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Abstract. Many studies concerning accelerated life testing, the log linear link function between
life and stress which is just a simple re-parameterization of the original parameter of the life
distribution is used to obtain the estimates of original parameters but from the statistical point of
view, it is preferable to obtain the estimates of the original parameters directly instead of
developing inferences for the parameters of the log-linear link function. By using geometric
process one can deal with original parameters directly in accelerated life testing. In this paper the
geometric process is used to estimate the parameters of Pareto distribution with type-11 censored
data in constant stress accelerated life testing. Assuming that the lifetimes under increasing stress
levels form a geometric process, estimates of the parameters are obtained by using the maximum
likelihood method. In addition, asymptotic confidence intervals of the parameters using Fisher
information matrix are also obtained. Lastly the statistical properties of estimates of the parameters
considered in the present are illustrated by a Simulation study.
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1. Introduction

Due to the global competition for the development of new products in a short time and
to achieve customer’s satisfaction manufacturing industries continuously improving their
manufacturing design which makes today’s products and materials highly reliable. Since,
in life testing experiments, time-to-failure data is used to quantify the product’s
failure-time distribution and its associated parameters under normal operating conditions,
Therefore, Testing under normal operating conditions require a very long period of time
and need an extensive number of units under test. So it is usually costly and impractical to
perform reliability testing under normal conditions. Under these circumstances accelerated
life testing (ALT) may be the best choice to test the products. ALT is a quick way to obtain
information about the life distribution of a material, component or product in which
products are tested at higher than usual level of stress to yield shorter life but, hopefully, do
not change the failure mechanisms. Three types of stress loadings are usually applied in
ALTs: constant stress, step stress and linearly increasing stress. The constant stress
loading, which is a time-independent test setting, has several advantages over the
time-dependent stress loadings. For example, most products are assumed to operate at a
constant stress under normal use. Therefore, a constant stress test mimics actual use
conditions. Failure data obtained from ALT can be divided into two categories: complete
(all failure data are available) or censored (some of failure data are missing). Complete
data consist of the exact failure time of test units, which means that the failure time of each
sample unit is observed or known. In many cases when life data are analyzed, all units in
the sample may not fail. This type of data is called censored or incomplete data.

Constant stress ALT with different type of data and planning has been studied by many
authors. For example, Yang [1] proposed an optimal design of 4-level constant-stress ALT
plans considering different censoring times. Pan et al. [2] proposed a bivariate constant
stress accelerated degradation test model by assuming that the copula parameter is a
function of the stress level that can be described by a logistic function. Chen et al. [3]
discuss the optimal design of multiple stresses constant ALT plan on non-rectangle test
region. Watkins and John [4] considers constant stress ALTs based on Weibull
distributions with constant shape and a log-linear link between scale and the stress factor
which is terminated by a type-1I censoring regime at one of the stress levels. Fan and Yu
[5] discuss the reliability analysis of the constant stress ALTs when a parameter in the
generalized gamma lifetime distribution is linear in the stress level. Ding et al. [6] dealt
with Weibull distribution to obtain ALT sampling plans under type-1 progressive interval
censoring with random removals. Ahmad et al. [7], Islam and Ahmad [8], Ahmad and
Islam [9], Ahmad, et al. [10] and Ahmad [11] discuss the optimal constant stress ALT
designs under periodic inspection and type-I censoring.

The concept of geometric process (GP) is introduced by Lam [12], when he studied the
problem of repair replacement. Large amount of studies in maintenance problems and
system reliability have been shown that a GP model is a good and simple model for
analysis of data with a single trend or multiple trends. For example Lam and Zhang [13]
apply the GP model in the analysis of a two-component series system with one repairman.
Lam [14] studied the GP model for a multistate system and determined an optimal
replacement policy to minimize the long run average cost per unit time. Zhang [15] used
the GP to model a simple repairable system with delayed repair. So far, there are only three
studies that utilize the GP in the analysis of ALT. Huang [16] introduced the GP model for
the analysis of ALT with complete and censored exponential samples under the constant
stress. Kamal et al. [17] extended the GP model for the analysis of ALT with complete
Weibull failure data under constant stress. Zhou et al. [18] considers the GP
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implementation of the constant stress ALTmodel based on the progressive type-1 hybrid
censored Rayleigh failure data.

