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1. Introduction 

Due to the global competition for the development of new products in a short time and 
to achieve customer’s satisfaction manufacturing industries continuously improving their 
manufacturing design which makes today’s products and materials highly reliable. Since, 
in life testing experiments, time-to-failure data is used to quantify the product’s 
failure-time distribution and its associated parameters under normal operating conditions, 
Therefore, Testing under normal operating conditions require a very long period of time 
and need an extensive number of units under test. So it is usually costly and impractical to 
perform reliability testing under normal conditions. Under these circumstances accelerated 
life testing (ALT) may be the best choice to test the products. ALT is a quick way to obtain 
information about the life distribution of a material, component or product in which 
products are tested at higher than usual level of stress to yield shorter life but, hopefully, do 
not change the failure mechanisms. Three types of stress loadings are usually applied in 
ALTs: constant stress, step stress and linearly increasing stress. The constant stress 
loading, which is a time-independent test setting, has several advantages over the 
time-dependent stress loadings. For example, most products are assumed to operate at a 
constant stress under normal use. Therefore, a constant stress test mimics actual use 
conditions. Failure data obtained from ALT can be divided into two categories: complete 
(all failure data are available) or censored (some of failure data are missing). Complete 
data consist of the exact failure time of test units, which means that the failure time of each 
sample unit is observed or known. In many cases when life data are analyzed, all units in 
the sample may not fail. This type of data is called censored or incomplete data. 

Constant stress ALT with different type of data and planning has been studied by many 
authors. For example, Yang [1] proposed an optimal design of 4-level constant-stress ALT 
plans considering different censoring times. Pan et al. [2] proposed a bivariate constant 
stress accelerated degradation test model by assuming that the copula parameter is a 
function of the stress level that can be described by a logistic function. Chen et al. [3] 
discuss the optimal design of multiple stresses constant ALT plan on non-rectangle test 
region. Watkins and John [4] considers constant stress ALTs based on Weibull 
distributions with constant shape and a log-linear link between scale and the stress factor 
which is terminated by a type-II censoring regime at one of the stress levels. Fan and Yu 
[5] discuss the reliability analysis of the constant stress ALTs when a parameter in the 
generalized gamma lifetime distribution is linear in the stress level. Ding et al. [6] dealt 
with Weibull distribution to obtain ALT sampling plans under type-I progressive interval 
censoring with random removals. Ahmad et al. [7], Islam and Ahmad [8], Ahmad and 
Islam [9], Ahmad, et al. [10] and Ahmad [11] discuss the optimal constant stress ALT 
designs under periodic inspection and type-I censoring. 

The concept of geometric process (GP) is introduced by Lam [12], when he studied the 
problem of repair replacement. Large amount of studies in maintenance problems and 
system reliability have been shown that a GP model is a good and simple model for 
analysis of data with a single trend or multiple trends. For example Lam and Zhang [13] 
apply the GP model in the analysis of a two-component series system with one repairman. 
Lam [14] studied the GP model for a multistate system and determined an optimal 
replacement policy to minimize the long run average cost per unit time. Zhang [15] used 
the GP to model a simple repairable system with delayed repair. So far, there are only three 
studies that utilize the GP in the analysis of ALT. Huang [16] introduced the GP model for 
the analysis of ALT with complete and censored exponential samples under the constant 
stress. Kamal et al. [17] extended the GP model for the analysis of ALT with complete 
Weibull failure data under constant stress. Zhou et al. [18] considers the GP 
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implementation of the constant stress ALTmodel based on the progressive type-I hybrid 
censored Rayleigh failure data. 

In this paper, the GP model is implemented in the analysis of ALT for the Pareto life 
distribution under constant stress with type-II censored data. Maximum likelihood (ML) 
estimates of parameters and their asymptotic confidence intervals (CIs) are obtained. The 
performance of the estimates is evaluated by a simulation study. 

2. The Model and Test Procedure 

2.1 The Geometric Process 
A GP describes a stochastic process ,...}2,1,{ nX n , where there exists a real valued 

0  such that ,...}2,1,{ 1  nXn
n  forms a renewal process.The positive number 0  

is called the ratio of the GP. It is clear to see that a GP is stochastically increasing if 
10    and stochastically decreasing if 1 . Therefore, the GP is a natural approach to 

analyze data from a series of events with trend. 
It can be shown that if ,...}2,1,{ nX n  is a GP and the probability density function 

(pdf) of 1X  is )(xf  with mean  and variance 2 then the pdf of nX  will be given be 

)( 11 xf nn    with 1/)(  n
nXE   and )1(22 /)(  n

nXVar  . Thus ,   and 2  are 

three important parameters of a GP. 

