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Abstract. This paper presents a discrete-time single-server finite buffer N threshold policy
queue with renewal input and discrete Markovian service process. The server terminates
service whenever the system becomes empty, and recommences service as soon as the number
of waiting customers in the queue is N . We obtain the system-length distributions at pre-
arrival and arbitrary epochs using the supplementary variable and the imbedded Markov chain
techniques. Various performance measures such as the loss probability, mean queue length and
mean waiting time in the queue along with some numerical results have been presented. The
proposed model has potential applications in the areas of computer and telecommunication
systems.
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1. Introduction

Discrete-time queueing systems have received considerable attention due to their
wide applications in the performance analysis of communication and telecommu-
nication systems. Their significance has further increased due to the emergence
of the broadband integrated services digital network (B-ISDN) which can provide
transfer of video, voice and data through high speed local area networks (LANs),
on-demand video distribution, and video telephony, etc. Discrete-time queueing
models are better fitted than their continuous-time counterparts to determine per-
formance measures in computer and digital telecommunication networks, because
of the clock-driven operation of those systems. Extensive discussion on applications
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of discrete-time queues is available in Bruneel and Kim (1993), Woodward (1994)
and Takagi (1993).
Queueing models with non-renewal arrival/service processes are generally em-

ployed to model networks of complex computer and communication systems to
model the correlative and bursty characteristic of traffic streams in high-speed
packet based network. Discrete Markovian service process (D-MSP) has been
brought in because of the limitations of Bernoulli process in capturing correla-
tion among the service times. The discrete Markovian service process is similar to
the Discrete-time Markovian Arrival Process (D-MAP), where arrivals are replaced
by service completions. Several queueing systems have been studied by presuming
input process as D-MAP such as Chaudhry and Gupta (2003), Liu and Neuts
(1994). Alfa et al. (2000) discussed the asymptotic behavior of GI/MSP/1 queue
using the perturbation theory. The analysis of finite buffer GI/MSP/1 queue has
been presented by Bocharov et al. (2003). Using imbedded Markov chain and semi-
Markov process, they derived stationary characteristics of system performance. Sh-
ioda (2003) analyzed the departure process of MAP/SM/1 queue. The analysis of
GI/MSP/1 queue has been presented in Gupta and Banik (2007) using imbedded
Markov chain and supplementary variable techniques for finite buffer system, and
the matrix-geometric method and the renewal theory for infinite buffer system.
The stationary discrete-time GI/D-MSP/1 queue with finite and infinite buffers
has been analyzed in Samanta et al. (2009). Lim et al. (2013) studied infinite buffer
GI/Geo/1 queue with N threshold policy. Sikdar (2012) discussed the N threshold
policy in the finite buffer GI/MSP/1 queue.
In this paper, we consider a discrete-time GI/D-MSP/1/K queue with N

threshold policy for late-arrival system with delayed access. Lifetime elongation
for wireless sensor network using queueing system with N threshold policy is
very useful that minimizes power consumption in sensor node Jiang et al. (2012).
The another major application of the N threshold policy is in manufacturing sys-
tem. The analysis is based on the use of the supplementary variable technique
and the imbedded Markov chain technique. The server turns off when the sys-
tem is empty, and turns the server on when N (N ≥ 1) or more customers are
present. When the server is turned off, the server may not work till N customers
are present in the system. We obtain the steady-state system length distributions
at pre-arrival and arbitrary epochs. It may be noted that queueing models such
as GI/Geo/1/K, GI/D-PH/1/K and GI/D-MSP/1/K queues are special cases
of GI/D-MSP/1/K queue with N threshold policy. Moreover, the modeling of
discrete-time queue is more involved and quite distinct from the analysis used for
the corresponding continuous-time queueing model.
The rest of the paper is organized as follows: Section 2 presents the system de-

scription and necessary notations. In Section 3, we obtain the stationary system
length probabilities at pre-arrival epochs using imbedded Markov chain technique,
and derive a relation between pre-arrival and arbitrary epoch probabilities using
the supplementary variable technique. Various performance measures are evaluated
in Section 4. Section 5 contains numerical results in the form of tables and graphs
to show the effectiveness of the model parameters. Section 6 concludes our paper.

