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Abstract. Human language, over its evolutionary history, has emerged as one of the fun-
damental defining characteristic of the modern man. However, this milestone evolutionary
process through natural selection has not left any ’linguistic fossils’ that may enable us to
trace back the actual course of development of language and its establishment in human soci-
eties. Lacking analytical tools to fathom the critical essentials of evolutionary mechanism of
cultural transmission, we seek the recourse of simulation study as another useful method of
enquiry into the evolutionary trajectory of language.

In this paper we use a toy model to understand an interesting feature of language evolution,
namely, the scenario in which words gets fixed in a population of language users. We obtain
simulation for the replicator dynamics that characterise the time rate of change of various
words in the given language, using genetic algorithm to simulate the dynamics. We infer that
two of the prime determinants for the establishment of a word within a linguistic population
are its consonance with the grammar and its communicative efficiency.
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1. Introduction

The evolution of language obviously ranks as one of the most significant events
in the course of natural history of human evolution. Being a defining moment in
the evolutionary history of modern humans, language facilitates a multitude of
possibility of transmitting non-genetic, cultural material from one generation to
the next in the course of Darwinian evolution [1, 2, 3, 4, 5, 6, 44].
Communication through vocalization or symbolization of phonemes that make
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component-wise sense too, established itself as an evolutionary landmark in the
making of modern humans. Such an ability to communicate syntactically within as
well as outside of one’s social group thus emerged as a definition of modern human’s
quintessential social identity. This feature also marked a new form of nongenetic
transmission of information from one generation to the next [7, 8, 9, 10, 11, 12, 13,
14, 15].

Language, together with coding cultural information, codes information on its
own structure. Thus, during the evolutionary history, a given language provides
coded information that influences its own survival via feedback loops during the
various evolutionary phases it passes through. Language therefore could be viewed
as a consequence of interaction between three complex adaptive systems: biological
evolution, learning and culture. Under this scenario, language itself gets charac-
terized as a complex adaptive system [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27].

Evolutionary emergence of human language has hardly left any tangible, data-
intensive archaeological record. Also, since language should be viewed as a com-
plex system following a dynamical evolutionary trajectory rather than as a single,
monolithic human behaviour, any insight into the evolutionary history of language
requires the behaviour of this complex dynamical system to be broken down into its
constituent components, with each component possibly following an independent,
distinct evolutionary path [28]. This fact has therefore put a constraint on the kind
of studies that may be deemed plausible in the domain of evolution of language,
and consequently there does not exist any exact analytical method as a roadmap
to pursue problems relating to evolutionary emergence in this domain.

In absence of a general and structured analytical framework, any attempt to un-
derstand and analyze the trajectory of evolution and emergence of a language in a
linguistic community of users of that language must take recourse to certain broadly
speculative and conjectural theories. One of the potent tools for furthering explo-
rations and studies in the above kind of domains could be the approach through
simulations, which are essentially hypotheses and theories expressed as computer
programs. Although such studies using simulations often tend to simplify (even
oversimplify) the essential complexity involved in the evolutionary system, could
nevertheless prove to be very valuable in order to obtain an insight into the actual
phenomena. The results of simulations, often depicted graphically, are the conclu-
sions as well as predictions about the system of interest that has been described
by the program and has been simulated by the computer [29, 30, 31, 32]. In the
present paper, we undertake an exploration of self replicating rules and structures
of language, viewed as a complex system, using genetic algorithm.

For our modelling in the present work, we assume a population of individual
agents who communicate with each other randomly, and thus are users of a lan-
guage. Following the Five Graces group, we assume that: (i) the linguistic system
consists of multiple agents interacting with each other as well as with the environ-
ment; (ii) the system is adaptive - individual agent’s behaviour is based on their
past interactions and current and past interactions together feed back into their
future behaviour; (iii) an agent’s behaviour is the consequence of competing factors
from a wide range of environmental constraints [25]. These interacting agents in
our model comprise the speech community, in which the agents themselves control
all their interactions without the influence of any controller, and hence comprise
an autonomous community [26].