2.2 The Pareto Distribution 
The pdf, cumulative distribution function and survival function of the Pareto 

distribution with scale parameter   and shape parameter  are given respectively by 

 
;)(

1
 






x
xf 0,0,0  x  (1) 

 
;1)(

1









x
xF 0,0,0  x  

  1
)(











x
xS  

2.3 Assumptions and Test Procedure 
I. Suppose that we are given an ALT with s  increasing stress levels. A random 

sample of n  identical items is placed under each stress level and start to operate at 

the same time. Let sknixki ,...,2,1,,...,2,1,  denote observed failure time of thi  test 

item under thk  stress level. Whenever an item fails, it will be removed from the test 
and the test is continue until a prespecified number of failures r at each stress level 
(type-II censoring). Here total numbers of observed failure are r and can be written 
as )()2()1( rkkk xxx  L . 

II. The product life follows a Pareto distribution given by (1) at any stress. 
III. The shape parameter   is constant, i.e. independent of stress. 
IV. The scale parameter is a log-linear function of stress thatis ii bSa log , where a

and b are unknown parameters depending on the nature of the product and the test 

method. 
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V. Let random variables sXXXX ,...,,, 210 , denote the lifetimes under each stress level, 

where 0X denotes item’s lifetime under the design stress at which items will 

operate ordinarily and sequence skX k ,...,2,1,  forms a GP with ratio 0 . 

The assumption (V) which will be used in this study may be stronger than the 
commonly used Assumptions (I-IV) in usual discussion of ALTs in literature without 
increasing the complexity of calculations. The next theorem discusses how the 
assumption of GP (assumption V) is satisfied when there is a log linear relationship 
between a life characteristic and the stress level (assumption IV). 
 
Theorem 2.1: If the stress level in an ALT is increasing with a constant difference then the 
lifetimesunder each stress level forms a GP. That is, If kk SS 1 is constant for

1,...,2,1  sk , then  skX k ,...,2,1,0,   forms a GP. 

Or Log Linear and GP model are equivalent when the stress increases arithmetically. 
Proof: From assumption (IV), it can easily be shown that 

SbSSb kk
k

k 









 )(log 1
1




   (2) 

This shows that the increased stress levels form an arithmetic sequence with a constant 
difference S . 

Now (2) can be rewritten as 


 11   Sb

k

k e

 
(Assumed)   (3) 

It is clear from (3) that 
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The PDF of the product lifetime under the thk stress level is 
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This implies that 

)()(
0

xfxf k
X

k
X k

     (4) 

Now, the definition of GP and (4) have the evidence that, if density function of 0X is

),(
0

xf X then the pdf of kX will be given by skxf kk ,...,2,1,0,)(  . Therefore, it is 

clear that lifetimes under a sequence of arithmetically increasing stress levels form a GP 

with ratio  . Now the pdf of a test item at thk  stress level by using theorem 2.1 can be 
written as 
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3. The Maximum Likelihood Method of Estimation 

Here the ML method of estimation is used because ML method is very robust and gives 
the estimates of parameter with good statistical properties. In this method, the estimates of 
parameters are those values which maximize the sampling distribution of data. However, 
ML estimation method is very simple for one parameter distributions but its 
implementation in ALT is mathematically more intense and, generally, estimates of 
parameters do not exist in closed form, therefore, numerical techniques such as Newton 
Method, Some computer programs are used to compute them. 

Let )( nrk  failures times )()2()1( ... rkkk xxx   are observed before test 

termination at the thr  failure and )( rn   units are still survived at each stress level. 

