + (1 + γ)s|k|2 − γ|k|v2 ]
1

2 }] (11)

The resonance condition for the four wave vectors is given by

k+ k1 − k2 − k3 = 0 (12)

Now we consider two narrow capillary-gravity wave packets centered around the
wave vectors kp and kq, called the first and second wave packet respectively. With
k = kp, the condition (12) is satisfied for two waves with wave vectors kp and kq in
the following three cases: (a) k1 = kq,k2 = kq,k3 = kp (b) k1 = k3 = kq,k2 = kp

(c) k1 = k2 = k3 = kp

For obtaining the evolution equation of the first wave packet we take k = kp + e
in equation (9) and introducing new variables B1(e, t) and B2(e, t) defined by

B1(e, t) = A(kp + e, t)exp[−i{ω(kp + e)− ω(kp)}t]

B2(e, t) = A(kq + e, t)exp[−i{ω(kq + e)− ω(kq)}t]
(13)

equation (9) can be written as

i
∂B1(e, t)

∂t
−B1(e, t)[ω(kp + e)− ω(kp)]

=

∫ ∫ ∫ ∞

−∞
T (kp + e,kq + e1,kq + e2,kp + e3)B

∗
2(e1, t)B2(e2, t)B1(e3, t)

× δ(e+ e1 − e2 − e3)de1de2de3

+

∫ ∫ ∫ ∞

−∞
T (kp + e,kq + e1,kp + e2,kq + e3)B

∗
2(e1, t)B1(e2, t)B2(e3, t)

× δ(e+ e1 − e2 − e3)de1de2de3

+

∫ ∫ ∫ ∞

−∞
T (kp + e,kp + e1,kp + e2,kp + e3)B

∗
1(e1, t)B1(e2, t)B1(e3, t)

× δ(e+ e1 − e2 − e3)de1de2de3

(14)

in which we replace k1 = kq + e1, k2 = kq + e2, k3 = kp + e3 for the first triple
integral;k1 = kq + e1, k2 = kp + e2, k3 = kq + e3 for the second and finally
k1 = kp + e1,k2 = kp + e2, k3 = kp + e3 for the third. The surface elevations
η1(x, t) and η2(x, t) for the first and second wave packets respectively for the new
variables become

η1(x, t) =

√
1 + γ

2

1

2π
exp i[kp.x− ω(kp)t].

∫ ∞

−∞
B1(e, t) exp i(e.x)

× [
|kp + e|

1

4

[γv|kp + e|
1

2 + {(1− γ2)g + (1 + γ)s|kp + e|2 − γv2|kp + e|}
1

2 ]
1

2

]de+ c.c.

(15)
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η2(x, t) =

√
1 + γ

2

1

2π
exp i[kq.x− ω(kq)t]

∫ ∞

−∞
B2(e, t) exp i(e.x)

× [
|kq + e|

1

4

[γv|kq + e|
1

2 + {(1− γ2)g + (1 + γ)s|kq + e|2 − γv2|kq + e|}
1

2 ]
1

2

]de+ c.c.

(16)

We now consider two wave packets having wave numbers k1 and k2 where k1 >
k2,both propagating along the x axis and we take two wave vectors kp and kq as

kp ≡ k1 = k1x̂,kq ≡ k2 = k2x̂ (17)

where x̂ is a unit vector along the x axis.Also we shall consider modulational
perturbation only along the x axis, so that we can take e = ex̂. Using kp = k1x̂
and e = ex̂ in equations(15),(16) and considering Taylor-expansion in powers of e
and keeping only the linear terms in e,we get the following expressions for η1(x, t)
and η2(x, t)

η1(x, t) = α1(x, t)exp[i{k1.x− ω(k1).t}] + c.c. (18)

η2(x, t) = α2(x, t)exp[i{k2.x− ω(k2).t}] + c.c. (19)

where

α1(x, t) =
1

2π

∫ ∞

−∞
λ1(e, t)exp(ie.x)de (20)

α2(x, t) =
1

2π

∫ ∞

−∞
λ2(e, t)exp(ie.x)de (21)

and

λ1(e, t) =

√
1 + γ

2
.
k

1

4

1

b
1

4

1

(1 + b
′

1e) B1(e, t) (22)