2. Description of the model

Let us consider a GI/D-MSP/1/K queue with N threshold policy wherein the
inter-arrival times A of two successive arrivals are independent and identically
distributed (i.i.d.) random variables with probability mass function (p.m.f.) ak =
P (A = k), k ⩾ 1, probability generating function (p.g.f.) A(z) =

∑∞
k=1 akz

k,
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|z| ⩽ 1 and mean inter-arrival time λ−1 = A(1)(1), where A(1)(1) is the first
derivative of A(z) w.r.t. z at z = 1.
The departure process of the queueing system is a D − MSP and is governed

by an underlying m-state Markov chain having probability Lij , 1 ⩽ i, j ⩽ m, with
a transition from state i to j without service completion and having probability
Mij , 1 ⩽ i, j ⩽ m, with a transition from state i to j with a service completion.
Let L = (Lij), and M = (Mij) be the m ×m non-negative matrices with both
having at least one positive entry and (L+M)e = e, where e is the m × 1 column
vector with all elements equal to one. The sum (L+M) is a stochastic matrix
corresponding to an irreducible Markov chain underlying D-MSP. Let Π be the
1×m stationary vector of the underlying Markov chain, i.e., Π(L+M) = Π,Πe =
1.
The fundamental service rate of the stationary D-MSP is µ∗ = µ∗(t)

t = ΠMe.
The customers are served according to D-MSP. The offered load ρ is defined as
ρ = λ/µ∗. We consider a discrete-time single-server finite buffer queueing system
under the Late Arrival System with Delayed Access (LAS-DA). We assume that
the time axis is slotted into intervals of equal length with the length of a slot
being unity, and is marked by the points 0, 1, 2, . . . , t, . . . . In LAS-DA a potential
arrival occurs in (t−, t) and a potential departure occurs in (t, t+). For a detailed
description of these concepts, see Hunter (1983) and Gravey and Hébuterne (1992).
The state of the system prior to a potential arrival is described by the following

random variables:

• Nt−= number of customers present in the system,

• ξt− = {j} where the server is in the jth (1 ≤ j ≤ m) phase of service process,

• Ut− = the remaining inter-arrival time for the next arrival.

For the sake of convenience, we have used the notation t in place of t−. Let us
define the joint probabilities by

pi,j(u, t) = P
{
Nt = i, ξt = j, Ut = u, the server is turned off

}
,

0 ⩽ i ⩽ N − 1, u ⩾ 0,

πi,j(u, t) = P
{
Nt = i, ξt = j, Ut = u, the server is turned on and working

}
,

1 ⩽ i ⩽ K, u ⩾ 0.

In the steady-state, let us define pi,j(u) = lim
t→∞

pi,j(u, t) and πn,j(u) =

lim
t→∞

πn,j(u, t). Further, let pi(u) be the row vector of order 1×m whose j-th com-

ponent pi,j(u) denotes the probability of i (0 ≤ i ≤ N−1) customers in the system,
the server is turned off and the service process in phase j (1 ≤ j ≤ m) and define the

vector-generating function pi
∗(z) =

∞∑
u=0

pi(u)z
u, | z |⩽ 1. Note that pi = pi

∗(1)

is the 1 ×m vector at an arbitrary epoch when server is turned off. Similarly, let
Πi(u) be the row vector of order 1×m whose j-th component πi,j(u) denotes the
probability of i customers in the system, server turned on and the service process in

phase j and define the vector-generating function Πi
∗(z) =

∞∑
u=0

Πi(u)z
u, | z |⩽ 1.