Here, r  is fixed in advance and t  is random. Therefore the likelihood function in 
constant stress ALT at one of the stress level using GP for the Pareto distribution with 
type-II censored data is given by 

   
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Now the likelihood function of observed data in a total s stress levels is: 
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The log-likelihood function corresponding (6) takes the form 
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Equations (7), (8) and (9) are nonlinear; therefore, it is very difficult to obtain a closed 
form solution. So, Newton-Raphson method is used to solve these equations 

simultaneously to obtain  ˆ,ˆ  and ̂ . 
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4. Asymptotic Confidence Interval Estimates 

According to large sample theory, the ML estimators, under some appropriate 
regularity conditions, are consistent and normally distributed. Since ML estimates of 
parameters are not in closed form, therefore, it is impossible to obtain the exact CIs, so 
asymptotic CIs based on the asymptotic normal distribution of ML estimators instead of 
exact CIs are obtained here. 

The Fisher-information matrix composed of the negative second partial derivatives of 
log likelihood function can be written as 




































































2

222

2

2

22

22

2

2







lll

lll

lll

F  

Elements of the Fisher Information matrix are 

22

2


rsl





 

 
  
























 s

k rk
k

ik
k

r

i x

rnrn

x

rl

1
2

)(
22

)(1
22

2

)(

))(1()(

)(

1
)1(














 

 





























 s

k ik
k

ik
kk

ik
k

ik

r

i x

xkxk
xk

krl

1
2

)(

)(
222

)(
)(

1
22

2

)(

))(1(
)1(







 

  


























2
)(

)(
222

)(
)(

1

)(

))(1(
)1)((

rk
k

rk
kk

rk
k

rk
k

x

xkxk
xrnk




  

























 

 )(

)()(

)(

1

)()(11

2

rk
k

ik
k

r

i

s

k x

rnrn

x

rl


 






























 
 )(

)()(

)(

1

)()(11

22

rk
k

ik
k

r

i

s

k x

rnrn

x

rll


 

































)(

)(

)( )(

)(
1

)(

)(
1

11

22

rk
k

rk
k

ik
k

ik
kr

i

s

k x

xrnk

x

x
k

ll










 


























 


 2

)(

)(
1

2
)(

)(
1

11 )(

)1)((

)(
)1(

rk
k

rk
k

ik
k

ik
kr

i

s

k x

xrnk

x

x
k

ll










Now, the variance covariance matrix can be written as 
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where AVar and ACov  are stand for asymptotic variance and covariance respectively. 
Now the )%1(100   asymptotic CIs for  , and  can be obtained respectively as 
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5. Simulation Study 

The performance of the estimates is evaluated through simulation study in which 
MLEs, lower and upper CI limits (LCL and UCL) of parameters and the coverage rate of 
asymptotic CIs for different sample sizes are obtained.  

Now to perform the simulation study, first different samples
riskxki ,...,2,1,,...,2,1,   of sizes 100,50,20n  are generated from Pareto distribution 

which is censored at 15,12r . The combinations ),,(  of values of the parameters are 

chosen to be ),25.0,25.1,1.1( )5.0,5.1,2.1( and )75.0,75.1,3.1( . The number of stress levels 

s  is assumed to be 5 throughout the study. For different sample sizes, stress levels and 
numbers of censored units, the lower and upper CI limits (LCL and UCL) and the coverage 
rate of the 95% CI of parameters based on 400 simulations are obtained by our proposed 
model and summarized in Tables 1, 2, 3, 4, 5 and 6. 

 
 
 

Table 1:Results based on constant stress ALT for type-II censored Pareto Data using GP with 

,25.1,1.1   ,25.0 5s  and 12r  

Sample 
Size n 

Parameter MLE LCL UCL 95% 
Asymptotic CI 

Coverage 
   1.1887 0.4181 1.8054 0.9666 

20   1.2505 0.9679 1.4111 0.9777 
   0.2501 0.1935 0.2822 0.9837 
   1.1865 0.1896 0.9948 0.9878 

50   1.2556 1.1309 1.7210 0.9634 
   0.2515 0.2261 0.3442 0.9583 
   1.1676 0.2313 1.1838 0.9887 

100   1.2612 1.1251 1.7034 0.9662 
   0.2522 0.2250 0.3406 0.9562 
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Table 2:Results based on constant stress ALT for type-II censored Pareto Data using GP with 

,25.1,1.1   ,25.0 5s  and 15r  
Sample 
Size n 

Parameter MLE LCL UCL 95% 
Asymptotic CI 

Coverage 
   1.1814 0.6140 1.9407 0.9782 

20   1.2470 0.9513 1.3254 0.9347 
   0.2489 0.1902 0.2650 0.9274 
   1.1574 0.3224 1.2337 0.9574 

