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1. Introduction

The concept of frame in Hilbert spaces has been introduced by Duffin and Schaef-
fer[11] in 1952 to study some deep problems in nonharmonic Fourier series, rein-
troduced in 1986 by Daubechies, Grossmann, and Meyer[9], frame theory began
to be widely used, particularly in the more specialized context of wavelet frames
and Gabor frames. Traditionally, frames have been used in signal processing, image
processing, data compression and sampling theory. A frame is a countable family of
vectors in a separable Hilbert space which allows a stable, not necessarily unique,
decomposition of an arbitrary element into an expansion of the frame elements. The
fusion frames which were introduced by Casazza and Kutyniok in [3] and Fornasier
in [13] are a natural generalization of frame theory and related to the construction
of global frame from local frames in Hilbert spaces. In addition a similar idea was
used by Sun [18]. We extend some of known results of frames to fusion frames.
The paper is organized as follows: In §2, we first briefly recall the definitions and

basic properties, then we get several characterizations of fusion frames. In §3, we
study the erasure of subspaces of a fusion frame.
Let H be a separable Hilbert space and let I, J, Ji be countable (or finite) index

sets. If W is a closed subspace of H, we denote the orthogonal projection of H
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onto W by πW . Let B(H,K) be the set of bounded linear operators from H into
K, then we denote the range and the null space of T ∈ B(H,K) by RT and NT ,
respectively.
A family of vectors F = {fi}i∈I is called a frame for H if there exist constants

0 < A 6 B < ∞ such that,

A∥f∥2 6
∑
i∈I

| < f , fi > |2 6 B∥f∥2 for all f ∈ H. (1)

The constants A and B are called frame bounds. If we only have the right-hand
inequality of (1), we call F a Bessel sequence. The representation space associated
with a frame is ℓ2(I). If F = {fi}i∈I is a Bessel sequence, the synthesis operator for
F is the bounded linear operator TF : ℓ2(I) → H, given by TF ({ci}i∈I) =

∑
i∈I cifi.

The analysis operator for F is T ∗
F : H → ℓ2(I) and satisfies: T ∗

Ff = {< f, fi >}i∈I .
By composing TF and T ∗

F we obtain the frame operator

SF : H → H, SFf = TFT
∗
Ff =

∑
i∈I

< f, fi > fi,

which is a positive, self-adjoint and invertible operator and the following recon-
struction formula holds for all f ∈ H:

f =
∑
i∈I

< f, f̃i > fi =
∑
i∈I

< f, fi > f̃i.

where f̃i = S−1
F fi (i ∈ I). Also F̃ = {f̃i}i∈I is a frame for H and called the

canonical dual frame of F = {fi}i∈I . In general, the Bessel sequence G = {gi}i∈I
is called a dual of the frame F = {fi}i∈I if the following formula holds

f = TFT
∗
G(f) =

∑
i∈I

< f, gi > fi ∀f ∈ H.

Moreover a Riesz basis for H is a family of the form {U(ej)}j∈J , where {ej}j∈J is
an orthonormal basis for H and U : H → H is a bounded bijective operator. For
more details about the theory and applications of frames and Riesz bases we refer
the reader to [7, 8, 12, 15, 16, 19].

2. Review of Fusion Frames

In this section we briefly recall the basic definitions and results which we will
need later. We also present some useful new results about fusion frames. For more
information we refer the reader to [1, 5, 6, 10, 14, 17].
Let W = {Wi}i∈I be a sequence of closed subspaces in H, and let A = {αi}i∈I

be a family of weights, i.e., αi > 0 for all i ∈ I. We say that Wα = {(Wi, αi)}i∈I is
a fusion frame for H, if there exist constants 0 < C 6 D < ∞ such that,

C∥f∥2 6
∑
i∈I

α2
i ∥πWi

(f)∥2 6 D∥f∥2 for all f ∈ H. (2)

The numbers C,D are called the fusion frame bounds. The family Wα is called a
C-tight fusion frame if C = D, it is a Parseval fusion frame if C = D = 1, and a v-
uniform if α = αi = αj for all i, j ∈ I. If the right-hand inequality of (2) holds, then
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we say that Wα is a Bessel fusion sequence with Bessel fusion bound D. Moreover
W = {Wi}i∈I is called an orthonormal fusion basis for H if H =

⊕
i∈I Wi.

