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1. Introduction 

1. Introduction 

Small Area Estimation is a statistical technique used to estimate parameters of 
asubpopulation with a small sample size[11].  This estimation is really necessary and very 
interested to obtain information on a small area such as on a city, county, district, rural or 
urban area.  
 
Small area is defined as a subpopulation with a small samplesize.  Small Area Estimation 
is a method that can deal with this problem. Small area estimation technique uses data from 
a large domain such as census data and data from National Social Economic Survey ( 
SUSENAS) to estimate  variables on a smaller domain which are observed Direct 
estimation on a small area can not produce an accurate estimation[11]. Direct-estimation in 
a small area will obtain a large variance  if the samples are taken from survey data which 
are designed for a large scope such as a national scope.To handle this problem,indirect 
estimation will be used by adding covariate for estimating the parameters. The covariate  
can be taken from other area that has similarities, previous survey in the same area, or other 
variables that related to the predicted variables. Some indirect-estimation procedures were 
used to obtain such accuracy. 
 
In general, small area estimation uses parametric modeling to connect the small area 
statistics with supported variables. Rao clearly describes various techniques of small area 
estimation that often used, which are synthetic approach, composite estimation, Estimated 
Best Linear Unbiased Predictor (EBLUP), Empirical Bayes and Hierarchy Bayes. All of 
these small area estimation use parametric procedures [11].  In fact, many models have 
nonlinear pattern of relationships between small area mean and covariates. Kismiantini 
found that adding or not adding covariates in the model yield a same estimation [4]. This is 
due to the nonlinear relationship between the direct estimation and the covariate. In such 
case, parametric modeling becomes less flexible. To overcome this case, nonparametric 
approach was developed in small area estimation. 
 
According to some experts, some nonparametric approaches that can be used in small area 
estimation are the Kernel approach [5] and local polynomial regression [5,6]. Fridayanti 
stated unbiased and diversity of Kernel nonparametric model in nonlinear relationship 
patterns is better than the Fay-Herriot model which is a parametric model of small area 
estimation [2,3]. Local Polynomial regression, the other  nonparametric methods, can be 
done to accommodate the nonlinear relationship in the statistical estimation in small area. 
In this research, the comparison between Kernel nonparametric methods and local 
polynomial regression will be studied in conducting small area estimation. 

2. Basic Concept 

Basic model of small area estimation can be divided into basic area level and basic unit 
level model [11]. Basic area level model is a model based on the availability of supported 
data that available only for a certain area level. Let xi= (x1i , ..., xpi)

T.  xi is a vector, i is the 
number of areas and p is the number of supported variables, and the parameters to be 
estimated are  assumed to have relation with xi. The supported data were used to build the 
model: 

௜ߠ ൌ ௜ݔ
ߚ் ൅	ݒ௜ (1) 

             with      ݒ௜~ܰሺ0,  .௩ଶሻߪ
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Parameter ߠ௜can be determined by assuming that the direct estimation model: 
௜ݕ  ൌ ௜ߠ ൅	߳௜is available (2) 
with݁௜~ܰ൫0, ௘௜ߪ

ଶ ൯	and	ߪ௘௜
ଶ is known.  By combining (1) and. (2), then a particular model 

from mixed linear model is ditermined as followed (3) : 
௜ݕ ൌ ௜ݔ

ߚ் ൅	ݒ௜ ൅	݁௜ (3) 
area-based model with one covariat, equation (1) and can be expressed as 
௜ߠ  ൌ ଴ߚ ൅ ௜ݔଵߚ ൅                                                                    ௜ݑ
(4) 
where߳௜andݑ௜are independently distributed asܰሺ0, ,௜ሻandܰሺ0ܦ  .௨ଶሻ[2]ߪ
 
Basic unit level model is a model in which the available supporting data and the response 
data are individually corresponded, ie xij= (xij1, ..., xijp)T, so a nested regression model can 
be builtas followed yij = xij

T + ݒ௜ ൅	݁௜withݒ௜~ܰሺ0, ,݁௜௝~ܰሺ0	and	௩ଶሻߪ  ௘ଶሻ. However, theߪ
model is complex so that it requires relatively more complicated techniques to finish it[11]. 
 