λ2(e, t) =

√
1 + γ

2
.
k

1

4

2

b
1

4

2

(1 + b
′

2e) B2(e, t) (23)

In equations (22) and (23) b1, b1, b2, b2 are given by

b1 = [{(1− γ2)g + (1 + γ)sk21 − γv2k1}
1

2 + γvk
1

2

1 ]

b
′

1 =
1

4k1
− 1

4
[
γv√
k1

+
2(1 + γ)sk1 − γv2

{(1− γ2)g + (1 + γ)sk21 − γv2k1}
]
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× 1

{(1− γ2)g + (1 + γ)sk21 − γv2k1}
1

2 + γvk
1

2

1

b2 = [{(1− γ2)g + (1 + γ)sk22 − γv2k2}
1

2 + γvk
1

2

2 ].

b
′

2 =
1

4k2
− 1

4
[
γv√
k2

+
2(1 + γ)sk2 − γv2

{(1− γ2)g + (1 + γ)sk22 − γv2k2}
]

× 1

{(1− γ2)g + (1 + γ)sk22 − γv2k2}
1

2 + γvk
1

2

2

Integrating equation(14) with respect to e and using the relations (18),(20) and
(22) the evolution equation (14) assumes the following form

i

2π

∂

∂t

∫ ∞

−∞
λ1(e, t)exp(ie.x)de−

1

2π

∫ ∞

−∞
[ω(k1 + e)− ω(k1)]λ1(e, t)exp(ie.x)de

=

√
1 + γ

2

1

2π
[

∫ ∫ ∫ ∞

−∞
T (k1 + e2 + e3 − e1,k2 + e1,k2 + e2,k1 + e3)λ

∗
2(e1, t)λ2(e2, t)λ1(e3, t)

× ω2

k2
{1− b1(e1 − e2)− b2(e1 + e2)}exp{i(e2 + e3 − e1).x}de1de2de3

+

∫ ∫ ∫ ∞

−∞
T (k1 + e2 + e3 − e1,k2 + e1,k1 + e2,k2 + e3)λ

∗
2(e1, t)λ1(e2, t)λ2(e3, t)

× ω2

k2
{1− b1(e1 − e3)− b2(e1 + e3)}exp{i(e2 + e3 − e1).x}de1de2de3

+

∫ ∫ ∫ ∞

−∞
T (k1 + e2 + e3 − e1,k1 + e1,k1 + e2,k1 + e3)λ

∗
1(e1, t)λ1(e2, t)λ1(e3, t)

× ω1

k1
{1− 2b1e1}exp{i(e2 + e3 − e1).x}de1de2de3]

(24)

Writing k1 + e = (k1 + e)x̂ in ω(k1 + e) and expanding in powers of e up to
third degree, we get the following expression of left hand side of equation(24) after
evaluation of Fourier inversion integrals.

i
∂α1

∂t
+ i

ω1

k1(1 + γ)
Q1

∂α1

∂x
− ω1

k21(1 + γ)
Q2

∂2α1

∂x2
− i

ω1

k31(1 + γ)
Q3

∂3α1

∂x3
(25)

where

Q1 =
1

2
[γv +

(1− γ2)g − 2γv2k1 + 3(1 + γ)sk21
γv + (1− γ2)g − 2γv2k1 + 3(1 + γ)sk21

]

Q2 =
1

8
[γv +

(1− γ2)g − 2γv2k1 + 3(1 + γ)sk21
γv + (1− γ2)g − 2γv2k1 + 3(1 + γ)sk21

]
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Q3 =
3

16
[γv +

(1− γ2)g − 2γv2k1 + 3(1 + γ)sk21
γv + (1− γ2)g − 2γv2k1 + 3(1 + γ)sk21

]

