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Abstract.Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.
Small area estimation is needed in obtaining information on a small area, such as sub-districtor village. Generally,
in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear
relationship between the small area average and the covariate. This problemrequiresa non-parametric approach to
solve, such asKernel approach and Local Polynomial Regression(LPR).The purpose of this study is comparing the
results of smaller estimation using Kernel approach hand LPR. Data used in this study are generatedbysimulation
resultsusing R language .Simulation data obtained by generating function m(x) are linear and quadratic pattern. The
criteria used tocompare the results ofthe simulationareAbsoluteRelativeBias(ARB), MeanSquareError(MSE),
GeneralizedCrossValidation(GCV), and risk factors. The simulation results showed: 1)Kernel gives smaller relative
bias than LPR does on both linearandquadraticdata pattern. The relative bias obtained by Kernel tends to be more
stable and consistent than the relative bias resulted by LPR, (2)the Kernel MSE is smaller than the LPR MSEeither on
linear or quadratic pattern in any combination treatment, (3)the value of GCV and the risk factors in Kernel are
smaller thanthese in LPRin any combination of the simulated data patterns, (4) on nonparametric data, for both
linear data patternandquadratic data pattern, Kernel methods provide better estimation compared to LPR.
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1. Introduction

1. Introduction

Small Area Estimation is a statistical technique used to estimate parameters of
asubpopulation with a small sample size[11]. This estimation is really necessary and very
interested to obtain information on a small area such as on a city, county, district, rural or
urban area.

Small area is defined as a subpopulation with a small samplesize. Small Area Estimation
is a method that can deal with this problem. Small area estimation technique uses data from
a large domain such as census data and data from National Social Economic Survey (
SUSENAS) to estimate variables on a smaller domain which are observed Direct
estimation on a small area can not produce an accurate estimation[11]. Direct-estimation in
a small area will obtain a large variance if the samples are taken from survey data which
are designed for a large scope such as a national scope.To handle this problem,indirect
estimation will be used by adding covariate for estimating the parameters. The covariate
can be taken from other area that has similarities, previous survey in the same area, or other
variables that related to the predicted variables. Some indirect-estimation procedures were
used to obtain such accuracy.

In general, small area estimation uses parametric modeling to connect the small area
statistics with supported variables. Rao clearly describes various techniques of small area
estimation that often used, which are synthetic approach, composite estimation, Estimated
Best Linear Unbiased Predictor (EBLUP), Empirical Bayes and Hierarchy Bayes. All of
these small area estimation use parametric procedures [11]. In fact, many models have
nonlinear pattern of relationships between small area mean and covariates. Kismiantini
found that adding or not adding covariates in the model yield a same estimation [4]. This is
due to the nonlinear relationship between the direct estimation and the covariate. In such
case, parametric modeling becomes less flexible. To overcome this case, nonparametric
approach was developed in small area estimation.

According to some experts, some nonparametric approaches that can be used in small area
estimation are the Kernel approach [5] and local polynomial regression [5,6]. Fridayanti
stated unbiased and diversity of Kernel nonparametric model in nonlinear relationship
patterns is better than the Fay-Herriot model which is a parametric model of small area
estimation [2,3]. Local Polynomial regression, the other nonparametric methods, can be
done to accommodate the nonlinear relationship in the statistical estimation in small area.
In this research, the comparison between Kernel nonparametric methods and local
polynomial regression will be studied in conducting small area estimation.

2. Basic Concept

Basic model of small area estimation can be divided into basic area level and basic unit
level model [11]. Basic area level model is a model based on the availability of supported
data that available only for a certain area level. Let X;= (Xyj , ..., Xpi)T. Xi is a vector, i is the
number of areas and p is the number of supported variables, and the parameters to be
estimated are assumed to have relation with X;. The supported data were used to build the
model:

0 =x{B+ v (1)

with v;~N(0,02).
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Parameter Qican be determined by assuming that the direct estimation model:
= 0; + ¢;is available )

withe;~N (0 o, ) and o’is known. By combining (1) and. (2), then a particular model
from mixed linear model is ditermined as followed (3) :

yi=x{B+ v+ e (3)
area-based model with one covariat, equation (1) and can be expressed as

0; = Bo + Brx; +

“
wheree;andu;are independently distributed asN (0, D;)andN (0, ¢2)[2].