In most small area estimation applications, mixed linear modelassumption is used. The 
estimation issensitive to this assumption. If there is no linearity between the small area 
average and the covariate, then taking power from other area using a linear model is not 
appropriate. Mukhopadhyay and Maiti used the following model [5]: 

௜ݕ ൌ ௜ߠ	 ൅	߳௜                                                      (7) 
௜ߠ  ൌ ݉ሺݔ௜ሻ ൅  ௜ (8)ݑ
where i = 1, 2, ..., m is the number of small areas. Function m (.) is a smooth function that 
defines the relationship between x and y. ߠ௜ is a small area average that is not observed, ݕ௜ 
is a direct estimation of the small area average, ݑ௜ is a random error with freely and 
identically distributed,ܧሺݑ௜ሻ ൌ 0and 	ܸሺݑ௜ሻ ൌ ௨ଶߪ ,߳௜ is a free random sample ,ܧሺ߳௜ሻ ൌ
0andܸሺ߳௜ሻ ൌ ௜ܦ , (assuming that	ܦ௜  is known). Substituting equations (7) and (8) will 
yield the following equation 
ݕ  ൌ ݉ሺݔ௜ሻ ൅ ௜ݑ 	൅ ݁௜,   i=1,2,…,n         (9) 
 
To determine the best model, an evaluation of the parameter estimate was conducted. One 
of the good parameter estimator characteristics is unbiased and small variance. The 
unbiased estimator is indicated by the absolute value of the relative bias or Absolute 
Relative Bias (ARB) and Mean Square Error (MSE). Formulations for calculating the 
ARB is as followed: 

 

R

ij ij
j

i
ij

ˆ( )
ˆARB( )

R

  

 



11

         (10) 

Meanwhile, the formulation for calculating the MSE is: 
 

 
R

i ij ij
j

ˆ ˆMSE( ) ( )
R 

    
2

1

1
 (11) 

 
In addition, Eubank states that the size of the regression curve estimation performance can 
be determined from the MSE, the risk function (P), and the Generalized Cross-Validation 
(GCV) [1]. Each function will be outlined as followed: 
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1)  Mean Square Error (MSE)  
In small area estimation, the MSE value was calculated through the following stages [9]. 
First, MSE ߠ∗ ൌ ௜ݕ௜ߛ	 ൅	ሺ1 െ  ௜. And then calculateߠ௜ሻhad to be calculated fromݔ௜ሻ݉ሺߛ
the squared average of the distance between ߠ∗andߠ෨௜, in which the m (.) was replaced by 
ෝ݉ ሺ. ሻ. Finally, calculate the squared average of the distance between ߠ෨௜danߠ෠௜that depended 
on theߪ௨ଶbyߪො௨ଶ .  This calculation was biased. Therefore [9] and also [7] suggest to 
useBootstrap estimation to determine the value of the MSE. Bootstrap MSE estimator is 
given by: 

෠௜൯ߠ൫∗݁ݏ݉ ൌ 	
ଵ

௃
∑ ቀߠ෠௜

∗ሺ௝ሻ െ ௜ߠ
∗ሺ௝ሻቁ

ଶ
஻
௝ୀଵ            (12) 

in which J is the number of bootstrap population,  ߠ෠௜
∗ሺ௝ሻis the i-th small area average 

estimator from the jth bootstrap population, andߠ௜
∗ሺ௝ሻ is the 'true value' of the small area 

average estimator from the jth bootstrap population. 
 
2) Risk Faktor (P) and GCV 
The relationship between the MSE and the risk function (P) by Eubank is as followed [1]: 

tr( H )ˆ ˆP MSE
n

  22
                                

(13) 

In which H is X(XTX)-1X. 
Meanwhile, the relationship between GCV and MSE is shown by the following formula 
[1]. 

 
MSE

GCV
[ n tr( )]

1 2I H
                                (14) 

 

3. Methodology 

The data used issimulation data that generatedby using R. The simulation data obtained 
from the 2 (two) possible functions m (x), the pattern of linear and quadratic relation. Both 
functions represent the explicit function pattern which is geometrically a nonparametric 
curve models (www.me.mtu.edu). The two models are: (1) ݉ሺݔሻ ൌ ݔ	3 ൅ 1 and (2) 
݉ሺݔሻ ൌ ଶݔ	 ൅ ݔ2 ൅ 1. 

