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Abstract. This paper presents a Taylor series approach for solving linear fractional decen-
tralized bi-level multi-objective decision-making (LFDBL-MODM) problems with a single
decision maker at the upper level and multiple decision makers at the lower level. In the pro-
posed approach, the membership functions associated with each objective(s) of the level(s)
of LFDBL-MODM are transformed to a linear form by using a Taylor series and then they
are unified. On using the Kuhn-Tucker conditions, the problem is finally reduced to a single
objective. Numerical example is given in order to illustrate the efficiency and superiority of
the proposed approach.
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1. Introduction

Bilevel decentralized decision-making(BLDDM)problems with single decision
maker at the upper level(ULDM) and multiple decision makers at the lower lev-
els(LLDMs) are frequently encountered in hierarchical organization of large com-
panies such as government, agencies, profit or non-profit organizations, manufac-
turing plants, and logistic companies. Solution technique is explicitly assigning to
each decision maker(DM), a unique objective, a set of decision variables, and a set
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of common constraints which affect all DMs. Each unit or department indepen-
dently seeks its own interest, but it is affected by the actions of the other units
[1]. Most of the developments in BLDDM focus on single(linear, linear fractional,
or non-linear)objective programming problems to each DM at the upper and the
lower levels [1, 2, 4, 7, 9, 10, 14]. In a hierarchical DM context, it has been realized
that each DM should have a motivation to cooperate with the others, and a min-
imum level of satisfaction of the DMs at a lower level must be considered for the
overall benefit of the organization. The use of the concept of membership function
of fuzzy set theory to multi-level programming problems for satisfactory decisions
was first introduced by Lai [5]. There after, Lai satisfactory solution concept was
extended by Shih et al [13] with a supervised search procedure with the use of
maxmin operator was stuied by Bellman and Zadeh [3]. Abo- Sinna extended the
fuzzy approach for multi-level programming problems of Shih et al in [13] for solv-
ing bi-level and three-level non-linear multi-objective programming problems. The
basic concept of these fuzzy programming(FP)approaches is the same as that of
each lower level DMs optimizes his/her objective function, taking a goal or prefer-
ence of the first level DMs into consideration. In the decision process by considering
the membership functions of the fuzzy goals for the decision variables of all the
DMs,we solve a FP problem with a set of an overall satisfactory degree to any of
the upper levels. If the proposed solution is not satisfactory to any upper levels,
the solution search is continued by redefining the elicited membership functions
until a satisfactory solution is reached [7].
In this paper, we consider LFDBL-MODM problems in which there are a single

DM at the upper level and two or more DMs at the lower level, and objective
functions of the DMs and constraint functions are linear functions. The member-
ship functions, which are associated with each objective(s) of the level(s) LFDBL-
MODM problems are transformed to linear form by using first-order Taylor poly-
nomial series. Here, the obtained Taylor series which has polynomial membership
functions is equivalent to fractional membership functions which is associated to
each objective(s) of each level(s), which reduce the LFDBL-MODM problem into
a single objective.
In other words, suitable transformation can be applied to formulate an equiva-
lent LFDBL-MODM problem. The performance of the proposed method will be
experimentally validated by example.

2. Problem Formulation

Assume that there are two levels in a hierarchy structure with ULDM or DM0 and p
DMs at the LLDMi orDMi , i = 1, 2, . . . , p. Let the vector of decision variables x =
(x0, x1, . . . , xp) ∈ Rn be partitioned between the upper and lower DMs. The ULDM
has control over the vector x0 ∈ Rn0 , and LLDMk, k = 1, 2, . . . , p, has control over
the vector xk ∈ Rnk , where n = n0 + n1 + · · ·+ np, xk = (xk1, xk2, . . . , xknk

), k =
0, 1, . . . , p. Furthermore,assume that

Fi(x0, x1, . . . , xp) = Fi(x) : R
n0 ×Rn1 × · · · ×Rnp −→ Rmi , i = 0, 1, 2 . . . , p

is the vector of objective functions to the DMi, i = 0, 1, . . . , p. So the LFDBL-
MODM problem of maximization type may be formulated as follows [10]:

(upper level)

Max
x0

F0(x) = Max
x0

(f01(x), f02(x), . . . , f0m0
(x)) [DM0]

where x1, x2, . . . , xp solves
(lower level)
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Max
x1

F1(x) = Max
x1

(f11(x), f12(x), . . . , f1m1
(x)) [DM1] (1)

Max
x2

F2(x) = Max
x2

(f21(x), f22(x), . . . , f2m2
(x)) [DM2]

...