Again Πi = Πi
∗(1) is the 1 × m vector at an arbitrary epoch when the server is

turned on and working.
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3. Analysis of the model

In this section, we carry out the system length distributions at pre-arrival and
arbitrary epochs using the imbedded Markov chain and supplementary variable
techniques.

3.1 System length distribution at pre-arrival epochs

We obtain the system length distribution at pre-arrival epochs. Let t0, t1, t2, . . . be
the time epoches at which successive arrivals occurs and t−n be the time epoch just
before the arrival instant tn. The inter-arrival times Tn+1 = tn+1−tn, n = 0, 1, 2, . . .
are i.i.d. random variables with c.d.f. A(u). The state of the system at t−i is defined
as {Nt−i

, ξt−i }, where Nt−i
and ξt−i = {j} are the same as defined in Section 2. In

the limiting case, we define the following probabilities:

p−i,j = lim
t→∞

P
{
Nt−i

= i, ξt−i = j, server is turned off
}
, 0 ⩽ i ⩽ N − 1, 1 ≤ j ≤ m,

π−
i,j = lim

t→∞
P
{
Nt−i

= i, ξt−i = j, server is turned on and working
}
, 1 ⩽ i ⩽ K,

1 ≤ j ≤ m,

where p−i,j (π
−
i,j) is the probability that there are i customers in the system just prior

to an arrival of a customer when the server is turned off (turned on and working)
and the phase of the service process j. Let pi

− and Πi
− be the row vectors of order

1×m whose j-th components are p−i,j and π−
i,j , respectively.

Let S
(k)
n be the matrix of order m×m whose element [S

(k)
n ]ij is the conditional

probability that n customers are served during a time of length k slots and the
service process passes to phase j, provided initially the service process is in phase

i. Since S
(k)
n represents that n customers are served during a time of length k slots,

this means either no customer or one customer is served in the first slot, and n or
(n−1) customers, respectively, are served in the remaining (k−1) slots. Combining
these arguments, we obtain the following recursive relation:

S(k)
n = LS(k−1)

n +MS
(k−1)
n−1 , k ⩾ 1, n ⩾ 0,

with S
(0)
0 = I and S

(k)
−1 = S

(k)
n = 0, n > k ⩾ 0, where I and 0 are the identity

and zero matrices of orderm×m, respectively. Let S(k)(z) be the matrix-generating

function of S
(k)
n , then

S(k)(z) =

∞∑
n=0

S(k)
n zn = [S(1)(z)]k = [L+Mz]k,

where S(1)(z) = L +Mz is the matrix-generating function of the number of cus-
tomers served during a slot. Let Sn denotes the matrix of order m × m which
represents that n customers complete service during an inter-arrival period A of a
customer. Therefore,

Sn =

∞∑
k=1

akS
(k)
n , n ⩾ 0.
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If S(z) is the matrix-generating function of Sn, then

S(z) =

∞∑
n=0

Snz
n =

∞∑
n=0

∞∑
k=1

akS
(k)
n zn =

∞∑
k=1

ak[L+Mz]k.

Setting z = 1 in the above equation, we get S ≡ S(1) =
∞∑
k=1

ak[L+M]k. We note

that the matrix S is stochastic and that the stationary vector Π defined earlier
satisfies ΠS = Π, Πe = 1. The matrix S also represents the number of customers
served during an inter-arrival time with the phase change of the underlying Markov
chain during the inter-arrival time.
Let Ŝr denotes the matrix of order m×m which represents that at least (r+ 1)

customers complete service during an inter-arrival period of a customer. Then

Ŝn = S−
n∑

r=0

Sn, 0 ≤ n ≤ K − 1.