In order to analyze a signal f ∈ H. we denote the representation space associated
with a fusion frame by

ℓ2(H, I) =
{
{fk}k∈I |fk ∈ H and

∑
k∈I

∥fk∥2 < ∞
}

The synthesis operator TWα
: ℓ2(H, I) −→ H is defined by

TWα
({fi}i∈I) =

∑
i∈I

αiπWi
(fi) ∀{fi}i∈I ∈ ℓ2(H, I)

and the associated adjoint operator T ∗
Wα

: H −→ ℓ2(H, I) given by

T ∗
Wα

(f) = {αiπWi
(f)}i∈I ∀f ∈ H

is called the analysis operator. Let {ej}j∈J be an orthonormal basis for H. De-
fine eij = {δikej}k∈I for all i ∈ I, j ∈ J where δik is the Kronecker delta, then
{eij}i∈I,j∈J is an orthonormal basis for ℓ2(H, I). The sequence {eij}i∈I,j∈J is called
the associated orthonormal basis to {ej}j∈J in ℓ2(H, I). By composing TWα

and
T ∗
Wα

we obtain the frame operator

SWα
: H −→ H , SWα

(f) = TWα
T ∗
Wα

(f) =
∑
i∈I

α2
i πWi

(f), (3)

which is a bounded, invertible, and positive operator. This provides the reconstruc-
tion formula

f =
∑
i∈I

α2
iS

−1
Wα

πWi
(f) =

∑
i∈I

α2
i πWi

S−1
Wα

(f) ∀f ∈ H. (4)

Indeed, it can be proven that, a sequenceWα is a Bessel fusion sequence with Bessel
fusion bound D for H if and only if the synthesis operator TWα

is a well-defined
bounded operator from ℓ2(H, I) into H and ∥TWα

∥ 6
√
D.

The next theorem is analog of a well-known result in abstract frame theory. The
similar characterization of fusion frames has been proved in [3].

Theorem 2.1 Let W = {Wi}i∈I be a family of closed subspaces in H, and let
A = {αi}i∈I be a family of weights. Then the following conditions are equivalent:

(i) Wα = {(Wi, αi)}i∈I is a fusion frame for H.
(ii) The synthesis operator TWα

is bounded, linear and onto.
(iii) The analysis operator T ∗

Wα
is injective with closed range.

Proof This claim holds in an analogous way as in frame theory. �

Theorem 2.2 Let {ej}j∈J be an orthonormal basis for H, and let Wα =
{(Wi, αi)}i∈I be a Parseval fusion frame for H. Then there exists a Hilbert space
K ⊇ H and an orthonormal fusion basis {Ni}i∈I for K such that P (Ni) = Wi

(i ∈ I), where P is the orthogonal projection from K onto H.
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Proof Let K = ℓ2(H, I) and let Θ : H → K defined by

Θ(f) = {αkπWk
(f)}k∈I =

∑
i∈I

∑
j∈J

< αiπWi
(f), ej > eij

for all f ∈ H. Since Wα is a Parseval fusion frame for H, we have

∥Θ(f)∥2 =
∑
i∈I

α2
i ∥πWi

(f)∥2 = ∥f∥2.

Thus Θ is well- defined and is an isometry. So we can embed H into K. By identi-
fying H with Θ(H), we can regard H as a closed subspace of K. Let P : K → Θ(H)
be the orthogonal projection. Then for each i ∈ I, j ∈ J and f ∈ H we obtain.

< Θ(f), eij > =<
∑
m∈I

∑
n∈J

< αmπWm
(f), en > emn, eij >

=
∑
m∈I

∑
n∈J

< αmπWm
(f), en >< emn, eij >

=< αiπWi
(f), ej >=< f, αiπWi

(ej) >

Further

< Θ(f), P (eij) > =< PΘ(f), eij >=< Θ(f), eij >

=< f, αiπWi(ej) >=< Θ(f),Θ(αiπWi
(ej)) >

Thus P (eij)−Θ(αiπWi
(ej)) ⊥ Θ(H). But RP = Θ(H) hence

P (eij) = Θ(αiπWi
(ej)).