 
The number of small areas (m) that weregenerated were m = 20, m = 30 and m = 40. The 
process can not be done in the case of m smaller than 20, for example if m = 10 there is an 
error in the calculation of the variance on the local polynomial regression method (LPR). 
Thus, for a small size data in this study is represented by m = 20. In performing the 
simulation, if the area estimation is small then the data size is also small.  

 
The value of 2 used are 0.5; 1.0, and 1.5, while D chosen is equal to 1 to simplify the 

calculations.The width of the bandwidth used is ݄ ൌ ቀ
ସఙෝఱ

ଷ௡
ቁ
ଵ/ହ

 which is known 

asSilverman's rule of thumb.  In this study, simulations performed on 36 possible 
combinations of data, 18 simulations on Kernel method and 18 simulations on LPR 
method. Steps of the simulations performed on these Kernel and LPR methods. Kernel 
Simulation approach has been done by Fridayanti[3]. However, the model and the 
bandwidth used is different. The simulation steps are as follows: 
1. Generatingݔ dari ݉ݎ݋݂݅݊ݑሺെ1,1ሻ 
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2. For every i, generate ௜,௝ߠ ൌ ݉ሺݔ௜ሻ ൅ ௜,௝ݑ and ௜,௝ݕ ൌ ௜,௝ߠ	 ൅ 	߳௜,௝ in which 
,௜,௝~ܰሺ0ݑ  .௜ is from step (1)ݔ	߳௜,௝~ܰሺ0,1ሻ are independent,  j=1,2,...n and	and	௨ଶሻߪ
By using ݉ሺݔሻ ൌ ݔ	3 ൅ 1and	݉ሺݔሻ ൌ ଶݔ	 ൅ ݔ2 ൅ 1. 

௜ߠ .3 ൌ ∑
ఏ೔,ೕ
௡

௡
௝ୀଵ andݕ௜ ൌ ∑

௬೔,ೕ
௡

௡
௝ୀଵ   ,for i = 20, 30, and 40 

4. The bandwidth used is the same bandwidth with Kernel’s݄ ൌ ቀସఙ
ෝఱ

ଷ௡
ቁ
ଵ/ହ

 because it is 

an optimum bandwidth. 

5. Calculating ො௨ଶߪ ൌ max ቄ0,
ଵ

௡ିଵ
∑ ௛ܹ௜ሺݔሻሼݕ௜ െ ෝ݉ሺݔ௜ሻሽଶ െ 1௡
௜ୀଵ ቅ , in which ௛ܹ௜ሺݔሻ ൌ

௄೓ሺ௫ି௫೔ሻ
ଵ ௠ൗ ∑ ௄೓ሺ௫ି௫೔ሻ೔

and ݔ௛ሺܭ െ ௜ሻݔ ൌ
ଵ

௛
ݔሺሺܭ െ ௜ሻݔ ݄ሻ⁄  , K is standard normal Kernel 

function in which݄ ൌ ቀ
ସఙෝఱ

ଷ௡
ቁ
ଵ/ହ

. 

6. Calculating ߠ෠௜ ൌ 	 ௜ݕො௜ߛ ൅ ሺ1 െ ො௜ሻߛ ෝ݉ሺݔ௜ሻ in which ߛො௜ ൌ
ఙෝೠమ

ఙෝೠ
మାଵ

 

The calculation of ݉݁ݏ൫ߠ෠௜൯ was done by using bootstrap in the following way:  
a. Generating bootstrap sample ߠ௜

∗~ܰሺ ෝ݉ሺݔ௞ሻ, ௜ݕ ො௨ଶሻ andߪ
௜ߠ|∗

∗~ܰሺߠ௜
∗, 1ሻ, k=1,..,20 

for n=20; k=1,2,…,30 for n=30;and k=1,2,...,40 for n=40. 
b. With ௜ݔ and ௜ݕ

∗ , ෝ݉ ∗ሺݔ௞ሻ is resulted from k smooth and 

calculate ∗ො௨ଶߪ = max ቄ0,
ଵ

௡ିଵ
∑ ௛ܹ௜ሺݔሻሼݕ௜

∗ െ ෝ݉∗ሺݔ௜ሻሽଶ െ 1௡
௜ୀଵ ቅ then substitute it 

toߠ෠௜
∗ ൌ ො௜ߛ

௜ݕ∗
∗ ൅ ሺ1 െ ො௜ߛ

∗ሻ ෝ݉ ∗ሺݔ௜௞ሻ with ߛො௜
∗ ൌ

ఙෝೠమ∗

ఙෝೠ
మ∗ାଵ

 

c.  Repeat (a) and (b) 1000 times in order to obtain: 