Basic unit level model is a model in which the available supporting data and the response
data are individually corresponded, ie Xij= (Xijs, ..., Xijp)T, so a nested regression model can
be builtas followed y; = Xx;j' B + v; + e;withv;~N (0, 62) and e i~N(0,0¢). However, the
model is complex so that it requires relatively more complicated techniques to finish it[11].

In most small area estimation applications, mixed linear modelassumption is used. The
estimation issensitive to this assumption. If there is no linearity between the small area
average and the covariate, then taking power from other area using a linear model is not
appropriate. Mukhopadhyay and Maiti used the following model [5]:
yi= 0+ € (7)

0; =m(x;) +y (®)
where i =1, 2, ..., m is the number of small areas. Function m (.) is a smooth function that
defines the relationship between x and y. 6; is a small area average that is not observed, y;
is a direct estimation of the small area average, u;is a random error with freely and
identically distributed,E(u;) = Oand V(u;) = 02,€;is a free random sample ,E(€;) =
0andV (¢;) = D;, (assuming that D; is known). Substituting equations (7) and (8) will
yield the following equation

y=m(x)+u +e, i=1,2,...n )

To determine the best model, an evaluation of the parameter estimate was conducted. One
of the good parameter estimator characteristics is unbiased and small variance. The
unbiased estimator is indicated by the absolute value of the relative bias or Absolute
Relative Bias (ARB) and Mean Square Error (MSE). Formulations for calculating the
ARB is as followed:

R~
1 Z(eij _eij )
ARB 9 Sl F S 10
(0)=2 0, (10)
Meanwhile, the formulation for calculating the MSE is:
~ 1R - 2
MSE(D, )= 3 (8,-6,) (an
J:

In addition, Eubank states that the size of the regression curve estimation performance can
be determined from the MSE, the risk function (P), and the Generalized Cross-Validation
(GCV) [1]. Each function will be outlined as followed:
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1) Mean Square Error (MSE)

In small area estimation, the MSE value was calculated through the following stages [9].
First, MSE 6" = y;y; + (1 — y;)m(x;)had to be calculated fromf;. And then calculate
the squared average of the distance between 6*and@;, in which the m (.) was replaced by
(). Finally, calculate the squared average of the distance between 8;dand;that depended
on thes?byd?2. This calculation was biased. Therefore [9] and also [7] suggest to
useBootstrap estimation to determine the value of the MSE. Bootstrap MSE estimator is
given by:

R i o\ 2
mse*(8;) = }Z}B:l(@i -6, (12)

in which J is the number of bootstrap population, éi* Dis the i-th small area average

estimator from the jth bootstrap population, and@i* O is the 'true value' of the small area
average estimator from the jth bootstrap population.

2) Risk Faktor (P) and GCV
The relationship between the MSE and the risk function (P) by Eubank is as followed [1]:

- ~o tr(H
P=MSE +2cszg (13)
n
In which H is X(X"™X)*X.
Meanwhile, the relationship between GCV and MSE is shown by the following formula
[1].
MSE

T Intr(1-H)J

GCV (14)

3. Methodology

The data used issimulation data that generatedby using R. The simulation data obtained
from the 2 (two) possible functions m (x), the pattern of linear and quadratic relation. Both
functions represent the explicit function pattern which is geometrically a nonparametric
curve models (www.me.mtu.edu). The two models are: (1) m(x) =3 x+ land (2)
m(x) = x> +2x + 1.