If for each i ∈ I we take Ni = span{eij}j∈J , then {Ni}i∈I is an orthonormal
fusion basis for K. We claim that P (Ni) = Θ(Wi) (i ∈ I). Let f ∈ Ni and write
f =

∑
j∈J cjeij , then

P (f) =
∑
j∈J

cjP (eij) =
∑
j∈J

cjΘ(αiπWi
(ej))

= Θ(
∑
j∈J

cjαiπWi
(ej)) ∈ Θ(Wi)

For the converse let f ∈ Wi, then

Θ(f) = Θ(πWi
(f)) = ΘπWi

(
∑
j∈J

< f, ej > ej) =
∑
j∈J

< x, ej >

αi
Θ(αiπWi

(ej))

=
∑
j∈J

< x, ej >

αi
P (eij) = P (

∑
j∈J

< f, ej >

αi
eij) ∈ P (Ni)

It follows that P (Ni) = Wi. �

Theorem 2.3 Let Wα be a fusion frame for H. Then there is an orthonormal
fusion basis N = {Ni}i∈I for ℓ2(H, I) such that TWα

(Ni) = Wi for every i ∈ I.
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Proof Let {ej}j∈J be an orthonormal basis for H, then Fi = {πWi
(ej)}j∈J is a

Parseval frame for Wi and hence Wi = span{πWi
(ej)}j∈J . Let {eij}i∈I,j∈J be the

associated orthonormal basis to {ej}j∈J for ℓ2(H, I), and let Ni = span{eij}j∈J .
Then N = {Ni}i∈I is an orthonormal fusion basis for ℓ2(H, I). Now if f ∈ Ni, then
we can write f =

∑
j∈J < f, eij > eij , thus

TWα
(f) =

∑
j∈J

< f, eij > TWα
(eij) =

∑
j∈J

αi < f, eij > πWi
(ej),

this shows that TWα
(f) ∈ Wi. Finally if g ∈ Wi, then we have

g =
∑
j∈J

< g, πWi
(ej) > πWi

(ej) =
∑
j∈J

1

αi
< g, ej > TWα

(eij)

= TWα

(∑
j∈J

1

αi
< g, ej > eij

)
.

Thus g ∈ TWα
(Ni). Altogether we have TWα

(Ni) = Wi. �

Theorem 2.4 Let Wα = {(Wi, αi)}i∈I be a fusion frame for H, and let {eij}j∈Ji

be an orthonormal basis for each subspace Wi. Then there exists an orthonormal
fusion basis N = {Ni}i∈I for H and a bounded, surjective operator U : H −→ H
such that U(Ni) = Wi.

Proof According [3, Theorem 3.2] {αieij}i∈I,j∈Ji
is a frame for H. Let {uij}i∈I,j∈Ji

be an arbitrary orthonormal basis for H. By [7, Theorem 5.5.5] there is a bounded,
surjective operator U : H −→ H such that U(uij) = αieij for all i ∈ I, j ∈ Ji.
Define Ni = span{uij}j∈Ji

, then N = {Ni}i∈I is an orthonormal fusion basis for
H and U(Ni) = Wi. �

Theorem 2.5 Let Wα = {(Wi, αi)}i∈I and Zβ = {(Zj , βj)}j∈J be fusion frame
sequences and let P1, P2 denote the orthogonal projections of H onto span{Wi}i∈I ,
span{Zj}j∈J , respectively. Then

(i) The family {(Wi, Zj , αi, βj)}i∈I,j∈J is a Bessel fusion sequence for H.
(ii) The family {(Wi, Zj , αi, βj)}i∈I,j∈J is a fusion frame sequence if and only if there

exists a K > 0 such that for all f ∈ span{Wi, Zj}i∈I,j∈J

∥P1(f)∥2 + ∥P2(f)∥2 > K∥f∥2.