As modulational perturbations are considered to take place along the x-axis only,
we set ei = eix̂ (i = 1, 2, 3) in the arguments of T appearing on the right hand side
of equation(24).Now we make Taylor expansions of them in powers of ei (i = 1, 2, 3)
up to first degree in these variables in which we have used the following notations

s(k) =
sk2

g
, si = s(ki), ωi = ω(ki), (i = 1, 2), m =

k2
k1
, n =

ω2

ω1
, cg =

dω(k)

dk

The right hand side of equation (24) now becomes

√
1 + γ

2

1

2π
[

∫ ∫ ∫ ∞

−∞

ω2

k2
T1 λ

∗
2(e1, t)λ2(e2, t)λ1(e3, t) exp{i(e2 + e3 − e1).x}de1de2de3

+

∫ ∫ ∫ ∞

−∞

ω2

k2
T2 λ

∗
2(e1, t)λ1(e2, t)λ2(e3, t) exp{i(e2 + e3 − e1).x}de1de2de3

+

∫ ∫ ∫ ∞

−∞

ω1

k1
T3 λ

∗
1(e1, t)λ1(e2, t)λ1(e3, t) exp{i(e2 + e3 − e1).x}de1de2de3]

(26)

where

T1 = T (k1 + e2 + e3 − e1,k2 + e1,k2 + e2,k1 + e3)[1− p1(e1 − e2)− p2(e1 + e2)]

T2 = T (k1 + e2 + e3 − e1,k2 + e1,k1 + e2,k2 + e3)[1− p1(e1 − e3)− p2(e1 + e3)]

T3 = T (k1 + e2 + e3 − e1,k1 + e1,k1 + e2,k1 + e3)[1− 2p1e1]

and

p1 =
1

4k1
− 1

4
[
γv√
k1

+
2(1 + γ) s1k1

− γv2

{(1− γ2) + (1 + γ)s1 − γv2k1}
]

× 1

{(1− γ2) + (1 + γ)s1 − γv2k1}
1

2 + γvk21

p2 =
1

4k2
− 1

4
[
γv√
k2

+
2(1 + γ) s2k2

− γv2

{(1− γ2) + (1 + γ)s2 − γv2k2}
]

× 1

{(1− γ2) + (1 + γ)s2 − γv2k2}
1

2 + γvk22

We next introduce the following dimensionless variables
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α
′

1 = k1α1, α
′

2 = k2α2, x
′
= k2x, t

′
= ω2t, u

′
=

√
k2/g v (27)

in the expressions (25) and (26). Now deleting the primes and taking the Fourier
inversion integrals of expression (26) we get the following nonlinear evolution equa-
tion for the first wave packet in the presence of second wave packet.

i(
∂α1

∂t
+ γ

(1)
1

∂α1

∂x
) + γ

(1)
2

∂2α1

∂x2
+ iγ

(1)
3

∂3α1

∂x3
= δ

(1)
1 α2

1α
∗
1 + iδ

(1)
2 α1α

∗
1

∂α1

∂x

+ iδ
(1)
3 α2

1

∂α∗
1

∂x
+ δ

(1)
4 α1H[

∂

∂x
(α1α

∗
1)] + ζ

(1)
1 α1α2α

∗
2 + iζ

(1)
2 α2α

∗
2

∂α1

∂x

+ iζ
(1)
3 α1α

∗
2

∂α2

∂x
+ iζ

(1)
4 α1α2

∂α∗
2

∂x
+ ζ

(1)
5 α1H[

∂

∂x
(α2α

∗
2)]

(28)

where H is the Hilbert transform operator given by

H(θ) =
1

π
P

∫ ∞

−∞

θ(ξ)

ξ − x
dξ (29)

The above coefficients γ
(1)
i (i = 1, 2, 3), δ

(1)
i (i = 1, 2, 3, 4) and ζ

(1)
i (i = 1, 2, 3, 4, 5)

appearing in equation(28) are given in the Appendix. In the absence of the second
wave and for u = 0, γ = 0 the coupled equations reduce to a single equation (2.20)
of Hogan[14]. Also in the absence of the second wave and for s = 0, we recover the
evolution equation (34) of Dhar and Das[5] for a single gravity wave train.
Proceeding in the same way and making an interchange between the suffixes p

and q in the evolution equation (14), we obtain the following nonlinear evolution
equation for the second wave packet in the presence of first wave packet.

i(
∂α2

∂t
+ γ

(2)
1

∂α2

∂x
) + γ

(2)
2

∂2α2

∂x2

+ iγ
(2)
3

∂3α2

∂x3
= δ

(2)
1 α2

2α
∗
2 + iδ

(2)
2 α2α

∗
2

∂α2

∂x

+ iδ
(2)
3 α2

2

∂α∗
2

∂x
+ δ

(2)
4 α2H[

∂

∂x
(α2α

∗
2)] + ζ

(2)
1 α2α1α

∗
1 + iζ

(2)
2 α1α

∗
1

∂α2

∂x

+ iζ
(2)
3 α2α

∗
1

∂α1

∂x
++iζ

(2)
4 α2α1

∂α∗
1

∂x
+ ζ

(2)
5 α2H[

∂

∂x
(α1α

∗
1)]

(30)

where the coefficients γ
(2)
i (i = 1, 2, 3), δ

(2)
i (i = 1, 2, 3, 4) and ζ

(2)
i (i = 1, 2, 3, 4, 5)

are given in the Appendix.