In this paper, the GP model is implemented in the analysis of ALT for the Pareto life
distribution under constant stress with type-1l censored data. Maximum likelihood (ML)
estimates of parameters and their asymptotic confidence intervals (Cls) are obtained. The
performance of the estimates is evaluated by a simulation study.

2. The Model and Test Procedure

2.1 The Geometric Process
A GP describes a stochastic process{X,,n =1.2,...}, where there exists a real valued
A >0 such that {/1”‘1Xn,n =12,...} forms a renewal process.The positive number 1 >0

is called the ratio of the GP. It is clear to see that a GP is stochastically increasing if
0< A <1 and stochastically decreasing if 1 > 1. Therefore, the GP is a natural approach to
analyze data from a series of events with trend.

It can be shown that if {X,,n=12,...} is a GP and the probability density function

(pdf) of X, is f(x) with mean x and variance o2 then the pdfof X, will be given be
A ) with E(X,) =/ andVar(X,)=o?/ 2" Thus 4, 4 and &2 are
three important parameters of a GP.

2.2 The Pareto Distribution
The pdf, cumulative distribution function and survival function of the Pareto

distribution with scale parameter & and shape parameter & are given respectively by
9(1

f(X):—(ng)M; x>0,6>0,a>0 1
ea
F(X)Zl— y X>0,0>0,a >0
(0+x)""
aa
S(X) = ———
) (0+x)*

2.3 Assumptions and Test Procedure
I. Suppose that we are given an ALT with s increasing stress levels. A random
sample of n identical items is placed under each stress level and start to operate at

the same time. Let x,i=12,...,n, k=12,...,sdenote observed failure time of i test
itemunder k™ stress level. Whenever an item fails, it will be removed from the test
and the test is continue until a prespecified number of failuresr at each stress level
(type-11 censoring). Here total numbers of observed failure are rand can be written

Il. The product life follows a Pareto distribution given by (1) at any stress.
I1l. The shape parameter o is constant, i.e. independent of stress.
IV. The scale parameter is a log-linear function of stress thatislogé, = a+bS;, where a

and b are unknown parameters depending on the nature of the product and the test
method.
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V. Letrandom variables X, X4, X5,..., X, denote the lifetimes under each stress level,
where X, denotes item’s lifetime under the design stress at which items will
operate ordinarily and sequence {Xk k=12,.., s}forms a GP with ratio 41 >0.

The assumption (V) which will be used in this study may be stronger than the
commonly used Assumptions (I-1V) in usual discussion of ALTSs in literature without
increasing the complexity of calculations. The next theorem discusses how the

assumption of GP (assumption V) is satisfied when there is a log linear relationship
between a life characteristic and the stress level (assumption V).

Theorem 2.1: If the stress level in an ALT is increasing with a constant difference then the
lifetimesunder each stress level forms a GP. That is, If S,,; —S, is constant for
k=12,.,s-1,then {X,,k=0,12,.,s} formsa GP.

Or Log Linear and GP model are equivalent when the stress increases arithmetically.
Proof: From assumption (I1V), it can easily be shown that

|09(%J =b(Sxy —Sy) =bAS )
k

This shows that the increased stress levels form an arithmetic sequence with a constant
difference AS .
Now (2) can be rewritten as
0,
Y1 _oms _ 1 (Assumed) @3)
6, A
It is clear from (3) that
1 1 1
O =61 =—6, ,=...=—0
k=7 01 =77 G T
The PDF of the product lifetime under the k' stress level is

a@ka

(gk + X)a+l

a{l 6’}
/'Lk _ /7,k ab?