Let ℜ = (ℜij) be the transition probability matrix with finite state space Ω =
{(n, 0) : 0 ⩽ n ⩽ N − 1} ∪ {(n, 1) : 1 ⩽ n ⩽ K} where (n, i) represents that n
customers in the queue at pre-arrival epoch and i = 0(1) corresponds to the state
of the server, turned off (turned on and busy). Observing the state of the system
at two consecutive imbedded points, we have the one step transition probability
matrix (TPM) ℜ of the form:

ℜ =

( off on

off AN×N BN×K

on CK×N DK×K

)
Blocks A, B, C and D refer to the transition from turned off state to turned

off state, turned off state to turned on state, turned on state to turned off state
and turned on state to turned on state, respectively and are given by the following
expression:

Ai,j =


Im, 0 ⩽ i ⩽ N − 2, 1 ⩽ j ⩽ N − 1, i+ 1 = j,

ŜN−1, i = N − 1, j = 0,
0, otherwise,

Bi,j =

{
SN−j , i = N − 1, 1 ≤ j ≤ N,
0, otherwise,

Ci,j =

 Ŝi, 1 ⩽ i ⩽ K − 1, j = 0,
Ci−1,j , i = K, 0 ⩽ j ⩽ N − 1,
0, otherwise,

Di,j =

Si+1−j , 1 ⩽ i ⩽ K − 1, 1 ⩽ j ⩽ K, (i+ 1) ⩾ j,
Di−1,j , i = K, 1 ⩽ j ⩽ K,
0, otherwise,
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The pre-arrival epoch probabilities p−
i (0 ≤ i ≤ N − 1) and Π−

i (1 ≤ i ≤ K) can
be obtained by solving the system of equations [p−

0 ,p
−
1 , . . . ,p

−
N−1,Π

−
1 , . . . ,Π

−
K ] =

[p−
0 ,p

−
1 , . . . ,p

−
N−1,Π

−
1 , . . . ,Π

−
K ]ℜ. To solve it we have used the GTH (Grassmann,

Taksar and Heyman) algorithm given in Latouche and Ramaswami (1999, pp. 123).

3.2 System length distribution at arbitrary epochs

To obtain the system length distribution at arbitrary epochs we develop the vector-
difference equations by observing the state of the system at two consecutive time
epochs t− and (t+1)− in case of LAS-DA. In the steady-state, we have, for u ⩾ 1

p0(u− 1) = p0(u) +Π1(u)M, (1)

pn(u− 1) = pn(u) + pn−1(0)au, 1 ⩽ n ⩽ N − 1, (2)

Π1(u− 1) = Π1(u)L+ {Π2(u) +Π1(0)au}M, (3)

Πn(u− 1) = {Πn(u) +Πn−1(0)au}L+ {Πn+1(u) +Πn(0)au}M,

2 ⩽ n ⩽ N − 2, (4)

ΠN−1(u− 1) = {ΠN−1(u) +ΠN−2(0)au}L+ {ΠN (u) +ΠN−1(0)au

+pN−1(0)au}M, (5)

ΠN (u− 1) = {ΠN (u) +ΠN−1(0)au + pN−1(0)au}L+ΠN+1(u)M

+ΠN (0)auM, (6)

Πn(u− 1) = {Πn(u) +Πn−1(0)au}L+ {Πn+1(u) +Πn(0)au}M,

N + 1 ⩽ n ⩽ K − 2, (7)

ΠK−1(u− 1) = {ΠK−1(u) +ΠK−2(0)au}L+ {ΠK−1(0) +ΠK(0)}auM

+ΠK(u)M, (8)

ΠK(u− 1) = ΠK(u)L+ {ΠK−1(0) +ΠK(0)}auL. (9)

The terms pi(0) and Πi(0) denote 1×m vectors whose i-th component are the
respective rates of entering to that state with remaining inter-arrival time equal to
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zero. Multiplying (1) to (9) by zu and summing over u from 1 to ∞, we obtain

zp∗
0(z) = p∗

0(z)− p0(0) + {Π∗
1(z)−Π1(0)}M, (10)

zp∗
n(z) = p∗

n(z) + pn−1(0)A(z)− pn(0), 1 ⩽ n ⩽ N − 1, (11)