Proof Let C1, D1 be the frame bounds for Wα and let C2, D2 be the bounds for
Zβ respectively. Then
(i) For each f ∈ H we have

∑
i∈I

α2
i ∥πWi

(f)∥2 +
∑
j∈J

β2
j ∥πZj

(f)∥2 =
∑
i∈I

α2
i ∥πWi

(P1f)∥2 +
∑
j∈J

β2
j ∥πZj

(P2f)∥2

6 D1∥P1(f)∥2 +D2∥P2(f)∥2 6 2max{D1, D2}∥f∥2.

(ii) Let {(Wi, Zj , αi, βj)}i∈I,j∈J be a fusion frame sequence with fusion frame
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bounds C,D. Then for all f ∈ span{Wi, Zj}i∈I,j∈J we have

C∥f∥2 6
∑
i∈I

α2
i ∥πWi

(f)∥2 +
∑
j∈J

β2
j ∥πZj

(f)∥2 =
∑
i∈I

α2
i ∥πWi

(P1f)∥2 +
∑
j∈J

β2
j ∥πZj

(P2f)∥2

6 D1∥P1(f)∥2 +D2∥P2(f)∥2 6 max{D1, D2}(∥P1(f)∥2 + ∥P2(f)∥2).

To prove the converse implication suppose there exist some K > 0 such that for
all f ∈ span{Wi, Zj}i∈I,j∈J

∥P1(f)∥2 + ∥P2(f)∥2 > K∥f∥2.

Then we have∑
i∈I

α2
i ∥πWi

(f)∥2 +
∑
j∈J

β2
j ∥πZj

(f)∥2 =
∑
i∈I

α2
i ∥πWi

(P1f)∥2 +
∑
j∈J

β2
j ∥πZj

(P2f)∥2

> C1∥P1(f)∥2 + C2∥P2(f)∥2

> min{C1, C2}(∥P1(f)∥2 + ∥P2(f)∥2)

> Kmin{C1, C2}∥f∥2.

for all f ∈ span{Wi, Zj}i∈I,j∈J . The upper frame bound follows immediately
from(i). �

In the next theorem we consider direct sum of fusion frames which is a fusion
frame for their direct sum space.

Theorem 2.6 Let
{
{(Wij , αi)}i∈I : j = 1, 2, . . . , k

}
be a k-tuple of fusion frames

for Hilbert spaces Hj(1 6 j 6 k), respectively. Then {(Wi1⊕Wi2⊕· · ·⊕Wik, αi)}i∈I
is a fusion frame for H1 ⊕H2 ⊕ · · · ⊕ Hk.

Proof It is enough to prove the theorem for k = 2. Let Cj , Dj be the frame bounds
for {(Wij , αi)}i∈I (j = 1, 2). Since πWi1⊕Wi2

= πWi1
⊕ πWi2

for all i ∈ I, then we
have

min{C1, C2}∥f ⊕ g∥2 = min{C1, C2}(∥f∥2 + ∥g∥2) 6 C1∥f∥2 + C2∥g∥2

6
∑
i∈I

α2
i ∥πWi1

(f)∥2 +
∑
i∈I

α2
i ∥πWi2

(g)∥2 6 D1∥f∥2 +D2∥g∥2

6 max{D1, D2}(∥f∥2 + ∥g∥2) = max{D1, D2}∥f ⊕ g∥2,

for all f ∈ H1. g ∈ H2. Now we observe that∑
i∈I

α2
i ∥πWi1

(f)∥2 +
∑
i∈I

α2
i ∥πWi2

(g)∥2 =
∑
i∈I

α2
i ∥πWi1⊕Wi2

(f ⊕ g)∥2.

This shows that {(Wi1 ⊕Wi2, αi)}i∈I is a fusion frame with fusion frame bounds
min{C1, C2} and max{D1, D2}. �

Corollary 2.7 Let
{
{(Wij , αi)}i∈I : j = 1, 2, . . . , k

}
be a k-tuple of Parseval

fusion frames for Hj (1 6 j 6 k), respectively. Then {(Wi1⊕Wi2⊕· · ·⊕Wik, αi)}i∈I
is a Parseval fusion frame for H1 ⊕H2 ⊕ · · · ⊕ Hk.