[;{(04_)(}0#1 (9+ﬂkX)a+l

fx, (X)=

This implies that
fy, 00 =4y, (A%) (4)
Now, the definition of GP and (4) have the evidence that, if density function of X is
fx, (), then the pdf of X, will be given by/lk f(/ikx), k=012,...,s. Therefore, it is
clear that lifetimes under a sequence of arithmetically increasing stress levels form a GP

with ratio A . Now the pdf of a test item atk™ stress level by using theorem 2.1 can be
written as

X a0
+1 (5)

ka(x|a,9,1):W
+ A%
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3. The Maximum Likelihood Method of Estimation

Here the ML method of estimation is used because ML method is very robust and gives
the estimates of parameter with good statistical properties. In this method, the estimates of
parameters are those values which maximize the sampling distribution of data. However,
ML estimation method is very simple for one parameter distributions but its
implementation in ALT is mathematically more intense and, generally, estimates of
parameters do not exist in closed form, therefore, numerical techniques such as Newton
Method, Some computer programs are used to compute them.

Let n.(<n) failures times Xy <Xy S...<Xgr are observed before test

termination at the r™ failure and (n—r) units are still survived at each stress level.

Here, r is fixed in advance and t is random. Therefore the likelihood function in
constant stress ALT at one of the stress level using GP for the Pareto distribution with
type-1l censored data is given by

n-r
o r l 90{
Lk ( )|( 0!(9 ) H K o +1 K o +1
Now the likelihood function of observed data in a total s stress levels is:
L=1; xL, x..xLg
n-r
s r 1 0“
=TI (#a0)" | 1 (6)
—r)! . a+1 a+1
k=1 (n r) i=1 (9+ﬂ,k Xk(i)) (0+/’{,kxk(r))
The log-likelihood function corresponding (6) takes the form
n!
i ( )'J+krln/1+rlna+arln9 (a+1)z IN@ + A%y iy)
n—r
i=1
“l+a(n=nIne - (@ +)(n - 1In@ + Xx)
ML estimates of «,0 and A are obtained by solving the equatlonsaa—I =0 66—; =0 and
(24
a =0, where
oA
A S TS o= @+ )+ (-nin ——|l-o @)
da 3 a g i=L ‘0 (6’+ﬁkxk(r))
o & |ar a(n-r) (a+(n-r)
— ——(a+1) + - =0 ®)
0 kzzl { 0 Z 0+ ikxk(.)) 0 0+ A% (r))
a _Zs: s )Z e k(n-n(a +D) A Xy _0)
oz (9 + %)) O+ A %)

Equations (7), (8) and (9) are nonlinear; therefore, it is very difficult to obtain a closed
form solution. So, Newton-Raphson method is used to solve these equations

simultaneously to obtain a, 6 andA.
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4. Asymptotic Confidence Interval Estimates

According to large sample theory, the ML estimators, under some appropriate
regularity conditions, are consistent and normally distributed. Since ML estimates of
parameters are not in closed form, therefore, it is impossible to obtain the exact Cls, so
asymptotic Cls based on the asymptotic normal distribution of ML estimators instead of
exact Cls are obtained here.

The Fisher-information matrix composed of the negative second partial derivatives of
log likelihood function can be written as

o2l o2l o2l
0%  0a00  dadl
A %l &
oo 592 060
BRI a2l a2l
Coia 0M0 o |
Elements of the Fisher Information matrix are
6 I __TIs
oa a?
a_ i{——+(a+l)2 L aben, (a+1k)(n—r)2}
00* o 0+ %))’ 0 0+ X))

(K =1)(0 + X)) A2 = kAP X,
k=1 i=1

0+ Ak xk(i))z

2 S r
o Z{—% —k(@+1)>. xk(i){

(K =D)(O + ARy 1) )22 = kA xy )
0+ 2 %r)?