The number of small areas (m) that weregenerated were m =20, m = 30 and m = 40. The
process can not be done in the case of m smaller than 20, for example if m = 10 there is an
error in the calculation of the variance on the local polynomial regression method (LPR).
Thus, for a small size data in this study is represented by m = 20. In performing the
simulation, if the area estimation is small then the data size is also small.

The value of 6” used are 0.5; 1.0, and 1.5, while D chosen is equal to 1 to simplify the
_5\1/5

calculations.The width of the bandwidth used is h = (43%) which is known
asSilverman's rule of thumb. In this study, simulations performed on 36 possible
combinations of data, 18 simulations on Kernel method and 18 simulations on LPR
method. Steps of the simulations performed on these Kernel and LPR methods. Kernel
Simulation approach has been done by Fridayanti[3]. However, the model and the
bandwidth used is different. The simulation steps are as follows:

1. Generatingx dari uniform(—1,1)
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For every i, generate 0;; =m(x;) +u;; and y;; = 0;;+ €;; in which
u; j~N(0,07) and €; ;~N(0,1) are independent, j=1,2,..n andx; is from step (1).
By using m(x) = 3x + landm(x) = x% + 2x + 1.
6 = X7y andy; = 7,2 fori =20, 30, and 40

455

1/5
The bandwidth used is the same bandwidth with Kernel’sh = (;) because it is
an optimum bandwidth.
Calculating 62 = max {O,ﬁ T Wi O {y; — M(x)}? — 1}, in which Wy;(x) =

K ( - i) 1 .
%and Kn(x —x;) = 2K((x —x;)/h) , K is standard normal Kernel
_5\1/5
function in whichh = (%)
) =2
Calculating 8; = 7;y; + (1 — 9;)m(x;) in which 9; = &21

The calculation of mse(éi) was done by using bootstrap in the following way:
a. Generating bootstrap sample 6; ~N(m(xy), 62) and y;|0; ~N(6;,1), k=1,..,20
for n=20; k=1,2,...,30 for n=30;and k=1,2,...,40 for n=40.

b. With x; and y; , m"(x;) is resulted from k smooth and
calculate 62* = max {O,ﬁzlﬁl Wi )y — m*(x)}* — 1} then substitute it
N * Ak K AEN Sk : Ak Aﬁ*
to8; = Py + (1 —§)m" (xy) with 9 = #
c. Repeat (a) and (b) 1000 times in order to obtain:
1000

o~ % A 1 A* * 2
msebs(ei) = 1000 Z (gik - eik)
k=1

Calculate the value of the relative bias (ARB) in equation (22)using bootstrap, by
repeating step (2) to step (6) 100 times, then foreach simulation ( r = 1,..,100)
calculate the ith small area relative bias :

~ 1
RB(8;) = 100

y100 @i(r) _ ei(r)
)
91'

8. Calculate the value of GCV in equation (26) and P(A) in equation (25) by using MSE
resulted from step (6).

1.

Steps on LPR approach:
Generating xfromuniform(—1,1)
For i, generate 0, =m(x)+uw; and y;;=6;;+ ¢€; with
u; j~N (0, aﬁ)andei,j~N(0,1)are independent , j=1,2,..n and x; are from step(l).
By taking: m(x) = 3 x + landm(x) = x2 +2x + 1
6 = X7y and y; = X7, 22 for i =20, 30, and 40
The bandwidth used for calculating P; is the same bandwidth with Kernel, h =

1/5

=5
(43%) because that bandwidth is an optimum bandwidth.

Do data entry by entering data X,1(x) into matrix form (equation 9). The matrix is
adjusted for linear model (p=1), quadratic model (p=2), and cubic model (p=3).
Calculate matrix W) (x) as equation(18) for n=20, 30, 40 respectively.