4. Stability Analysis

The uniform wave train solutions of the coupled equations (28) and (30) are given
by

α1 = α01 exp(−i∆ω1t) (31)
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α2 = α02 exp(−i∆ω2t) (32)

where α01 and α02 are real constants.Substituting equations (31) and (32) in equa-
tions (28) and (30)respectively,the amplitude dependent nonlinear frequency shifts
of the two waves ∆ω1 and ∆ω2 are

∆ω1 = δ
(1)
1 α2

01 + ζ
(1)
1 α2

02 (33)

∆ω2 = δ
(2)
1 α2

02 + ζ
(2)
1 α2

01 (34)

The dimensionless wave numbers of the first and second wave are k1/k2 and 1
respectively.Therefore the amplitude dependent shifts in phase speeds ∆c1 and
∆c2 of the two waves are the following

∆c1 =
∆ω1

k1/k2
= m(δ

(1)
1 α2

01 + ζ
(1)
1 α2

02) (35)

∆c2 = ∆ω2 = δ
(2)
1 α2

02 + ζ
(2)
1 α2

01 (36)

To study modulational stability of two wave trains we introduce the following
perturbations in the uniform solutions

α1 = α01[1+α
′

1(ξ, t)]exp(−i∆ω1t) (37)

α2 = α02[1+α
′

2(ξ, t)]exp(−i∆ω2t) (38)

where α
′

1(ξ, t), α
′

2(ξ, t) are small perturbations of amplitudes α1 and α2 respectively.
Inserting equations(37) and (38) in two evolution equations (28) and (30) respec-

tively and then linearizing with respect to α
′

1 and α
′

2, we obtain the following two
equations

i(
∂α

′

1

∂t
+ γ

(1)
1

∂α
′

1

∂x
) + γ

(1)
2

∂2α
′

1

∂x2
+ iγ

(1)
3

∂3α
′

1

∂x3

= δ
(1)
1 α

′

1
2α

′

1
∗ + iδ

(1)
2 α

′

1α
′

1
∗∂α

′

1

∂x
+ iδ

(1)
3 α

′

1
2∂α

′

1
∗

∂x

+ δ
(1)
4 α

′

1H[
∂

∂x
(α

′

1α
′

1
∗)] + ζ

(1)
1 α

′

1α
′

2α
′

2
∗ + iζ

(1)
2 α

′

2α
′

2
∗∂α

′

1

∂x

+ iζ
(1)
3 α

′

1α
′

2
∗∂α

′

2

∂x
+ iζ

(1)
4 α

′

1α
′

2

∂α
′

2
∗

∂x
+ ζ

(1)
5 α

′

1H[
∂

∂x
(α

′

2α
′

2
∗)]

(39)
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i(
∂α

′

2

∂t
+ γ

(2)
1

∂α
′

2

∂x
) + γ

(2)
2

∂2α
′

2

∂x2
+ iγ

(2)
3

∂3α
′

2

∂x3

= δ
(2)
1 α

′

2
2α

′

2
∗ + iδ

(2)
2 α

′

2α
′

2
∗∂α

′

2

∂x
+ iδ

(2)
3 α

′

2
2∂α

′

2
∗

∂x

+ δ
(2)
4 α

′

2H[
∂

∂x
(α

′

2α
′

2
∗)] + ζ

(2)
1 α

′

2α
′

1α
′

1
∗ + iζ

(2)
2 α

′

1α
′

1
∗∂α

′

2

∂x

+ iζ
(2)
3 α

′

2α
′

1
∗∂α

′

1

∂x
+ iζ

(2)
4 α

′

2α
′

1

∂α
′

1
∗

∂x
+ ζ

(2)
5 α

′

2H[
∂

∂x
(α

′

1α
′

1
∗)]