Proof This follows immediately from Theorem 2.6. �
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3. Erasures of Subspaces

Our purpose of this section is to study the conditions which under to remove an
element from a fusion frame, again we obtain another fusion frame. We say that
Wυ is an exact fusion frame, if it ceases to be fusion frame whenever anyone of its
element is removed.
Now we state an useful result of fusion frames that proved in [2].

Theorem 3.1 Let Wυ = {(Wi, vi)}i∈I be a fusion frame for H, and let i ∈ I and
Ti ∈ B(H,Wi). If f ∈ H and f =

∑
i∈I v

2
i Ti(f).Then we have

(i)
∑

i∈I v
2
i ∥ Ti(f) ∥2=

∑
i∈I v

2
i ∥ πWi

S−1
Wυ

(f) − Ti(f) ∥2 +
∑

i∈I v
2
i ∥

πWi
S−1
Wυ

(f) ∥2

(ii)
∑

i∈I v
2
i ∥ πWi

S−1
Wυ

(f)− πWi
(f) ∥2 +

∑
i∈I v

2
i ∥ πWi

S−1
Wυ

(f)− Ti(f) ∥2
=

∑
i∈I v

2
i ∥ Ti(f)− πWi

(f) ∥2 .

Proof See [2, Theorem 2.2]. �

Corollary 3.2 Let Wυ be a fusion frame for H, and let TWυ
be associated syn-

thesis operator. Then the pseudo-inverse operator T †
Wυ

: H −→ ℓ2(H, I) is given
by

T †
Wυ

(f) = {viπWi
S−1
Wυ

(f)}i∈I ∀f ∈ H. (5)

Proof Let f ∈ H, then by [8, Theorem 2.1] the equation TWυ
({fi}i∈I) = f has

exactly one solution with minimal norm, this solution is T †
Wυ

(f). The result now
follows by combining (4) and Theorem 3.1(i). �

The following theorem gives the conditions which under that with remove an
element from a fusion frame, again we obtain either another fusion frame or an
incomplete set.

Theorem 3.3 Let Wυ be a fusion frame for H with fusion frame bounds C,D and
let j ∈ I and WJ

υ = {(Wi, vi)}i∈I,i ̸=j then.

(i) If there is some g ∈ Wj − {0} such that πWj
S−1
Wυ

(g) = 1
v2
j
g, then WJ =

{Wi}i∈I,i ̸=j is an incomplete set in H.

(ii) If IdH − v2jπWj
S−1
Wυ

is a bounded, invertible operator on H. Then WJ
υ is a

fusion frame with fusion frame bounds C2

C+v2
j∥(IdH−v2

jπWj
S−1

Wυ
)−1∥2

and D.

Proof (i) Define Ti : H −→ Wi by Ti = v−2
i δijπWi

for all i ∈ I, where δij is the
Kronecker delta. Then we have

∑
i∈I v

2
i Ti(g) =

∑
i∈I δijπWi

(g) = πWj
(g) = g. Now

by Theorem 3.1(i) we compute∑
i∈I

v2i ∥ v−2
i δijπWi

(g) ∥2 =
∑
i∈I

v2i ∥ πWi
S−1
Wυ

(g)− v−2
i δijπWi

(g) ∥2

+
∑
i∈I

v2i ∥ πWi
S−1
Wυ

(g) ∥2 .

Consequently,

1

v2j
∥ g ∥2= 1

v2j
∥ g ∥2 +2

∑
i∈I

i̸=j

v2i ∥ πWi
S−1
Wυ

(g) ∥2 .
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Hence S−1
Wυ

(g) ∈
(
span{Wi}i∈I,i ̸=j

)⊥
, since S−1

Wυ
(g) ̸= 0, it follows that WJ is an

incomplete set in H.
(ii) By (4) for every f ∈ H, we have f =

∑
i∈I v

2
i S

−1
Wυ

πWi
(f), hence

πWj
(f) =

∑
i∈I

v2i πWj
S−1
Wυ

πWi
(f).

Consequently

(
IdH − v2jπWj

S−1
Wυ

)
πWj

(f) =
∑
i∈I

i̸=j

v2i πWj
S−1
Wυ

πWi
(f) .