Determine thematrix P;byentering data

[P1]ij = €1 [Xp1 ()" Wp (i) Xpa ()] Xp1 ()" Wpa (xi)e; () into each cell of

the matrix , with vector e;=1. The rank of the ¢; is adjusted with the polynomial degree.
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8. Repeat step(7) with different bandwidth, named P,. Based on the simulation result,
for producing a different bandwidth which is not very different from the optimum
bandwith (in accordance with Silverman's rule of tumb) , using random number and
variance of 0,07.

9. Determine another matrix P, , P; matrix with different bandwidth. Based on the
simulation result , by using random normal number with variance 0.07, we get
different bandwidth, that is not far from optimum bandwidth (in accordance with
Silverman's rule of tumb) .

Determine:
a. r=y—Py.
b. Al = dlag{P]_P]T - 2P1}and
c. A, = diag {D + P,DP[ — 2P, D}with D; = v (x;)
2_
10. From step(6), m(x) = el P,y can be determined by®; = e %
281
11. Calculate éi = ?iyi + (1 - ?i)ﬁl(xi) with ?i = (ﬁl + Di)_lﬁi
mse(0),)is calculated by using bootstrap, as followed:
a. Generate a sampel of  bootstrap  6},rai~N (M (X10kar), 62) ,and
Vi 0ok ~N(6;, lzt)a k=1,..,68.
~ ~ Py(r?—A3)
0= 6i=ef 21:;’2A12
b. With x;andy;, analog with the step above, calculate 7 (X;,,q;) and the variance
estimator , than substitute the variance into

67 =77y + (A = 7)) (Kioca) With 7 = (D; + D)) ™D,

c. Repeat (a) and (b) 1000 times, so:
1000

A 1 A * *
msebs(gi) = 1000 Z (Gilokal — Biloka
k=1

12. Calculate the value of ARB in equation(22) using Bootstrap by repeating step(2) to
step(6) 100 times, then for r = 1,..., 100 calculate the relative bias for ith small area

1 100 () _ (™)
i l

- r=1
100

2

RB(6;) =

Q)
0,

13. Calculate GCV in equation (14) and P(A) in equation (13) by using MSE resulted
from step (11).

The comparison of the two methods was evaluated through the relative bias value or
Absolute Relative Bias (ARB) and the criteria for selecting the best model are MSE
(Mean Square Error), GCV (Generalized Cross Validation)and risk factor P (A). The
three criteria are expected to have a minimum value in order to obtain optimum estimator.

4. Results and Discussion

The relative biasedvalue and the three optimal parameter values are determined based
onthe simulation to the two methods of small area estimation, the Kernel and the Local
polynomial Regression (LPR), on the linear and quadratic data pattern. To obtain a
comprehensive result, simulation is done on three types of small data, ie, n =20, n =30 and
n=40on three combinations of variances ¢~ (0.5; 1.0, and 1.5) and D = 1. For a sample
size smaller than 20, a simulation using R program can not be done so that the value of
these three parameters can be excluded. The choosing of value of variances = 0.5; 1.0, and
1.5 and the value of D = 1 were adopted from Fridayanti[4]. The statistical value to
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compare the three kinds of the parameter size of the two methods which are simulated is a
summary statistics and boxplot diagram.

a. Simulationon Linear Data Pattern.

As stated in research methods, data pattern examined in this study is linear and quadratic.
Linear data pattern is represented by the linear model m (x) = 3 x +1. Relative bias value,
MSE, GCV, and risk factor P(A) are represented on Table 2. From Table 2, it can be
seen that for linear data pattern, the relative bias value, for every sample size which is
tested with different variance, generally Kernel approach hassmaller relative biasvalue
thanLPRs. Likewise, the three parameter values in the both methods tend to have low
value on the large sample (n = 40) for various combinations of variances. However, on the
LPR methodwith a variance of 1.5 , the three lowest parameter valuesare on the smallest
sample ( n = 20).