ෞ݁ݏ݉ ௕௦
∗ ൫ߠ෠௜൯ ൌ

1
1000

෍൫ߠ෠௜௞
∗ െ ௜௞ߠ

∗ ൯
ଶ

ଵ଴଴଴

௞ୀଵ

 

7. Calculate the value of the relative bias (ARB) in equation (22)using bootstrap, by 
repeating step (2) to step (6)  100 times, then foreach simulation ( r = 1,..,100) 
calculate the ith small area relative bias : 

෠௜൯ߠ൫ܤܴ ൌ
1
100

อ
∑ ෠௜ߠ

ሺ௥ሻଵ଴଴
௥ୀଵ െ ௜ߠ

ሺ௥ሻ

௜ߠ
ሺ௥ሻ อ 

8. Calculate the value of GCV in equation (26) and P() in equation (25) by using MSE 
resulted from step (6). 

Steps on LPR approach: 
1. Generating ݔfrom݉ݎ݋݂݅݊ݑሺെ1,1ሻ 
2. For i, generate ߠ௜,௝ ൌ ݉ሺݔ௜ሻ ൅ ௜,௝ݑ and ௜,௝ݕ ൌ ௜,௝ߠ	 ൅ 	߳௜,௝ with 

,௜,௝~ܰሺ0ݑ ௜ݔ	௨ଶሻand߳௜,௝~ܰሺ0,1ሻare independent ,  j=1,2,...n andߪ  are from step(1). 
By taking: ݉ሺݔሻ ൌ ݔ	3 ൅ 1and݉ሺݔሻ ൌ ଶݔ	 ൅ ݔ2 ൅ 1 

௜ߠ .3 ൌ ∑
ఏ೔,ೕ
௡

௡
௝ୀଵ and ݕ௜ ൌ ∑

௬೔,ೕ
௡

௡
௝ୀଵ   , for i = 20, 30, and 40 

4. The bandwidth used for calculating P1 is the same bandwidth with Kernel, ݄ ൌ

ቀସఙ
ෝఱ

ଷ௡
ቁ
ଵ/ହ

 because that bandwidth is an optimum bandwidth.  

5. Do data entry by entering data  ܺ௣ଵሺݔሻ into matrix form (equation 9). The matrix is 
adjusted for  linear model (p=1), quadratic model (p=2), and cubic model (p=3). 

6. Calculate matrix ௣ܹଵሺݔሻ as equation(18) for n=20, 30, 40 respectively. 
7. Determine thematrix P1byentering data   

ሾ ଵܲሿ௜௝ ൌ ݁ଵ
்ሾܺ௣ଵሺݔ௜ሻ் ௣ܹଵሺݔ௜ሻܺ௣ଵሺݔ௜ሻሿିଵܺ௣ଵሺݔ௜ሻ் ௣ܹଵሺݔ௜ሻ ௝݁௣ଵ

ሺݔሻ into each cell of 

the matrix , with vector ei=1. The rank of the ei is adjusted with the polynomial degree. 
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8. Repeat  step(7) with different bandwidth, named P2. Based on the simulation result, 
for producing a different bandwidth which is not very different from the optimum 
bandwith (in accordance with Silverman's rule of tumb) , using random number and 
variance of 0,07.    

9. Determine another matrix, P2 , P1 matrix with different bandwidth. Based on the 
simulation result , by using random normal number with variance 0.07,  we get 
different bandwidth, that is not far from optimum bandwidth (in accordance with 
Silverman's rule of  tumb)  .   