(40)

Setting α
′

1 = α
(1)
r + iα

(1)
i and α

′

2 = α
(2)
r + iα

(2)
i in the above two equations (39)

and (40) respectively where α
(1)
r , α

(1)
i , α

(2)
r , α

(2)
i are real and then assuming the

space time dependence of α
(1)
r , α

(2)
r , α

(1)
i , α

(2)
i is of the form exp i(µx − Ωt) and

finally equating real and imaginary parts on both sides of each equation we get the
following four coupled equations,

A1α
(1)
r +B1α

(2)
r − i(Ω− C

(+)
1 )α

(1)
i −D

(−)
1 α

(2)
i = 0 (41)

i(Ω− C
(−)
1 )α(1)

r + iD
(+)
1 α(2)

r + E1α
(1)
i = 0 (42)

A2α
(2)
r +B2α

(1)
r − i(Ω− C

(+)
2 )α

(2)
i − iD

(−)
2 α

(1)
i = 0 (43)

i(Ω−C(−)
2 )α(2)

r + iD
(+)
2 α(1)

r +E2α
(2)
i = 0 (44)

where Aj , Bj , Cj , Dj , Ej (j = 1, 2) are given by

A1 = γ
(1)
2 µ2 + 2(δ

(1)
1 − δ

(1)
4 |µ|)α2

01

B1 = 2(ζ
(1)
1 − ζ

(1)
5 |µ|)α2

01

C±
1 = γ

(1)
1 µ− γ

(1)
3 µ3 − δ

(1)
2 µα2

01 ± δ
(1)
3 µα2

01 − ζ
(1)
2 µα2

02

D±
1 = (ζ

(1)
3 ± ζ

(1)
4 )µα2

02

E1 = γ
(1)
2 µ2

A2 = γ
(2)
2 µ2 + 2(δ

(2)
1 − δ

(2)
4 |µ|)α2

02

B1 = 2(ζ
(2)
1 − ζ

(2)
5 |µ|)α2

01

C±
2 = γ

(2)
1 µ− γ

(2)
3 µ3 − δ

(2)
2 µα2

01 ± δ
(2)
3 µα2

01 − ζ
(2)
2 µα2

02

D±
2 = (ζ

(2)
3 ± ζ

(2)
4 )µα2

02

E2 = γ
(2)
2 µ2

(45)

Neglecting higher order terms,the condition for the existence of a nontrivial solu-
tion to the above four algebraic equations gives the following nonlinear dispersion
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relation

[(Ω−C1)
2−A1E1][(Ω−C2)

2−A2E2] = G(Ω−C1)(Ω−C2)−F1(Ω−C1)−F2(Ω−C2)+G
′

(46)
where

C1 = γ
(1)
1 µ− γ

(1)
3 µ3 − δ

(1)
2 µα2

01 − ζ
(1)
2 µα2

02

C2 = γ
(2)
1 µ− δ

(2)
2 µα2

02 − ζ
(2)
2 µα2

01

F1 = 2γ
(2)
2 {ζ(2)1 (ζ

(2)
1 + ζ

(1)
4 ) + ζ

(1)
1 (ζ

(2)
3 − ζ

(2)
4 )}µ3α2

01α
2
02

F2 = 2γ
(1)
2 {(ζ(1)1 + ζ

(2)
4 ) + ζ

(2)
1 (ζ

(1)
3 − ζ

(1)
4 )}µ3α2

01α
2
02

G = 2(ζ
(1)
3 ζ

(2)
3 + ζ

(1)
4 ζ

(2)
4 )µ2α2

01α
2
02

G
′
= 4γ

(1)
2 γ

(2)
2 {ζ(1)1 ζ

(2)
1 − (ζ

(1)
1 ζ

(2)
5 + ζ

(2)
1 ζ

(1)
5 )µ}µ4α2

01α
2
02.