Table 1.Simulation Results on Linear Data Pattern

2 N ARB MSE GCV P(L)
Kernel LPR Kernel LPR Kernel LPR Kernel LPR

20 924  11,986.21 0.93 1,200.25 1.03 13,297.54 0.98 1,200.30
0.5 30 9.24 8,881.29 0.93 888.33 0.99 950.65 0.96 888.37
40 9.23 5,741.90 0.92 580.00 0.97 610.13 0.95 580.03
20 9.32  55938.62 0.93 5,650.43 1.04  6,261.58 1.03  5,650.53
1 30 9.31 35974.79 0.93 3,603.03 1.00  3,856.91 1.00 3,603.10
40 9.17 27,072.76 0.93 2,710.26 097 2,851.03 0.98 2,710.31
20 1031 16,974.50 0.94 1,716.33 1.04 1,805.73 1.09 1,716.40
L5 30 9.32  42,674.22 0.93 4,273.10 1.00 4,734.74 1.03 4,273.25
40 9.18 19,672.38 0.93 1,989.33 098  2,129.85 1.01 1,989.43

From Table 1, it can also be seen that for linear data pattern, generally the three parameter
values in the both methods tend to have low value on the large sample (n = 40) for various
combinations of variances. However, the LPR method,with a variance of 1.5 , the three
lowest parameter value are on the smallest sample ( n = 20).

From Figure 1, based on the obtained estimated theta value, drawn through a boxplot with
n=40 and variance=0,5, Kernel Method yields a better estimation. The taken sample of
n=40 and variance of 0,5 with the case consideration, Kernel Method yields relatively
smaller parameter value compared to any other alternative combinations.

Figure 1 shows that the estimated theta resulted by Kernel Method is more compact and
symetric compared to LPRs. Although the median value resulted byLPR is relatively
lower than the Kernel’s, butoverall the value of the parameters generated by Kernel
approach is smaller, stable and consistent. So, it can be concluded that using mean as a
measure of central data, Kernel method is better than the LPR method in the case of linear
data pattern. Kernel approach yieldsan optimum estimation than LPR method in the case of
linear data pattern simulation[1].
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Figure 1.  Boxplot of the estimatedtheta by Kernel and LPR on Linear Data Pattern with
n=40 ands’=0.5

Summary statisticsof the estimated theta and the optimum smoothing parameter value is
presented on Table 2. Tabel 2 shows that generally Kernel Method yield a bettersummary
statisticsthan LPRdoesthough by using median MSE, GCV, and P(A) which are resulted
are smaller than the Kernel Method does.

Table 2. Summary statistics in Linear Data Pattern on Kernel Method and Local
Polynomial Regression

Kernel Local Polynomial Regression (LPR)

Statistics otmared s Gevoopoy PR MsE Gov ey

Mean 1.010 0.923 0.970 0.948 0.482  580.002 610.127  580.027
Median 1.021 0918 0.966 0.943 0.357 0.451 0.474 0.476
Maximum 1.431 0958 1.008 0.983 4375 1846.596 1942.794 1846.621
Minimum 0.552  0.904 0.951 0.929 -2.762 0.176 0.186 0.201
Quantil 1 0.848 0909 0.956 0.934 -0.735 0.258 0.271 0.283
Quantil 3 1.175 0931 0.980 0.956 1.626 0.705 0.741 0.730

b. Simulationon Quadratic Data Pattern

Other case on non-parametric model is data in quadratic pattern. In this simulation the
quadratic model is m(x) = x2 + 2x + 1. The results of the simulationof the relative
bias value and the three parameters on various combinations of quadratic data pattern are
presented in Table 3. Table 3 shows that on the data with quadratic pattern, generally
Kernel gives smaller relative bias and parameter than LPR does. The parameter values
given by Kernel tend to be more stable and provide consistent values for any given
sample size. These can be seen from the values of MSE, GCV, and P(L). They are always
smaller for n=40 compared tothe values for other two sample sizes in each combination
treatment. By using Kernel Methods, with larger sample size, the parameter values in
quadratic data pattern are smaller than the parameter values in linear data pattern.
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Meanwhile, by using LPR method, parameter values resulted in various combinations
treatmentare huge, even different for each given sample size and variance. In general, it
appears that the data in quadratic pattern, Kernel methods still produce a more optimum
parameter values compared with LPR. Thus, it can be said that Kernel approach on the data
quadratic pattern is better than LPR approach. This is indicated by the three parameters
discussed in advance.