 Determine:  
a. ݎ ൌ ݕ െ ଵܲݕ. 
b. Δଵ ൌ ݀݅ܽ݃ሼ ଵܲ ଵܲ

் െ 2 ଵܲሽand  
c. Δଶ ൌ diag	൛D ൅ PଵDPଵ

୘ െ 2PଵDൟwith ܦ௜ ൌ  ௜ሻݔሺ	ݒ

10. From step(6),  ෝ݉ ሺݔሻ ൌ ݁௜
்

ଵܲݕ  can be determined byݒො௜ ൌ ݁௜
் ௉మሺ௥

మିᇞమሻ

ଵା௉మᇞభ
 

11. Calculate	ߠ෠௜ ൌ ௜ݕො௜ߛ	 ൅ ሺ1 െ ො௜ሻߛ ෝ݉ሺݔ௜ሻ  with ߛො௜ ൌ ሺݒො௜ ൅  ො௜ݒ௜ሻିଵܦ
  :෠௜ሻis calculated by using bootstrap, as followedߠሺ݁ݏ݉ 

a. Generate a sampel of bootstrap ௜௟௢௞௔௟ߠ
∗ ~ܰሺ ෝ݉ሺݔ௟௢௞௔௟ሻ, ො௨ଶሻߪ ,and 

௜ݕ
௜௟௢௞௔௟ߠ|∗

∗ ~ܰሺߠ௜
∗,  .௜ሻ, k=1,..,68ܦ

ො௜ݒ  ൌ ො௨ଶߪ	 ൌ ݁௜
் ௉మሺ௥

మିᇞమሻ

ଵା௉మᇞభ
 

 b. With ݔ௜andݕ௜
∗, analog with the step above, calculate ෝ݉ ሺݔ௟௢௞௔௟ሻ and the variance 

estimator  , than substitute the variance into 
෠௜ߠ
∗ ൌ ො௜ߛ

௜ݕ∗
∗ ൅ ሺ1 െ ො௜ߛ

∗ሻ ෝ݉ ∗ሺݔ௜௟௢௖௔௟ሻ with ߛො௜ ൌ ሺݒො௜ ൅  ො௜ݒ௜ሻିଵܦ
c.  Repeat (a) and (b) 1000 times, so: 

ෞ݁ݏ݉ ௕௦
∗ ൫ߠ෠௜൯ ൌ

1
1000

෍൫ߠ෠௜௟௢௞௔௟
∗ െ ௜௟௢௞௔௟ߠ

∗ ൯
ଶ

ଵ଴଴଴

௞ୀଵ

 

12. Calculate the value of  ARB in equation(22) using Bootstrap by repeating step(2) to 
step(6) 100 times, then for r = 1,..., 100 calculate the relative bias for ith small area 

෠௜൯ߠ൫ܤܴ ൌ
1
100

อ
∑ ෠௜ߠ

ሺ௥ሻଵ଴଴
௥ୀଵ െ ௜ߠ

ሺ௥ሻ

௜ߠ
ሺ௥ሻ อ 

 
13. Calculate GCV in equation (14) and P() in equation (13) by using MSE resulted 

from step (11). 
 

The comparison of the two methods was evaluated through the relative bias value or 
Absolute Relative Bias (ARB) and the criteria for selecting the best model are  MSE 
(Mean Square Error), GCV (Generalized Cross Validation)and risk factor P ().  The 
three criteria are expected to have a minimum value in order to obtain optimum estimator. 

4. Results and Discussion 

The relative biasedvalue and the three optimal parameter values are determined based 
onthe simulation to the two methods of small area estimation, the Kernel and the Local 
polynomial Regression (LPR), on the linear and quadratic data pattern. To obtain a 
comprehensive result, simulation is done on three types of small data, ie, n = 20, n = 30 and 
n = 40 on  three combinations of variances 2 (0.5; 1.0, and 1.5) and D = 1. For a sample 
size smaller than 20, a simulation using R program can not be done so that the value of 
these three parameters can be excluded. The choosing of value of variances = 0.5; 1.0, and 
1.5 and the value of D = 1 were adopted from Fridayanti[4]. The statistical value to 
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compare the three kinds of the parameter size of the two methods which are simulated is a 
summary statistics and boxplot diagram. 
 
a.  Simulationon Linear Data Pattern. 
As stated in research methods, data pattern examined in this study is linear and quadratic. 
Linear data pattern is represented by the linear model m (x) = 3 x +1. Relative bias value, 
MSE, GCV, and risk factor  P() are represented on Table 2.  From Table 2, it can be 
seen that for linear data pattern, the relative bias value, for every sample size which is 
tested with different variance, generally Kernel approach hassmaller relative biasvalue  
thanLPRs. Likewise, the three parameter values in the both  methods tend to have low 
value on the large sample (n = 40) for various combinations of variances. However, on the 
LPR methodwith a variance of 1.5 , the three lowest parameter valuesare on the smallest 
sample ( n = 20). 