Now by using the Schwarz inequality we compute

∥
(
IdH − v2jπWj

S−1
Wυ

)
πWj

(f) ∥2 =∥
∑
i∈I

i ̸=j

v2i πWj
S−1
Wυ

πWi
(f) ∥2

= sup
∥g∥=1

|< g ,
∑
i∈I

i ̸=j

v2i πWj
S−1
Wυ

πWi
(f) >|2

= sup
∥g∥=1

|
∑
i∈I

i ̸=j

v2i < πWi
S−1
Wυ

πWj
(g) , πWi

(f) >|2

6 sup
∥g∥=1

(∑
i∈I

i̸=j

v2i ∥ πWi
S−1
Wυ

πWj
(g) ∥∥ πWi

(f) ∥
)2

6 sup
∥g∥=1

(∑
i∈I

i̸=j

v2i ∥ πWi
S−1
Wυ

πWj
(g) ∥2

)(∑
i∈I

i̸=j

v2i ∥ πWi
(f) ∥2

)
6 1

C

(∑
i∈I

i ̸=j

v2i ∥ πWi
(f) ∥2

)
,

which implies that

C ∥ f ∥2 6
∑
i∈I

i ̸=j

v2i ∥ πWi
(f) ∥2 +v2j ∥ πWj

(f) ∥2

6
∑
i∈I

i ̸=j

v2i ∥ πWi
(f) ∥2 +v2j ∥

(
IdH − v2jπWj

S−1
Wυ

)−1 ∥2 1

C

∑
i∈I

i̸=j

v2i ∥ πWi
(f) ∥2

=
(
1 +

v2j
C

∥
(
IdH − v2jπWj

S−1
Wυ

)−1 ∥2
)∑

i∈I

i ̸=j

v2i ∥ πWi
(f) ∥2 .

Hence WJ
υ satisfies the lower fusion frame condition with lower bound as required.

Clearly WJ
υ also holds the upper fusion frame condition. �

Corollary 3.4 Suppose that Wυ is a fusion frame for H, and let j ∈ I. If
∥ S−1

Wυ
∥< 1

v2
j
, then WJ

υ is a fusion frame for H, with same fusion frame bounds in

Theorem 3.3(ii).
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Proof This claim follows immediately from the fact that we have

∥ v2jπWj
S−1
Wυ

∥6 v2j ∥ S−1
Wυ

∥< 1.

�

The following corollary is proved in [4, Corollary 3.3 (iii)]. We give another proof
of this corollary with extra information about the bounds.

Corollary 3.5 Let Wυ be a fusion frame for H with fusion frame bounds C,D
and let j ∈ I. If v2j < C, then WJ is a fusion frame with same fusion frame bounds
in Theorem 3.3(ii).

Proof The result follows from Corollary 3.4 and the following fact,

∥ S−1
Wυ

∥6 1

C
<

1

v2j
.

�

Remark 1 In Corollary 3.5 the inequality is strict. To see this, let {ei}i∈I be an
orthonormal basis for H, and define Wi = span{ei} for all i ∈ I. Then W1 =
{(Wi, 1)}i∈I is an orthonormal fusion basis for H, and so W1 is an exact Parseval
fusion frame. Indeed for each j ∈ I we have ∥ S−1

W1
∥= 1

v2
j
= 1.

Corollary 3.6 Suppose that Wυ is a fusion frame for H, and let j ∈ I. If Wj = H
and ∥ S−1

Wυ
∥≠ 1

v2
j
, then WJ

υ is a fusion frame for H, with same fusion frame bounds

in Theorem 3.3(ii).

Proof Since Wj = H, we have πWj
= IdH. Define

Ti : H −→ Wi Ti(f) = v−2
i δijπWi

(f) ∀f ∈ H.

Then by Theorem 3.1(i) we also have

< S−1
Wυ

(f) , f >=
∑
i∈I

v2i ∥ πWi
S−1
Wυ

(f) ∥26
∑
i∈I

v2i ∥ Ti(f) ∥2=
1

v2j
∥ f ∥2,

which implies that ∥ S−1
Wυ

∥6 1
v2
j
. This show that the implication holds. �

Corollary 3.7 Let Wυ be an exact fusion frame for H. Then for every i ∈ I we
have ∥ S−1

Wυ
∥> 1

v2
i
.
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