In the present paper we propose a toy model for language evolution, and choose
the methodology of computational simulation for evolution of language, assuming
that as a complex adaptive system, language is continually evolving in cultural



S. Bhattacharya et al./ IJM?C, 01 - 02 (2011) 87-99. 89

time and social space. We assume that a linguistic system is described by the
linguistic structures used in a speech community, represented by words that belong
to the language defined by its grammar , which essentially supplies the rewrite rules
for construction of linguistic structures [26, 27]. Words, essentially constructed as
strings of symbols from the alphabet used for describing the language, are taken
as proxy for language users and are the agents in our modelling.

In a typical game theoretic setting, the agents play an evolutionary game iterated
through generations where each agent, being rational, has the objective of optimiz-
ing its payoff [28, 29, 30, 31, 32].The interaction among the agents as well as those
of the agents and the environment capture the evolutionary game. In the above
perspective, the distinction between the agents (words) and the strategies played
by the words could be blurred without loss of generality, and the agents are them-
selves the strategies in the game. In every generation, the above interactions result
in the linguistic structures - words - getting replicated, either in totality or with
some alterations. Hence, in the model, the words are the agents, the ’lingueme’,
and thus are the replicators [33, 34].

An evolutionary dynamics for a given system requires replication, variation and
selection mechanisms for the agents to be identified and defined, in order to be
modelled. These prerequisites for the agent dynamics in the present work are de-
scribed in the following paragraphs.

The emergence of collections of replicators of various types during the evolu-
tionary game played by the agents of the linguistic system causes a high degree of
variation in the replication of linguistic forms in the language [27, 33, 35, 36]. We
assume that the replication of words occurs through linguistic creativity, reanal-
ysis and language contact [34]. We further assume that selection takes place as a
manifestation of social preference of one word over another. This preferential bias
supplies the linguistic forms with selection for learnability and frequency of use,
and selection against ambiguity in meaning. Hence there exists a selection pressure
on the evolutionary dynamics of the replicators.

We model the variations necessary for the evolutionary dynamics of the language
system by using a stochastic selection protocol of the simple genetic algorithm,
guided by frequency - manifested by a metric called fitness - dependent mechanism.
The protocol used in the paper thus contains the updating mechanism for the
population, and is a cultural procedure that mimics biological evolution through
natural selection. In the paper, we show that such a fitness dependent selection
of agents in the evolutionary game over iterative generations either reinforce and
establishes it in the language as a component of the linguistic form, or deletes it
from the language.

With an aim to make the paper self-contained, we present below a cursory
overview of the essential basics of two key aspects of our work, namely, language
and genetic algorithm, even at the cost of redundancy. The presentations draw
heavily from the scholarly works cited in the corresponding references in the text.

1.1 Language Preliminaries

Following is a synopsis of the standard concept of formal language that we shall
adhere to in the paper [44, 45, 46].

For a given alphabet X, a string (or a word/ sentence) is a finite sequence of
symbols chosen from ¥. If ¥ = {0, 1}, then we define the powers of ¥ as $! = {0, 1},
2 = {00, 01,10, 11} and so on. Denoting the union of all such powers of ¥ by ¥*, we
have ¥* = {0, 1, 00,01, 10,11,000, 001, ... }, which is the collection of all possible
sentences that can be generated from the alphabet X. ¥* is a countably infinite set,
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where all the strings belonging to ¥* can be enumerated using a lexicographical
order.

A set of words (and their concatenations), all of which are chosen from some ¥*
is called a language L. Therefore, if ¥ is an alphabet and L C ¥*, then L is a
language over X.

A context free grammar G(V, X, R, S) is a 4-tuple where V is the set of variables
and forms a finite set, 3 is the given alphabet whose elements are the letters or
terminals (every element of the set V/X is a nonterminal), R is a finite set of rules
representing the recursive definition of the language in the context (each rule is a
variable or a string of variables and terminals taken from V and ) and s € V is the
start variable that represents the language being defined. A context free grammar
G specifying a language L C ¥* is therefore essentially a rewrite system for strings
comprising a finite list of rules over an alphabet X.