Table 1.Simulation Results on Linear Data Pattern 

D  N 
ARB MSE GCV P() 

Kernel LPR Kernel LPR Kernel LPR Kernel LPR 

1 

0.5 
20 9.24 11,986.21 0.93 1,200.25 1.03 13,297.54 0.98 1,200.30 

30 9.24 8,881.29 0.93 888.33 0.99 950.65 0.96 888.37 

40 9.23 5,741.90 0.92 580.00 0.97 610.13 0.95 580.03 

1 
20 9.32 55,938.62 0.93 5,650.43 1.04 6,261.58 1.03 5,650.53 

30 9.31 35,974.79 0.93 3,603.03 1.00 3,856.91 1.00 3,603.10 

40 9.17 27,072.76 0.93 2,710.26 0.97 2,851.03 0.98 2,710.31 

1.5 
20 10.31 16,974.50 0.94 1,716.33 1.04 1,805.73 1.09 1,716.40 

30 9.32 42,674.22 0.93 4,273.10 1.00 4,734.74 1.03 4,273.25 

40 9.18 19,672.38 0.93 1,989.33 0.98 2,129.85 1.01 1,989.43 
 
 
From Table 1, it can also be seen that for linear data pattern, generally the three parameter 
values in the both  methods tend to have low value on the large sample (n = 40) for various 
combinations of variances. However, the LPR method,with a variance of 1.5 , the three 
lowest parameter value are on the smallest sample ( n = 20).  
 
From Figure 1, based on the obtained estimated theta value, drawn through a boxplot with 
n=40 and variance=0,5, Kernel Method yields a better estimation. The taken sample of 
n=40 and variance of 0,5 with the case consideration, Kernel Method yields relatively 
smaller parameter value compared to  any other alternative combinations.  
 
Figure 1 shows that the estimated theta resulted by Kernel Method is more compact and 
symetric compared to LPRs. Although the median value resulted  byLPR is relatively 
lower than the Kernel’s, butoverall the value of the parameters generated by Kernel 
approach is smaller, stable and consistent. So, it can be concluded that using mean as a 
measure of central data, Kernel method is better than the LPR method in the case of linear 
data pattern. Kernel approach yieldsan optimum estimation than LPR method in the case of 
linear data pattern simulation[1]. 
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Figure 1.    Boxplot of the estimatedtheta by Kernel and LPR on Linear Data Pattern with 

n=40 and2=0.5 
  
Summary statisticsof the estimated theta and the optimum smoothing parameter value is 
presented on Table 2.  Tabel 2 shows that generally Kernel Method yield a bettersummary 
statisticsthan LPRdoesthough by using median MSE, GCV, and P() which are resulted 
are smaller than the Kernel Method does.  
 
 
 
Table 2. Summary statistics in Linear Data Pattern on Kernel Method and Local 

Polynomial Regression 
 

Statistics 
Kernel Local Polynomial Regression (LPR) 

Estimated 
Theta 

MSE GCV P() 
Estimated 

Theta 
MSE GCV P() 

Mean 1.010 0.923 0.970 0.948 0.482 580.002 610.127 580.027 

Median 1.021 0.918 0.966 0.943 0.357 0.451 0.474 0.476 

Maximum 1.431 0.958 1.008 0.983 4.375 1846.596 1942.794 1846.621 

Minimum 0.552 0.904 0.951 0.929 -2.762 0.176 0.186 0.201 

Quantil 1 0.848 0.909 0.956 0.934 -0.735 0.258 0.271 0.283 

Quantil 3 1.175 0.931 0.980 0.956 1.626 0.705 0.741 0.730 
 

b. Simulationon Quadratic Data Pattern  
 
Other case on non-parametric model is data in quadratic pattern. In this simulation the 
quadratic model is  ݉ሺݔሻ ൌ ଶݔ ൅ ݔ2 ൅ 1.  The results of the simulationof the relative 
bias value and the three parameters on various combinations of quadratic data pattern are 
presented in Table 3. Table 3 shows that on the data with quadratic pattern, generally 
Kernel gives smaller relative bias and parameter than LPR does.  The parameter values 
given by Kernel tend to be more stable and provide consistent values  for any given 
sample size. These  can be seen from the values of MSE, GCV, and P(). They are always 
smaller for n=40 compared tothe values for other two sample sizes in each combination 
treatment. By using Kernel Methods, with larger sample size, the parameter values in 
quadratic data pattern are smaller than the parameter values in linear data pattern. 
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Meanwhile, by using LPR method, parameter values resulted in various combinations 
treatmentare huge, even different for each given sample size and variance. In general, it 
appears that the data in quadratic pattern, Kernel methods still produce a more optimum 
parameter values compared with LPR. Thus, it can be said that Kernel approach on the data 
quadratic pattern is better than LPR approach. This is indicated by the three parameters 
discussed in advance. 
 