___(n-n)
O+ 2 X))

—k(n—=r)(a +1)/1k-1xk(,{

1 (n—r)
0+ Xk(.)) g

o2l &
0a06 Zl {5_

ol 2l & |r ¢ 1 (n—r) (n—-r)

= =2 157X k + - k
0ba 0add (5 |0 4 (B+4 Xiiy) 1% 0+ 2 X))
ol %l ZS: kzr: A My _k(n- N Xy
dadk 0da 5| 5 (0+X xk(,)) 0+ XX ry)

s X k(n—r)(a +1)Ax
6| 6| Z (0‘+1)Z k k(i) ( )(ak ) : k(r)

2601 0400 = = (0+Ax k(,)) (0 + 2 X(ry)

Now, the variance covariance matrix can be written as
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-1

A A A
aa%: agfl o 6g26| 4 Avar(d) ACov(af) ACov(ad)
T=|- -— - =| ACov(64) Avar(d) ACov(dA)
060 062 0601 ~ L A i
o2 22 22 ACov(Aa) ACov(46) AVar(l)
dloa 0400 ot |

where AVar and ACov are stand for asymptotic variance and covariance respectively.
Now the100(1— )% asymptotic Cls for ¢, and A can be obtained respectively as

{é 7, \ AVar(é)} , {0} £z, ,/AVar(&)} and {i 7, \ AVar(/i)}
2 2

2

5. Simulation Study

The performance of the estimates is evaluated through simulation study in which
MLEs, lower and upper CI limits (LCL and UCL) of parameters and the coverage rate of
asymptotic Cls for different sample sizes are obtained.

Now to perform the simulation study, first different  samples
Xi» k=12...8, i=12..,r ofsizesn=20,50,100 are generated from Pareto distribution
which is censored at r =12, 15. The combinations (4, «, ) of values of the parameters are
chosen to be (1.1,1.25,0.25), (1.2,1.5,0.5) and (1.3,1.75,0.75) . The number of stress levels
s is assumed to be 5throughout the study. For different sample sizes, stress levels and
numbers of censored units, the lower and upper CI limits (LCL and UCL) and the coverage

rate of the 95% CI of parameters based on 400 simulations are obtained by our proposed
model and summarized in Tables 1, 2, 3, 4, 5 and 6.

Table 1:Results based on constant stress ALT for type-I1 censored Pareto Data using GP with
A=11a=1.25 60=0.25 s=5 andr=12

Sample Parameter MLE LCL UCL 95%
Sizen Asymptotic CI
Coverage
A 1.1887 0.4181 1.8054 0.9666
20 o 1.2505 0.9679 1.4111 0.9777
0 0.2501 0.1935 0.2822 0.9837
A 1.1865 0.1896 0.9948 0.9878
50 o 1.2556 1.1309 1.7210 0.9634
17 0.2515 0.2261 0.3442 0.9583
A 1.1676 0.2313 1.1838 0.9887
100 o 1.2612 1.1251 1.7034 0.9662
0 0.2522 0.2250 0.3406 0.9562
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Table 2:Results based on constant stress ALT for type-11 censored Pareto Data using GP with
A=11a=125 60=0.25 s=5 andr=15

Sample Parameter MLE LCL UCL 95%
Size n Asymptotic ClI
Coverage
A 1.1814 0.6140 1.9407 0.9782
20 o 1.2470 0.9513 1.3254 0.9347
0 0.2489 0.1902 0.2650 0.9274
A 1.1574 0.3224 1.2337 0.9574
50 o 1.2533 1.1172 1.5997 0.9680
7 0.2506 0.2234 0.3199 0.9590
A 1.1456 0.2453 0.9802 0.9891
100 o 1.2622 1.2230 1.7699 0.9782
0 0.2518 0.2446 0.3539 0.9780