1.2 Genetic Algorithm Preliminaries

Genetic Algorithms (GA) comprise a class of optimization routines that are es-
sentially population-based search mtaheuristics. Initially developed by Holland for
addressing problems of adaptive systems in domains that are characterized by both
enormous search spaces and objective functions with nonlinearities (multiple local
optima), discontinuities, high dimensionality and noise, GA provide a highly effi-
cient search procedure to effectively address the problem of optimization in such
'difficult’ domains [47, 48, 49, 50, 51].

GA are a large class of routines, where each member of the class is characterized
by the following criteria: (i) a nonzero population of well defined structures agents
(structures), (ii) action of the agents in an environment, (iii) evaluation of the per-
formance of each of the agents using a fitness score, (iv) creating new populations
using this score as the input and ranking the agents according to their respective
scores, (v) selecting the agents with better performance scores, (vi) modifying the
selected agents through stochastic genetic operators.

Of a multitude of evolutionary search routines that are current in scholarly liter-
ature and get labelled as genetic algorithm, we shall remain confined attention to
the application of Simple Genetic Algorithm (SGA) as a tool to study the problem
set in this paper [52].

SGA is a triple I'(£2, S, g), where the components are as below: 2 is the search
space comprising agents represented as binary strings which are the candidate solu-
tions for a given optimization problem. & is an exogenously defined fitness function
and g is the search heuristic acting on a nonzero population of the candidate strings.

The fitness function S is an injective map from €2 to R, and defines the environ-
ment for the evolutionary scheme. It evaluates each string x;, i = 1,2,...,|Q| and
declares a fitness score. The heuristic g comprises three stochastic operators: the
selection operator ¢ , the crossover operator x and the mutation operator pu.

The operator 1 maps the simplex A representing the population of agents at a
given generation P; to the search space €2:

i A—Q

Being a non explorative operator, the selection operator does not generate any
new string in the population.
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The crossover operator y acts on a pair of elements of the search space,

Y2 x Q-0

(@,y) — x(z,y) 2,y €

The two elements z,y € €2 on which y acts are the parent strings, yielding two
offspring strings as a result of the crossover operation. The crossover point is a
randomly selected bit position from the interval [o,] — 1]. The offspring thereby
"inherits’ blocks of loci from both the parents, giving rise to the exchange of infor-
mation between trial solutions. Traditionally, the value of probability of action of
the operator x is significant, ranging between 0.6-0.8.

The mutation operator u acts on one single string = and changes the binary
character at a locus on the string to obtain a different string:

w0 — Q

ﬂji—)x]’

The probability of action of j is generally taken to be small, of the order of 1073,

The two operators x and p act independently of one another on the population
of strings, producing the mixing © of the strings. The heuristic g effectively is then
the composition of the selection ¥ and the mixing ©: g = ©oV.

The net effect of the heuristic is the creation of new strings in the search space
with a spectrum of fitness values, resulting in a very efficient sampling plan. One
may thus expect subsets of the search space 2 containing strings of similar pro-
file and sharing a particular set of fitness score (schema) to emerge and evolve
in time. The behaviour of theses schema will remain largely conformal with the
selection pressures acting on the dynamical, evolutionary language system within
the environment [53].

2. Modelling

We consider a language model to study the persistence and fixation of the words
in a language on an evolutionary scale, effected by communicative interactions and
transmission of ’language genes’ through generations of members of the linguistic
community, using the language.

In order to address the problem as outlined in Introduction, we have performed
a modelling based on evolutionary game theory for the above community using
a SGA T mentioned above, as the heuristic for obtaining the necessary variation
and selection in the interacting agent community. The inputs and outputs to the
functions in the following are the binary strings of finite length, that is elements
of the set 3*.