Table 3. Data Simulation Results on Quadratic Model

, ARB MSE GCV P(L)
n

Kernel LPR Kernel LPR Kernel LPR Kernel LPR

200 777 23,695.26 0.88 6,053.76 0.98 1,778.10 0.93 1,605.81
05 30 777 22016.84 0.88 5,614.54 0.94 6,008.42 091 5,614.57
40 7.68 37,470.03 0.87 9,628.76 0.92 8,284.69 0.90 8,628.78

20 793  32,854.71 0.90 8,424.47 0.99 8,334.59 1.00 8,424.57

1 30 779 38,149.99 0.89 9,746.71 0.95 9,490.67 0.95 1,007.61
40 772 35,583.46 0.88 9,073.54 0.93 9,780.66 0.93 4,704.76

20 795  27,068.94 091 6,915.68 1.05 6,631.23 1.06 6,915.83

1.5 30 7.86 6,862.06 0.90 1,740.39 0.96 8,628.59 1.00 1,740.49
40 7.84 28,563.46 0.89 73,22.25 0.94 7,031.69 0.97 17,322.32

In the case of quadratic data pattern, both variance and sample size used same with in the
case of linear data pattern.It can also be seen from Figure 2that the boxplot in LPR methods
has two outliers. Meanwhile, the obtained boxplot in Kernel methods tend to be stable
and almost equal to those in the linear data pattern, but it has a smaller median value.

5 —

4 — *

] ==

E=stimated Theta
L=
|

I I
Haimal LFR

Metode

Figure 2.Boxplot of the estimated theta by Kernel and Local Polynomial Regression on
quadratic pattern with n=40 and 6>=0.5

Summary statistics for quadratic data pattern is presented in Table 4.
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Table 4. Summary Statistics forQuadratic Data Pattern by Kernel Method and Local

Statistical
value

Mean
Median
Maximum
Minimum
Quantil 1
Quantil 3

Polynomial Regression

Kernel Local Polynomial Regression (LPR)
Foimated - yse Gov pay PRt sk GCvV P(%)
1.348 0.872 0918 0.897 0.995 1,295.553  1,365.302 1,292.578
1.316  0.865 0.910 0.890 0.712 14.879 15.652 14.904
1.731 0939  0.988 0.964 4.628  9,728.582 20,743.058 9,728.607
1.025 0.853 0.898 0.878 -1.156 0.527 0.554 0.552
1.182  0.856  0.900 0.881 0.368 3.041 3.199 3.066
1.484  0.877  0.923 0.902 1.386  1,789.004  1,881.924 1,789.029

5. Conclusions and Suggestions

Conclusions:

1.

In the linear and quadratic data pattern, the relative bias values resulted by Kernel
method are smaller than the relative bias values resulted by the Local polynomial
Regression (LPR). The relative bias values resultedby Kernel method tend to be
more stable and consistent than the relative bias values resulted by LPR methods.
The Mean Square Errors (MSE)produced by Kernel methods on every combination
treatment are smaller than the MSEs obtained by LPR in both linear and quadratic data
pattern.

Likewise, the values of GCV and the risk factors P(A) in every combination of
simulated data patterns, Kernel methods provide smaller values than the LPR does.

Thus, it can be said that Kernel methods is better than LPR method in dealing with both
linear and kuadratic data with non-parametric characteristic.

Suggestions:

1. The optimum bandwidth usage greatly affect thevalues obtained., The bandwidth used
in this study is an optimum bandwidth for Kernel methods.

2. Tt is need to studyin further about optimum bandwidth determination for LPR in
small area estimation on non-parametric data pattern.
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