zΠ∗
1(z) = {Π∗

1(z)−Π1(0)}L+ {Π∗
2(z)−Π1(0)}M+Π1(0)A(z)M, (12)

zΠ∗
n(z) = {Π∗

n(z) +Πn−1(0)A(z)−Πn(0)}L+ {Π∗
n+1(z)−Πn+1(0)}M

+Πn(0)A(z)M, 1 ⩽ n ⩽ N − 2, (13)

zΠ∗
N−1(z) = {Π∗

N−1(z) +ΠN−2(0)A(z)−ΠN−1(0)}L+Π∗
N (z)M

+{ΠN−1(0) + pN−1(0)}A(z)M−ΠN (0)M, (14)

zΠ∗
N (z) = {Π∗

N (z) +ΠN−1(0)A(z) + pN−1(0)A(z)−ΠN (0)}L

+{Π∗
N+1(z)−ΠN+1(0)}M+ΠN (0)A(z)M, (15)

zΠ∗
n(z) = {Π∗

n(z) +Πn−1(0)A(z)−Πn(0)}L+ {Π∗
n+1(z)−Πn+1(0)}

+Πn(0)A(z)M, N + 1 ⩽ n ⩽ K − 2, (16)

zΠ∗
K−1(z) = {Π∗

K−1(z)−ΠK−1(0)}L+ {ΠK−1(0) +ΠK(0)}A(z)M

+Π∗
K(z)M, (17)

zΠ∗
K(z) = {Π∗

K(z) + (ΠK−1(0) +ΠK(0))A(z)−ΠK(0)}L. (18)

Lemma 3.1 The mean number of entrances into the system per unit time equals
the mean arrival rate, i.e.,

N−1∑
n=0

pn(0)e+

K∑
n=1

Πn(0)e = λ. (19)

Proof Post-multiplying equations (10) to (18) by the vector e, adding them, using
(L+M)e = e, we get after simplification

N−1∑
n=0

p∗
n(z) +

K∑
n=1

Π∗
n(z) =

A(z)− 1

z − 1

{
N−1∑
n=0

pn(0) +

K∑
n=1

Πn(0)

}
.

Taking the limit as z → 1 and using normalization condition
N−1∑
n=0

pne+
K∑

n=1
Πne =

1, we obtain the desired result. ■

3.2.1 Relations between system length distributions at arbitrary and pre-arrival
epochs

In order to obtain the relation between system length probabilities at arbitrary
and pre-arrival epochs, we first connect the pre-arrival epoch probabilities p−

n and
Π−

n with the rates pn(0) and Πn(0). These are given by

p−
n =

1

λ
pn(0), 0 ⩽ n ⩽ N − 1, and Π−

n =
1

λ
Πn(0), 1 ⩽ n ⩽ K, (20)

where λ is given by (19). Our main objective is to obtain the probabilities of the
number of customers in the system at arbitrary epoch when the server is turned
off pn (0 ⩽ n ⩽ N − 1) or server is turned on and working Πn (1 ⩽ n ⩽ K).
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The relation between pre-arrival {p−
n }Nn=0 and arbitrary {Πn}Kn=1 epoch proba-

bilities are given by

ΠK = λΠ−
K−1,1L(I− L)−1, (21)

ΠK−1 =
{
ΠKM+ λ

(
Π−

K−2 −Π−
K−1

)
L+ λΠ−

K−1M
}
(I− L)−1, (22)

Πn =
{
Πn+1M+ λ

(
Π−

n−1 −Π−
n

)
L+ λ

(
Π−

n −Π−
n+1

)
M

}
(I− L)−1,

n = K − 2, . . . , N + 1, (23)

ΠN =
{
ΠN+1M+ λ

(
p−
N−1 +Π−

N−1 −Π−
N

)
L
}
(I− L)−1

+
{
λ
(
Π−

N −Π−
N+1

)
M

}
(I− L)−1, (24)