The model presented in the paper comprises three major components:

(i) allowable agents (words) which are strings of a finite length I, I € Z* de-
fined over the binary alphabet ¥ = {0, 1}, with each string representing a
sentence. Let Z3 be the set of integers modulo 2 : Zy = {0, 1}. The search
space () for the SGA in our model may then be represented as
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Q=275 x Zyx---xZy (lfactors)

It may be noted in passing that |Q] = 2! and the space Q may be es-
tablished as an [-manifold through usual chart with a suitable metric de-
fined on it via the fitness function . Every locus on any given string x;,
i=1,2,...,{0,1} specifies and controls a particular syntactic characteris-
tic of the language L(G);

(ii) An environment described and defined by the fitness function & that eval-
uates the performance of each string from the search space in terms of a
fitness measure which is a real number, while the fitness function itself maps
each string to a numerical score € R , and is a measure of success of each
string in the run of the SGA;

(iii) The evolutionary roadmap described by the SGA, that essentially com-
prises two operational mechanisms: selective reproduction and continuously
adding variability in the populations.

For the purpose of developing a minimalist model, we make some simplifying as-
sumptions (even at the cost of oversimplifications at some points) listed below:

a) The language in discussion is compositional. This means that the meaning
of a signal is a function of its parts. Thus, each element of meaning will map
onto a particular part of the signal, and therefore each subpart of the entire
sentence (string) will be individually mapped onto by the given signal [21].

b) Each individual user (agent) that comprises the linguistic population is
equipped with a well-formed syntax (through the grammar of that lan-
guage) that does not get updated or revised regularly and thus serves as a
backdrop for language use.

c¢) The system comprises an infinite population size of the agents.

d) Words (strings) proxy for the language user agents.

e) The membership of the words in the language is a bivalent function; either
a word belongs to the language or does not.

f) The population of agents comprises a dynamical system with the SGA T'.
The heuristic mapping g together with the fitness function & provide the
update rule that describes the change of the system from one time step to
the next. The search space €2 represents the state space that contains all
possible linguistic compositions of the well-mixed population of agents The
smooth dynamical system may be described by the following one-parameter
family of mappings:

Q- Q teZ

thus forming a one-parameter group through the rules

¢t+s — ¢t o ¢s
#° = Id

where Id is the identity map [54, 55].

We label the language as L(G) and seek to find out which are the agents (words)
that converge in (get fixed in) L(G) after a period of evolution that mimics natural
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selection. Thus, the problem for our present study may be written as:

What are the factors that determine if a proportion of population of agents will
converge to the target language over discrete, finite steps of time while other com-
peting proportions of the agent community die out? That is, what are the factors
that determine if only one of the competing fractions of words in a language will
exhibit dynamical stability after a finite number of iterations over discrete cultural
time?

To attain this objective, we begin with an initially given non-zero population of
language user agents using L(G). Each individual agent is a binary-coded string of
length 20 bits (I = 20) that is a word formed by catenation on the alphabet ¥ and
thus essentially represent a context free grammar. Next we evolve this set using T,
maintaining a randomly selected population of 200 agents in the search space €2 at
every generation.

Let this population of agents in the linguistic community play a certain "language
game’, repeated over generations, defined by iteration of the heuristic I'. Let the
game be described by O(P, E,1I) where P = { Py, P», ..., P,} is the set of interact-
ing ’'player’ agents such that cardinal number of P is n, E the strategy space given
by E = é1 X ég X - X &y, & being the ith pure strategy, and IT = {II;, Iy, ... I, } is
the set of payoffs, II; being the payoff associated with é;. Let the game be repeated
in periods of time ¢ € R. Assume that the agents are somehow "hardwired’ to play
only pure strategies in the game ©. Thus each strategy é; in this game corresponds
to a corner point, that is, a member of the standard basis where the ¢th coordinate
is 1 and the rest are zeros, in the simplex

n
A= {ﬁ—(pbpzw--ypn)TE%iPz‘ 20,21%—1}
=1

The fitness function in our model is the mapping & : A — Z, which assigns inte-
ger scores to the strings, and is a measure of the success of each agent in the game
O, played by the agents iteratively during the run of I'; and could be represented
as a convex combination of a positive base fitness common to all strategy and the
payoff obtained by a particular strategy per play of ©.