Max
xp

Fp(x) = Max
xp

(fp1(x), fp2(x), . . . , fpmp
(x)) [DMp]

subject to

x ∈ G =

{
x ∈ Rn | A0x0+A1x1+· · ·+Apxp ⩽ b, x ⩾ 0, b ∈ Rm

}
̸= ∅

Where

fij(x) =
cijx+ αij

dijx+ βij
for i= 0, we have j = 1, 2, . . . , m0, for ULDM objective functions,
for i=1,2,. . . ,p , we have j = 1, 2, . . . , mi, for LLDM objective functions,

where mi, i = 1, 2, . . . , p is the number of DMi s LLDM objective functions, m
is the number of the constraints, Ai is the coefficients of matrices of size m × ni,
cij , dij ∈ Rn, dijx + βij > 0 for all x ∈ G and αij , βij are constants(for i=0, 1,. . . ,
p & j = 1, 2, . . . , mi ).
Definition 1 For any x0(x0 ∈ G0 = {x0|(x0, x1, . . . , xp) ∈ G}) given by ULDM,

if the decision-making variables xk(xk ∈ Gk = {xk|(x0, x1, . . . , xp) ∈ G}) is the
Pareto optimal solution of the LLDMk, k = 1, 2, . . . , p, then (x0, x1, . . . , xp) is a
feasible solution of LFDBL-MODM problem [6].
Definition 2 If (x∗0, x

∗
1, . . . , x

∗
p) is a feasible solution of the LFDBL-MODM

problem; no other feasible solution (x0, x1, . . . , xp) ∈ G exists, such that
f0j(x

∗
0, x

∗
1, . . . , x

∗
p) ⩽ f0j(x0, x1, . . . , xp); so (x∗0, x

∗
1, . . . , x

∗
p), j = 1, 2, . . . ,m0 is the

Pareto optimal solution of the LFDBL-MODM problem [6].

3. Fuzzy Decision Models for LFDBL-MODM Problem

To solve the LFDBL-MODM by adopting, the leader-follower Stakelberg and the
well-known fuzzy decision model of Sakawa [11, 12] each of the objectives in each
level to build membership function, goals and tolerances should be determined first.
However, they could hardly be determined without meaningful supporting data.
We should first find the individual best solution (f+

ij ) and individual worst solution

(f−
ij ) , where

f+
ij = Max fij(x) , f−

ij = Min fij(x)

s.t s.t (2)

x ∈ G x ∈ G
Goals and tolerances can then be reasonably set for individual solution and

the difference of the best and worst solution, respectively. This data can then be
formulated as the following membership function of fuzzy set theory [6]:

µfij(x)fij(x) =


1 fij(x) ⩾ f+

ij

fij(x)− f−
ij

f+
ij − f−

ij

f−
ij ⩽ fij(x) ⩽ f+

ij

0 fij(x) ⩽ f−
ij

(3)
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4. The Taylor Series for Solving LFDBL-MODM Problem

In the LFDBL-MODM problems, membership functions associated to each of the
objectives in each level are firstly transformed by using Taylor series and then a
satisfactory value(s) for the variable(s) of the model is obtained by solving the fuzzy
model, which has a single objective function. Here, the fractional linear membership
functions from each objectives of each levels is converted to a linear polynomial on
using Taylor series . Then, the LFDBL-MODM on using Kuhn-Tucker conditions
can be reduced to a single objective. The proposed approach can be explained as
following in four steps.
Step 1. Determine x∗ij = (x0∗ij , x

1∗
ij , . . . , x

p∗
ij ), (i = 0, 1, . . . , p&j = 1, 2, . . . ,mi)

which is the value(s) that is used to maximize each of the objectives in upper level
and lower level membership Function µfij (x) associated to the upper level and
lower level fij(x1, x2)(i = 0, 1, . . . , p&j = 1, 2, . . . ,mi) respectively, where n is the
number of the variables.
Step 2. Transform membership functions by using first-order Taylor polynomial

series

µfij (fij(x))
∼= µ̂fij (fij(x)) = µfij (fij(x

∗
ij))+

(
(x0−x0∗ij )

∂

∂x0
+(x1−x1∗ij )

∂

∂x1
+ · · ·+

(xp − xp∗ij )
∂

∂xp

)
µfij (fij(x

∗
ij))

µfij (fij(x))
∼= µ̂fij (fij(x)) = µfijfij(x

∗
ij) +

p∑
k=0

(xk − xk∗ij )
∂µfijfij(x

∗
ij))

∂xk
(4)

Step 3. Sum of the membership functions associated to the upper level is shown
by P(x) as below. Note that the problem is solved by assuming that weights of the
objectives in upper level are equal.

