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1. Introduction

Let H(A) be the class of analytic functions in the unit disk A := {z € C: |z| < 1}
and H[a,n] be the subclass of functions of the form f(z) = a + an2" + apy 12" +
---. We denote H = H][1,1]. Let A denote the subclass of H normalized by the
conditions f(0) =0 = f’(0) — 1. Thus, the class A consists of the functions of the
form

f) =2+ ana". (1)
n=2

Let S be the subclass of A consisting of univalent functions.

A function p(z) = 14+p12+p222+. .. is said to be in the class P if Rep(z) > 0. For
two analytic functions f and g, we say that f is subordinate to g or g is superordinate
to f, denoted by f < g, if there is a Schwarz function w with |w(z)| < |z| such
that f(z) = g(w(z)). If ¢ is univalent, then f < ¢ if and only if f(0) = ¢g(0) and
f(A) C g(A). A function f € A is starlike if f(A) is starlike domain with respect
to 0, and a function f € A is convex if f(A) is a convex domain. Analytically, the
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prerequisites are equivalent to the following conditions f(()) €Pandl+2 I (()) €

P, respectively. The class of starlike and convex functions of order «, (0 < a < 1)

is defined as follows:
Zf’(2)>
Re >
( f(2)

(1 2 o

and

These classes are denoted by S*(a) and K(«) respectively. The class of close to
convex functions is defined by

f'(2)
g(z)
It is well known [1] that f € K(a) < zf/(z) € §*(a). Thus, if f € S*(«a), then
feC(a).

The following Lemma is needed in the present investigation:

Cla) :={f: fGAandRe< >>a,z66,0<a<1;g616}.

LEMMA 1.1 [2, 3] Let the function w(z) be analytic in 6 with w(0) = 0. If |w(z)]
attains its mazimum value on the circle |z| < 1 at a point zg € A, then zpw'(zp) =
cw(zp), where ¢ > 1.

2. Main Results

THEOREM 2.1 Let ¢ > 1 and one of the following conditions holds

(1) A=1,0<B<1
(2) 0<A<1,0< B<A.

If the function f € A satisfies the inequality

z2f"(z) Ac (1+ A)Bce
Re(l—l— o )>1+1+A+ arEr FEN)

then

f'(2) = 1| <|A = Bf'(2)].
Proof Let the function w be defined as

1+ Aw(z)

1
TrBuly "OFp (2)

f'(z) =

Then, clearly w is analytic in the unit disk A with w(0) = 0. From (2), by a simple
computation , we get
zf,”( 2) 14 Ax'(z)  Bzuw'(2) . 3)
f'(2) (1+Aw(z)) (14 Buw(z))
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Suppose that there is a point zg in the unit disk A with the properties |w(zg)| = 1
and |w(z)| < 1, whenever |z| < |zp|. Now, from the Lemma 1.1, we have

20w(z0) = cw(z), (¢ = 1, w(z0) = €, 6 € R). (4)

From (3) and (4), we obtain

z2f"(2)\ Ac(cos(9) + A) Bc(cos(6) + B)
Re<1+ )—1 1+ A2+ 2Acos(0) 1+ B2+ 2Bcos(d) u(0).

f'(2)

A simple calculation shows that u(f) attains its maximum at § = 0 and

B Ac (14+ A)Bce
max{u®)} =1+ 3 gy By

Which is a contradiction to our hypothesis. Thus, |w(z)| < 1, z € A which implies
that |f'(z) — 1| < |A — Bf’(z)|. This completes the proof. [ |
If we set B = 0 in the Theorem 2.1, then we have:

COROLLARY 2.2 Let ¢ > 1 and 0 < A < 1. If the function f € A satisfies the
inequality

Re <1+Zf”(z)> >1+ (z € A),

f(2) 1+ A

then
Re(f'(z)) > 1— A.

Which equivalently can be written as f € C(1 — A).
If we set A =1/2 and ¢ =1 in the Corollary 2.2, then we have:
COROLLARY 2.3 If the function f € A satisfies the inequality

2f"(2)
f(2)

Re (1 + ) >233 (z€A),

then

Re(f'(2)) > 1/2.
Which equivalently can be written as f € C(1/2).
Setting A =1 in the Theorem 2.1, we have:

COROLLARY 2.4 Let ¢ > 1 and 0 < B < 1. If the function f € A satisfies the
inequality

z2f"(2) c 2Bc
Re<1—|— f(z)>>1+2+(1+B)2(Z€A),

then

2

FEl<
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Setting B =1/2 and ¢ = 2 in the above corollary, we have:
COROLLARY 2.5 If the function f € A satisfies the inequality

2f"(2)

Re(l—l—f(z)

) > 288 (z€A),

then

f'(2)] < 4.

3. Conclusion

In this paper several sufficient conditions for close-to-convexity of analytic functions
are obtained. Further this paper leaves a scope to the researchers to discuss more
general results in this direction using differential subordination.
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