As mentioned earlier, language, being a complex system, evolves in cultural time
through availability of variations in the replicators of linguistic forms, that is, the
agents in our model. The evolutionary process of such a variation dependent mech-
anism in agent’s selection is captured by the replicator dynamics, which provides
the equation of motion for the replicators in this time evolution in the language
system. Being representative of general evolutionary dynamics scheme, these equa-
tions assume that the proportion of agents using a particular strategy increases at
a rate proportional to the fraction of agents using that strategy and the difference
between the current fitness score of these agents and the average fitness score of
all the agents comprising the population.

Assume that the agents (strategies, words) in our linguistic evolutionary game
model comprise a well-mixed population. Let this population be divided into n
types x; that use strategies é; with frequencies o;, ¢ = 1,...,n. Starting with
t = 0, game is played iteratively in positive integer periods ¢t = 1,2,.... The state
of the population of words at any given t is thus given by the state vector 6! =
(U’i, ob,... ,J;)T € A. Let St be the fitness score of the proportion of agents using
é; with frequency o! and 3t be the average fitness score of the entire population
at t. The replicator dynamics then describes the time evolution of this state of

population of strategies represented by the corresponding frequencies, and is given



94 S. Bhattacharya et al./ IJM?C, 01 - 02 (2011) 87-99.

by the deterministic ODE on the simplex A as

with a dot over denoting differentiation with respect to t [56, 57, 38].

The above equations drive the frequency of a strategy é; to increase, provided its
fitness (and therefore payoff) is higher than the average fitness of the population,
and hence spread in the population through replicating itself to the next generation,
and dwindles otherwise. This fitness dependence provides the selection mechanism
in the evolutionary game played by the agents. It must, however, be noted that if a
strategy (word) is not represented in the population at one particular generation t,
then it cannot appear at any generation after that, and hence, entirely new words
may not be innovated in the language under replicator dynamics [57, 58].

For the present work, we define fitness S of an agent as the number of 1’s in
the agent’s odd-numbered loci Vi at t. Qualitatively in our model, the fitness score
would inform how well does a particular word conform to the grammar of the
language L(G), and hence, is indicative of the ’success’ of the word at generation
t to get fixed in L(G). We stipulate a fitness score of 8 as a qualifying threshold
for an agent to be a member of L(G), and call such agents 'fit’ strategies (strings)
in A C Q at a period t.

To form the subsequent pools of agents, we apply a selection pressure on the
population of fit strings. A concatenation of word may adhere to the syntax pre-
scribed by G, yet may not be effective in communicating the intended signal-object
association, that is, may lack in communicative efficiency. A selection pressure will
monitor the communicative efficiency of the sentences (words). This setting will
also help to additionally bias the selection in favour of fit strings from A that belong
to the target language L(G). The process is isomorphic to selecting preferentially
only those words for usage which are the best (at least near-best) representatives
of the target language in terms of serving the dual objective of being faithful in
associating the corresponding signal correctly, as well as being consonant with the
syntactic demand of the grammar of L(G). New strings (arising out of crossover
and mutation from parent strings, hence not entirely new) are created at every gen-
eration on running the genetic algorithm, through its heuristic search. Emergence
of new agents (offspring) adds to the heterogeneity of the search space (and thus
of the selection pool) which in its turn leads to drive the population in directions
so as to try and avoid fitness stasis or fitness traps during the evolutionary course
[59, 60, 61, 62, 63].

We run the genetic algorithm for 30 generations, and obtain the simulation of
time rate of evolution of 6! through these generations.

The following routine describes the I' used in our work, with 2; denoting the
search space for I' at the generation ¢:

1. Initialize €2; by choosing 200 strings at random.
2. Sett=0,t€ N.
3. Calculate the fitness score for each string x; € A C €, i € N.
(i) Let Viz;] =St
(ii) If V[z;] > 8 then declare z; fit string 7;; else declare x; unfit.
4. Let of be the proportion of fit strings in €. Let n(o;) be the number of fit
strings.
5. Calculate:
(i) S = %([fi] average fitness of the entire population.

(if) o7 = of[S(6") = S*(6") ).
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6. Reproduce strings in :

(i) Select the best scoring strings from proportion o; of ;.
(ii) Apply a pressure
(iii) 1z:]
(iv) Adjust the population if the number of offspring # 200:
a) If number of offspring j 200, then allow highest scoring string in
the new population to produce additional offspring.
b) If number of offspring ; 200, then eliminate the lowest scoring
strings from the new population.

offspring.