Table 3:Results based on constant stress ALT for type-I1 censored Pareto Data using GP with 4 =1.2, =1.5,

0=05s=5 andr=12

Sample Parameter MLE LCL UCL 95%
Size n Asymptotic ClI
Coverage
A 1.2762 0.6406 2.3259 0.9462
20 a 1.4998 1.1393 1.6045 0.9569
0 0.5002 0.3871 0.5644 0.9777
A 1.2656 0.2888 1.2364 0.9673
50 o 1.5086 1.3683 2.0067 0.9782
0 0.5037 0.4523 0.6884 0.9756
A 1.2582 0.3675 1.4278 0.9784
100 a 1.5129 1.2630 1.8096 0.9563
0 0.5045 0.4500 0.6813 0.9662

Table 4:Results based on constant stress ALT for type-11 censored Pareto Data using GP with 4 =1.2, = 1.5,

0=05s=5 andr=15

Sample Parameter MLE LCL UCL 95%
Sizen Asymptotic CI
Coverage
A 1.2888 0.6699 2.3052 0.9782
20 o 1.4964 1.1415 1.5905 0.9347
0 0.4988 0.3805 0.5301 0.9347
A 1.2626 0.3517 1.3459 0.9574
50 o 1.5039 1.3406 1.9197 0.9680
7 0.5013 0.4468 0.6399 0.9680
A 1.2614 0.2676 1.0693 0.9891
100 a 1.5089 1.4677 1.7916 0.9782
4 0.5037 0.4892 0.7079 0.9780
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Table 5:Results based on constant stress ALT for type-11 censored Pareto Data using GP with
A=13,0 =175 60=075s=5 andr =12

Sample Parameter MLE LCL UCL 95%
Sizen Asymptotic CI
Coverage
A 1.4145 0.4941 2.1337 0.9560
20 o 1.7475 1.3550 1.9756 0.9670
0 0.7503 0.5807 0.8467 0.9777
A 1.3862 0.2241 1.1756 0.9753
50 o 1.7746 1.5833 2.4094 0.9629
0 0.7544 0.6785 1.0326 0.9753
A 1.3798 0.2734 1.3990 0.9887
100 a 1.7657 1.5752 2.3847 0.9662
0 0.7567 0.6750 1.0220 0.9662

Table 6:Results based on constant stress ALT for type-11 censored Pareto Data using GP with
A=13a =175 6=0.75s=5 andr=15

Sample 95% .

Size n Parameter MLE LCL UCL Asymptotic
Cl Coverage

A 1.3904 0.7257 1.9356 0.9784

20 o 1.7473 1.3318 1.8556 0.9354

0 0.7482 0.5707 0.5707 0.9347

A 1.3616 0.3810 1.4580 0.9473

50 o 1.7572 1.5641 2.2396 0.9684

0 0.7531 0.6703 0.9598 0.9684

A 1.3555 0.2899 1.1584 0.9891

100 o 1.7668 1.7123 2.4779 0.9782

% 0.7556 0.7338 1.0619 0.9780

6. Discussion and Conclusions

This paper deals with use of GP model in the analysis of constant stress ALT plan for
Pareto distribution with type-1l censored data. The ML estimates of the model parameters
were obtained. Based on the asymptotic normality, the lower and upper CI limits (LCL and
UCL) and the coverage rate of 95% CI of the model parameters were also obtained.

From the results in Table 1, 2, 3, 4, 5 and 6, it is easy to find that estimates of 4,« and
A perform well. For fixed 8, and 4 we find that as sample size nincreases, the Cls
get narrower. For the fixed sample sizes N, as the number of failures r gets larger the Cls
get narrower also. This is very usual because more failures increase the efficiency of the
estimators. It is also notice that the coverage probabilities of the asymptotic Cl are close to
the nominal level and do not change much as sample size and the number of failures
increases. From these results, it may be concluded that the present model work well under
type-1l censored data.
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