50   1.2533 1.1172 1.5997 0.9680 
   0.2506 0.2234 0.3199 0.9590 
   1.1456 0.2453 0.9802 0.9891 

100   1.2622 1.2230 1.7699 0.9782 
   0.2518 0.2446 0.3539 0.9780 

 
 
 

Table 3:Results based on constant stress ALT for type-II censored Pareto Data using GP with ,5.1,2.1  
5.0 5s  and 12r  

Sample 
Size n 

Parameter MLE LCL UCL 95% 
Asymptotic CI 

Coverage 
   1.2762 0.6406 2.3259 0.9462 

20   1.4998 1.1393 1.6045 0.9569 
   0.5002 0.3871 0.5644 0.9777 
   1.2656 0.2888 1.2364 0.9673 

50   1.5086 1.3683 2.0067 0.9782 
   0.5037 0.4523 0.6884 0.9756 
   1.2582 0.3675 1.4278 0.9784 

100   1.5129 1.2630 1.8096 0.9563 
   0.5045 0.4500 0.6813 0.9662 

 
 

Table 4:Results based on constant stress ALT for type-II censored Pareto Data using GP with ,5.1,2.1  
5.0 5s  and 15r  

Sample 
Size n 

Parameter MLE LCL UCL 95% 
Asymptotic CI 

Coverage 
   1.2888 0.6699 2.3052 0.9782 

20   1.4964 1.1415 1.5905 0.9347 
   0.4988 0.3805 0.5301 0.9347 
   1.2626 0.3517 1.3459 0.9574 

50   1.5039 1.3406 1.9197 0.9680 
   0.5013 0.4468 0.6399 0.9680 
   1.2614 0.2676 1.0693 0.9891 

100   1.5089 1.4677 1.7916 0.9782 
   0.5037 0.4892 0.7079 0.9780 
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Table 5:Results based on constant stress ALT for type-II censored Pareto Data using GP with 

,75.1,3.1   75.0 5s  and 12r  
Sample 
Size n 

Parameter MLE LCL UCL 95% 
Asymptotic CI 

Coverage 
   1.4145 0.4941 2.1337 0.9560 

20   1.7475 1.3550 1.9756 0.9670 
   0.7503 0.5807 0.8467 0.9777 
   1.3862 0.2241 1.1756 0.9753 

50   1.7746 1.5833 2.4094 0.9629 
   0.7544 0.6785 1.0326 0.9753 
   1.3798 0.2734 1.3990 0.9887 

100   1.7657 1.5752 2.3847 0.9662 
   0.7567 0.6750 1.0220 0.9662 

 
 
 

Table 6:Results based on constant stress ALT for type-II censored Pareto Data using GP with 

,75.1,3.1   75.0 5s  and 15r  

Sample 
Size n 

Parameter MLE LCL UCL 
95% 

Asymptotic 
CI Coverage 

   1.3904 0.7257 1.9356 0.9784 
20   1.7473 1.3318 1.8556 0.9354 
   0.7482 0.5707 0.5707 0.9347 
   1.3616 0.3810 1.4580 0.9473 

50   1.7572 1.5641 2.2396 0.9684 
   0.7531 0.6703 0.9598 0.9684 
   1.3555 0.2899 1.1584 0.9891 

100   1.7668 1.7123 2.4779 0.9782 
   0.7556 0.7338 1.0619 0.9780 

 

6. Discussion and Conclusions 

This paper deals with use of GP model in the analysis of constant stress ALT plan for 
Pareto distribution with type-II censored data. The ML estimates of the model parameters 
were obtained. Based on the asymptotic normality, the lower and upper CI limits (LCL and 
UCL) and the coverage rate of 95% CI of the model parameters were also obtained. 

From the results in Table 1, 2, 3, 4, 5 and 6, it is easy to find that estimates of  ,  and 
 perform well. For fixed  ,  and   we find that as sample size n increases, the CIs 
get narrower. For the fixed sample sizes n , as the number of failures r  gets larger the CIs 
get narrower also. This is very usual because more failures increase the efficiency of the 
estimators. It is also notice that the coverage probabilities of the asymptotic CI are close to 
the nominal level and do not change much as sample size and the number of failures 
increases. From these results, it may be concluded that the present model work well under 
type-II censored data. 
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