(47)

We restrict our stability analysis to the case of nearly equal group velocities of the

two waves i.e, we assume γ
(1)
1 ≈ γ

(2)
1 . Now it can be shown from two evolution

equations that

Ω−γ(1)1 µ = O(ϵ2)

and

Ω−γ(2)1 µ = O(ϵ2)

where ϵ is a small ordering parameter, the smallness of α01, α02 and µ. The nonlin-
ear dispersion relation(46) at fourth order can be solved for the second wave train
in the presence of the first wave train as follows:

[(Ω− C2) + 0.5F2/{(Ω(2) − C2)
2 −A1E1}]2

= A2E2 + {G′ − F1(Ω
(2) − γ

(1)
1 µ)}/{(Ω(2) − C2)

2 −A1E1}
(48)

where Ω(1) and Ω(2) are the solutions of the dispersion relation (46) for the first
and second wave trains at the lowest order given by

Ω(j) = γ
(j)
1 µ± {γ(j)2 µ2(γ

(j)
2 µ2 + 2δ

(j)
1 )α2

0j}
1

2 , (j = 1, 2) (49)

The condition of instability from equation (48) of the second wave train in the
presence of first wave train is the following

A2E2+{G′−F1(Ω
(2)−γ(1)1 µ)}/{(Ω(2)−C2)

2−A1E1} < 0 (50)

The above instability condition in the absence of first wave train becomes

A2E2 < 0

that is,

γ
(2)
2 µ2{γ(2)2 µ2 + 2(δ

(2)
1 − δ

(2)
4 |µ|)α2

02} < 0 (51)
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which is similar to the instability condition of single wave packet.The instability
condition (51) in the absence of capillarity is identical with the instability condition
(57) of Dhar and Das[5].Also for u = 0, γ = 0 and in the absence of capillarity,
the above instability condition reduces to equation (3.8) of Dysthe[10].
From equation (50) the stable-unstable regions of the second wave train in the

presence of the first wave train are shown in figures 1 and 2 for two different sets of
values of wave numbers (k1, k2) = (3.0008, 0.6289) and (k1, k2) = (5.0001, 0.3394)
respectively.In the said figures, we have plotted marginal stability curves for the
second wave train of smaller wave numbers assuming an amplitude of the first wave
train of larger wave number to be a01 = 0.2.We have also plotted in figures 1 and
2 the similar curve of the second wave train in the absence of the first wave train.
From the figures it is found that the instability region of the second wave train
expands due to the presence of the first wave train. We also observe that the insta-
bility region is shortened slightly with the inclusion of fourth order terms.Further
with the increase of wind velocity,the instability region is again shortened.
The growth rate of instability I of the second wave train of longer wavelength is

given by

I = [−A2E2 −
H − F1(Ω

(2) − γ
(1)
1 µ)

(Ω(2) − C1)2 −A1E1
]
1

2 (52)

From these figures, it is found that the growth rate of instability of the second
wave train increases due to the presence of the first wave train and it increases
with the increase of the amplitude of the first wave train.We also observe that the
influence of fourth order term is to increase the growth rate of instability.Further
the growth rate of instability increases with the increase of wind velocity.
We have plotted in figures 3-6 the growth rate of instability I from equation

(52)of the second wave train against the perturbation wave number for two values
of the amplitude of the first wave train and for two different values of wind velocity.
These curves are shown in figures 3,4 and in figures 5,6 for two sets of values of wave
numbers (k1, k2) = (3.0008, 0.6289) and (k1, k2) = (5.0001, 0.3394) respectively.In
the said figures,we have plotted the growth rate of instability curves for the sec-
ond wave train in the absence of the first wave train and also have plotted the
corresponding curves that can be obtained from third order evolution equations.
In the figures 1-6 for the wave numbers k1 and k2 that we have considered here,

the first and second waves fall in the categories of capillary-gravity wave and gravity
wave respectively.Therefore, these figures show stable-unstable regions and growth
rate of instabilities of a surface-gravity wave train in the presence of capillary
gravity wave train.
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Figure 1. Stable-unstable regions of the second wave train for some different values of dimensionless wind
velocity u written on the graphs.Here (k1, k2) = (3.0008, 0.6289). —————– represents fourth order
results and ................. represents third order results.

Figure 2. Stable-unstable regions of the second wave train for some different values of dimensionless wind
velocity u written on the graphs.Here (k1, k2) = (5.0001, 0.3394). —————– represents fourth order
results and ................. represents third order results.