Table 3. Data Simulation Results on Quadratic Model 
 

D  n 
ARB MSE GCV P() 

Kernel LPR Kernel LPR Kernel LPR Kernel LPR 

1 

0.5 

20 7.77 23,695.26 0.88 6,053.76 0.98 1,778.10 0.93 1,605.81 
30 7.77 22,016.84 0.88 5,614.54 0.94 6,008.42 0.91 5,614.57 
40 7.68 37,470.03 0.87 9,628.76 0.92 8,284.69 0.90 8,628.78 

1 

20 7.93 32,854.71 0.90 8,424.47 0.99 8,334.59 1.00 8,424.57 
30 7.79 38,149.99 0.89 9,746.71 0.95 9,490.67 0.95 1,007.61 
40 7.72 35,583.46 0.88 9,073.54 0.93 9,780.66 0.93 4,704.76 

1.5 

20 7.95 27,068.94 0.91 6,915.68 1.05 6,631.23 1.06 6,915.83 

30 7.86 6,862.06 0.90 1,740.39 0.96 8,628.59 1.00 1,740.49 

40 7.84 28,563.46 0.89 73,22.25 0.94 7,031.69 0.97 7,322.32 
 
In the case of quadratic data pattern, both variance and sample size used same with in the 
case of linear data pattern.It can also be seen from Figure 2that the boxplot in LPR methods 
has two outliers.  Meanwhile, the obtained boxplot in Kernel methods tend to be stable 
and almost equal to those in the linear data pattern, but it has a smaller median value. 

 

 
Figure 2.Boxplot of the estimated theta by Kernel and Local Polynomial Regression on 

quadratic pattern with n=40 and 2=0.5 
  
 
 
 
Summary statistics for quadratic data pattern is presented in  Table 4. 
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Table 4. Summary Statistics forQuadratic Data Pattern by Kernel Method and Local 
Polynomial Regression 

Statistical 
value 

Kernel Local Polynomial Regression (LPR) 
Estimated 

Theta 
MSE GCV P() 

Estimated 
Theta 

MSE GCV P() 

Mean 1.348 0.872 0.918 0.897 0.995 1,295.553 1,365.302 1,292.578 

Median 1.316 0.865 0.910 0.890 0.712 14.879 15.652 14.904 

Maximum 1.731 0.939 0.988 0.964 4.628 9,728.582 20,743.058 9,728.607 

Minimum 1.025 0.853 0.898 0.878 -1.156 0.527 0.554 0.552 

Quantil 1 1.182 0.856 0.900 0.881 0.368 3.041 3.199 3.066 

Quantil 3 1.484 0.877 0.923 0.902 1.386 1,789.004 1,881.924 1,789.029 
 

5. Conclusions and Suggestions 

Conclusions:  
1. In the linear and quadratic data pattern, the relative bias values resulted by Kernel 

method are smaller than the relative bias values resulted by the Local polynomial 
Regression (LPR). The relative bias values resultedby Kernel method  tend to be 
more stable and consistent than the relative bias values resulted by LPR methods. 

2. The Mean Square Errors (MSE)produced by Kernel methods on every  combination 
treatment are smaller than the MSEs obtained by LPR in both linear and quadratic data 
pattern. 

3. Likewise, the values of GCV and the  risk factors P() in every combination of 
simulated data patterns, Kernel methods provide  smaller values than the LPR does. 

Thus, it can be said that Kernel methods is better than  LPR method in dealing with both 
linear and kuadratic data with  non-parametric characteristic. 
 
Suggestions: 
1. The optimum bandwidth usage greatly affect thevalues obtained.,The bandwidth used 

in this study is an optimum bandwidth for Kernel methods. 
2. It is need  to studyin further about optimum bandwidth determination for LPR in 

small area estimation on non-parametric data pattern. 
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