7. Apply crossover operator x to the new population with probability P,
a) Randomly select 2 parent strings.
b) Randomly select a crossover point ¢ € [0,19].
¢) Form 2 offspring by applying x: crossover the parents immediately
after the c'h locus.
8. Apply mutation operator ;1 to the new population with probability P,:
a) V locus Vx;, change the symbol to its alternative in ¥ = {0, 1}..
9. Lett=t+1
10. If £ < 30, go to step 3.
11. End.

3. Results and Discussion

The following simulations for the replicator dynamics were obtained by fixing se-
lection pressures at 0.8 (high selection pressure, a strict linguistic community that
would admit only those replicators that have high learnability and occur with a
high frequency, but have low ambiguity), 0.6 (moderate selection pressure, a slightly
more accommodative community) and 0.4 (low selection pressure, a relaxed lin-
guistic community, tends to admit words even with marked degree of ambiguity in
meaning, low frequency of occurrence and low learnability) respectively on the pop-
ulation of the agents, with the horizontal axis representing number of generations
t against the vertical axis representing o:

N
IR
IR
)
L A

-0.1-

Figure 1. Graph for selection pressure 0.8.

In such iteration as above, the dynamical stability of words in a language over
(cultural) time, expressed through a user population converging to it relates to the
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Figure 2. Graph for selection pressure 0.6.
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Figure 3. Graph for selection pressure 0.4.

expressivity and thus the communicative efficiency of the language. The emergent
scenario as a result of the interactions among the agents both with themselves
as well as with the environment through I',could be summarized in the following
paragraph:

From Figure 1 we observe that for a selection pressure of 0.8, the population
of replicators settles on the target language L(G) with time rate of change in the
parameter o becoming zero after approximately 30 generations. We may infer from
the scenario, that after 30 generations, the words get fixed in the language, and
do not change thereafter. Figure 2 shows that with a selection pressure of 0.6,
the population fails to converge to the language even after 30 generations, and in
fact shows an increase in rate of change in o. Thus, at least till 30 generations
of communicative interaction, the linguistic ambiguities persist in the population,
though with a change in user proportion. Figure 3 graphs the iterations only up to
10 generations, as during the simulation it was observed that even in this instance
with a selection pressure of 0.4, the population of agents does not settle on L(G)
even up to 30 generations, and in this case too, therefore, linguistic ambiguity
persists in the population.

The above observations lead us to infer that for a proportion of linguistic replica-
tors - words or ’linguemes’ - to evolve through the process of an adaptive evolution-
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ary optimization mechanism over a period of cultural time and exhibit dynamical
stability in the language system, the following two factors become vitally impor-
tant:

(i) The language to which we seek the population to evolve, the target lan-
guage L(G) should be rather steeply demanding in regards to its syntactic
requirements, reflected through a high selection pressure and indicated in
the model by setting a high threshold fitness score. It should be discriminate
in accepting only those words as 'proper’ words of the language that have
a particular phenotypic configuration which endows them a fitness score of
at least 8 out of a maximum possible 10. This means that the language
should comprise sentences that are almost totally in consonance with its
grammar (G, and colloquial and derivatives or a marked tendency to admit
all and sundry words in a language be best avoided to dynamically evolve
and stabilize a population of words to that language;

(ii) It is useful to admit only those words for usage that not only have a fitness
score more than or equal to the set threshold value, but also are at least
near-best representatives of the target language indicated by setting a high
selection pressure. Thus, in order to belong to the language, a word must
have a relatively high ”communicative efficiency”, or a social acceptance.
Therefore, a large amount of foreign words in a language, though may be
grammatically admissible, does not guarantee the population evolving to
use only that language unless the words (or the sentences made from the
words) are also near-faithful representative of that language, in terms of
being socially popular in usage.

It may also be inferred from the results that in absence of any one of the above
two factors, the language under discussion may face a prospect of either never
establishing itself in a population of users uniquely or even becoming extinct at
least locally.
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