5. Discussion and Conclusion

The reason for starting from fourth order nonlinear evolution equation is moti-
vated by the fact , as shown by Dysthe[10],that a fourth order nonlinear evolution
equation is a good starting point for making stability analysis of a uniform wave
train in deep water. Here we have used a general method,based on Zakharov in-
tegral equation for the derivation of evolution equations. The instability condition
is obtained of a wave of greater wavelength in the presence of a wave of shorter
wavelength. The two evolution equations are then used to investigate the stability
analysis of a uniform surface gravity wave train in the presence of another capillary
gravity wave train having the same group velocity. In this paper we have derived
analytically two coupled fourth order nonlinear evolution equations in deep water
for two capillary gravity wave packets propagated in the same direction in the pres-
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Figure 3. Growth rate of instability I of the second wave train against the perturbation wave number
µ for some different values of dimensionless wind velocity u written on the graphs. Here (k1, k2) =
(3.0008, 0.6289), α02 = 0.05. —————– represents fourth order results and ................. represents third
order results.

Figure 4. Growth rate of instability I of the second wave train against the perturbation wave number
µ for some different values of dimensionless wind velocity u written on the graphs. Here (k1, k2) =
(3.0008, 0.6289), α02 = 0.1. —————- represents fourth order results and ................ represents third
order results.

ence of wind flowing over water. Instability regions are plotted in figures 1 and 2
for two sets of values of wave numbers and for different values of non-dimensional
wind velocity. It is found that the instability regions for a surface gravity wave
train in the presence of a capillary gravity wave train expand with the increase
of wave steepness of the capillary gravity wave train for fixed value of the wind
velocity. Again with the increase of the wind velocity, the instability regions are
shortened for fixed value of wave steepness of the capillary gravity wave train. The
growth rate of instability of a uniform wave train with smaller wave number has
been plotted in figures 3-6 against perturbation wave number for two values of
the amplitude of the wave train of greater wave number and for different values
of wind velocity. From the figure it is observed that the presence of a wave train
of smaller wavelength increases the growth rate of instability of a uniform wave
train of larger wavelength for fixed value of the wind velocity. Further the growth
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Figure 5. Growth rate of instability I of the second wave train against the perturbation wave number
µ for some different values of dimensionless wind velocity u written on the graphs. Here (k1, k2) =
(5.0001, 0.3394), α02 = 0.05. —————– represents fourth order results and .................. represents third
order results.

Figure 6. Growth rate of instability I of the second wave train against the perturbation wave number
µ for some different values of dimensionless wind velocity u written on the graphs. Here (k1, k2) =
(5.0001, 0.3394), α02 = 0.1. —————– represents fourth order results and .................. represents third
order results.

rate of instability increases with the increase of wind velocity for fixed value of
the amplitude of the first wave train. In the figures 1-6, for the stable-unstable
region and for growth rate of instability, we also find a comparison between third
and fourth order, results . We observe that at fourth order instability regions get
reduced slightly and the growth rate of instability are increased slightly.

6. Appendices

γ
(1)
1 =

m

2(1 + γ)n
[γu+

R
(1)
2

(γu+R
(1)
1 )

]
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γ
(1)
2 =

−m2

8(1 + γ)n
[
4R

(1)
1 {3(1 + γ)s1 − γu2} −R

(1)
2

2

R
(1)
1

2
]

γ
(1)
3 =

−3m3

16(1 + γ)n
[
−4R

(1)
1 R

(1)
2 {3(1 + γ)s1 − γu2}+ 8(1 + γ)R
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1

2
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(1)
1

3
]
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(2)
1 =

m

2(1 + γ)n
[γu+

R
(2)
2

(γu+R
(2)
1 )

]

γ
(2)
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−m2

8(1 + γ)n
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(2)
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−4R

(2)
1 R

(2)
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3
]

δ
(1)
1 =

√
1 + γ

16n
[
γu+ 7(1− γ2) +R

(1)
1 + γu2 + 2(1 + γ)s21

R
(1)
1 (γu+ 1− γ2 − 2(1 + γ)s1

]

δ
(1)
2 =

−3
√
1 + γ m

16n
[
γu+ 7(1− γ2) +R

(1)
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1
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]
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−
√
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δ
(2)
4 =

√
1 + γ

2
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ζ
(1)
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√
1 + γ

8m3
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√
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+m(3 + 2γu2 + 2s1)−
n
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ζ
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√
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R
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R
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