P (x) =

m0∑
j=1

(
µf0jf0j(x

∗
0j) +

p∑
k=0

(xk − xk∗0j )
∂µf0jf0j(x

∗
0j)

∂xk

)
(5)

Step 4. After applying the Kuhn-Tucker conditions to the objective function of
the lower level, we find satisfactory x∗ = (x∗1, x∗2, . . . , x∗p) by solving the reduced
problem to a single objective. Therefore FLFBP is now converted into a new math-
ematical model as follows:

Max P (x)
s.t

A0x0 +A1x1 + · · ·+Apxp + u = b

wAi − νi =

mi∑
j=1

∂µij(x
∗
ij)

∂xi
(6)

wu = 0, xiνi = 0
xi, w, u, νi ⩾ 0, i = 1, 2, . . . , p

In this method, zero-one variables η and ξi, is added to each constraint wu = 0
and xiνi = 0, respectively. In addition, each of these constraints is replaced by
two linear inequalities involving η and ξi and M, a large positive constant. The
auxiliary formulation now becomes

Max P (x)
s.t

A0x0 +A1x1 + · · ·+Apxp + u = b
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wAi − νi =

mi∑
j=1

∂µij(x
∗
ij)

∂xi
(7)

w ⩽ Mη, u ⩽ M(1− η)
xi ⩽ Mξi, νi ⩽ M(1− ξi)
η, ξi ∈ {0, 1}
xi, w, u, νi ⩾ 0, i = 1, 2, . . . , p

5. Numerical Example

To demonstrate the method for LFDBL-MODM problem, let us consider the fol-
lowing example:

Max
x0

(f01 =
−x0 − 4x1 + x2 + 1

2x0 + 3x1 + x2 + 2
, f02 =

−2x0 + x1 + 3x2 + 4

2x0 − x1 + x2 + 5
)

where x1, x2 solves

Max
x1

(f11 =
3x0 − 2x1 + 2x2
x0 + x1 + x2 + 3

, f12 =
−7x0 − 2x1 + x2 + 1

5x0 + 2x1 + x2 + 1
)

Max
x2

(f21 =
x0 + x1 + x2 − 4

x0 − 2x1 + 10x2 + 6
, f22 =

2x0 − x1 + x2 + 4

−x0 + x1 + x2 + 10
) (8)

subject to
x0 + x1 + x2 ⩽ 5 − x0 + x1 + x2 ⩽ 1
x0 + x1 − x2 ⩽ 2 x0 − x1 + x2 ⩽ 4
x0 + x1 + x2 ⩾ 1 x0 + 2x2 ⩽ 4
x0, x1, x2 ⩾ 0

We first obtain the f+
ij and f−

ij for each objective(s) of each level(s), then

f+ = (f+
01, f

+
02, f

+
11, f

+
12, f

+
21, f

+
22) = (0.67, 1.25, 1.47, 1, 0.02, 1.25) and f− = (f−

01, f
−
02,

f−
11, f

−
12, f

−
21, f

−
22) = (−0.73, 0,−0.5,−1.11,−0.75, 0.27) are obtained. The member-

ship functions from each objective(s) of each level(s) are obtained as follows:

µf01f01(x) =


1 f01(x) ⩾ 0.67

−x0 − 4x1 + x2 + 1

2x0 + 3x1 + x2 + 2
− (−0.73)

0.67− (−0.73)
−0.73 ⩽ f01(x) ⩽ 0.67

0 f01(x) ⩽ −0.73

µf01f01(x) =


1 f01(x) ⩾ 0.67

0.46x0 − 1.81x1 + 1.73x2 + 2.46

2.8x0 + 4.2x1 + 1.4x2 + 2.8
−0.73 ⩽ f01(x) ⩽ 0.67

0 f01(x) ⩽ −0.73

(9)

In the same way, the other membership functions are formed as

µf02f02(x) =


1 f02(x) ⩾ 1.25

−2x0 + x1 + 3x2 + 4

2.5x0 − 1.25x1 + 1.25x2 + 6.25
0 ⩽ f02(x) ⩽ 1.25

0 f02(x) ⩽ 0

(10)



96 M. Saraj & N. Safaei/ IJM2C, 05 - 01 (2015) 91-97.

µf11f11(x) =


1 f11(x) ⩾ 1.47

3.5x0 − 1.5x1 + 2.5x2 + 1.5

1.97x0 + 1.97x1 + 1.97x2 + 5.91
−0.5 ⩽ f11(x) ⩽ 1.47

0 f11(x) ⩽ −0.5

(11)

µf12f12(x) =


1 f12(x) ⩾ 1

−1.45x0 + 0.22x1 + 2.11x2 + 2.11

10.55x0 + 4.22x1 + 2.11x2 + 2.11
−1.11 ⩽ f12(x) ⩽ 1

0 f12(x) ⩽ −1.11

(12)

µf21f21(x) =


1 f21(x) ⩾ 0.02

1.75x0 − 0.5x1 + 8.5x2 + 0.5

0.77x0 − 1.54x1 + 7.7x2 + 4.62
−0.75 ⩽ f21(x) ⩽ 0.02

0 f21(x) ⩽ −0.75

(13)

µf22f22(x) =


1 f22(x) ⩾ 1.25

2.27x0 − 1.27x1 + 0.73x2 + 1.3

−0.98x0 + 0.98x1 + 0.98x2 + 9.8
0.27 ⩽ f22(x) ⩽ 1.25

0 f22(x) ⩽ 0.27

(14)

If the problem is solved for each of the membership functions, then µ∗
f01

(f01(0, 0, 1)),

µ∗
f02

(f02(0, 1, 0)),µ
∗
f11

(f11(2.67, 0, 0.67)), µ
∗
f12

(f12(0, 0, 1)) µ
∗
f21

(f21(1.67, 1.5, 1.17))

and µ∗
f22

(f22(2.67, 0, 0.67)) are obtained, and the associated membership functions
are then transformed by using first-order Taylor polynomial series as below.

µf01(f01(x))
∼= µ̂f01(f01(x)) = µf01(f01(0, 0, 1))+

(
(x0−0)

∂

∂x0
+(x1−0

∂

∂x1
+(x2−1)

∂

∂x2

)
µf01(f01(0, 0, 1)) = 0.56 + 0.11x0 − 2x1 + 0.11x2 (15)

In the same way, the other membership functions are transformed on using first-
order Taylor polynomial series.

µf02(f02(x)) = 0.87− 1.12x0 + 0.56x1 + 0.44x2 (16)

µf11(f11(x)) = 1.02 + 0.24x0 − 0.55x1 − 0.07x2 (17)

µf12(f12(x)) = 1− 6x0 − 2x1 (18)

µf21(f21(x)) = −0.22 + 0.06x0 + 0.06x1 + 0.05x2 (19)

µf22(f22(x)) = 0.17 + 0.41x0 − 28x1 − 0.03x2 (20)

The P(x) is obtained by adding (15) and (16) as follows:

P (x) = µf11(f11(x)) + µf12(f12(x)) = 1.43− 1.01x0 − 1.44x1 + 0.55x2 (21)

After applying the Kuhn-Tucker conditions to the obective function of the lower
level , a new auxiliary problem is to be solved as follows:

Max P (x) = 1.43− 1.01x0 − 1.44x1 + 0.55x2
s.t

x0 + x1 + x2 + u1 = 5 − x0 + x1 + x2 + u2 = 1
x0 + x1 − x2 + u3 = 2 x0 − x1 + x2 + u4 = 4
x0 + x1 + x2 + u5 = 1 x0 + 2x2 + u6 = 4
w1 + w2 + w3 − w4 + w5 − ν1 = −0.55− 2 (22)
w1 + w2 − w3 + w4 + w5 + 2w6 − ν2 = 0.05− 0.03
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wj ⩽ Mηj , uj ⩽ M(1− ηj)
xi ⩽ Mξi, νi ⩽ M(1− ξi)
ηj , ξi ∈ {0, 1}
x0, x1, x2, wj , uj , νi ⩾ 0 i = 1, 2, j = 1, . . . , 6

The problem with M = 1000, is solved and the Pareto optimal solution of the above
problem is obtained as follows:

x∗0 = 0, x∗1 = 0, x∗2 = 1,

f01(x) = 0.67, f02(x) = 1.17, f11(x) = 0.5, f12(x) = 1,

f21(x) = −0.19, f22(x1, x2) = 0.45.

6. Conclusion

In this paper, for solving LFDBL-MODM problems a powerful and robust method
which is based on Taylor series and Kuhn-Tucker conditions is proposed. Mem-
bership functions associated to each objectives of each levels are transformed by
using Taylor series, that is the LFDBL-MODM problem is reduced to an equiv-
alent single objective linear programming problem by using the first-order Taylor
polynomial series and Kuhn-Tucker conditions was applied as a new approach to
bilevel fractional programming problems compare to the previous method in the
literature. Proposed method is applied to a numerical example to test the effect
on the performance. The result indicates that the proposed method is very simple,
efficient and robust.
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