ΠN−1 =
{
ΠNM+ λ

(
Π−

N−2 −Π−
N−1

)
L
}
(I− L)−1

+
{
λ
(
p−
N−1 +Π−

N−1 −Π−
N

)
M

}
(I− L)−1, (25)

Πn =
{
Πn+1M+ λ

(
Π−

n−1 −Π−
n

)
L+ λ

(
Π−

n −Π−
n+1

)
M

}
(I− L)−1,

n = N − 2, . . . , 2, (26)

Π1 =
{
Π2M+ λ

(
Π−

1 −Π−
2

)
M− λΠ−

1 L
}
(I− L)−1, (27)

pn = p−
n−1, 1 ≤ n ≤ N − 1. (28)

Finally, using the normalization condition, we get p0 as p0 = Π − (
∑N−1

n=1 pn +∑K
n=1Πn).

4. Performance measures

As state probabilities at various epochs are known, performance measures of the
queue can be easily obtained. The average number of customers in the system (Ls)
and the average number of customers in the queue (Lq) at an arbitrary epoch are
given by

Ls =

N−1∑
n=1

npne+

K∑
n=1

nΠne, Lq =

N−1∑
n=1

npne+

K∑
n=1

(n− 1)Πne.

Using the Little’s formula, the average waiting time in the system (Ws) and the
average waiting time in the queue (Wq), respectively are given by

Ws = Ls/λ
′
, Wq = Lq/λ

′
,

where λ
′
= λ(1 − Ploss) is the effective arrival rate, and Ploss = Π−

Ke represents
the probability of loss or blocking.

5. Numerical results

To demonstrate the applicability of the analytical results obtained in this paper,
we present some numerical results in the form of tables and graphs. Numerical
results presented in this paper were performed using Mathematica Software and
are presented here with five decimal places. In Table 1, the results are given for
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Table 1. Distribution of number of customers in the system at various epochs for the GI/D-PH/1/15 queue

with N(= 6) threshold policy

Pre-arrival Arbitrary Pre-arrival Arbitrary
i π−

i e πie i π−
i e πie

1 0.04536 0.04885 9 0.00404 0.00377
2 0.06677 0.06539 10 0.00159 0.00149
3 0.07822 0.07362 11 0.00063 0.00059
4 0.09043 0.07928 12 0.00025 0.00023
5 0.09604 0.08366 13 0.00010 0.00009
6 0.06742 0.06334 14 0.00004 0.00004
7 0.02611 0.02441 15 0.00001 0.00001
8 0.01025 0.00957

P−
0 e = P−

1 e = P−
2 e = P−

3 e = P−
4 e = P−

5 e = 0.08546
P0e = 0.11838, P1e = P2e = P3e = P4e = P5e = 0.08546

Lq = 2.65081, Wq = 13.25420 and Ploss = 0.00001.

Table 2. Distribution of number of customers in the system at various epochs for the GI/D-MSP/1/15 queue

with N(= 6) threshold policy

Pre-arrival Arbitrary Pre-arrival Arbitrary
i π−

i e πie i π−
i e πie

1 0.05401 0.04761 9 0.00019 0.00020
2 0.06662 0.05843 10 0.00003 0.00004
3 0.06573 0.06020 11 0.00001 0.00001
4 0.07805 0.06254 12 0.00000 0.00000
5 0.07189 0.06319 13 0.00000 0.00000
6 0.03168 0.03343 14 0.00000 0.00000
7 0.00573 0.00604 15 0.00000 0.00000
8 0.00103 0.00109

P−
0 e = P−

1 e = P−
2 e = P−

3 e = P−
4 e = P−

5 e = 0.10417
P0e = 0.14638, P1e = P2e = P3e = P4e = P5e = 0.10417

Lq = 2.39477, Wq = 11.9738 and Ploss = 0.00000.

GI/D-PH/1/15 queue with N = 6 for arbitrary inter-arrival time distribution:
a2 = 0.6, a6 = 0.3, a20 = 0.1, λ = 0.2. The service time distribution is a discrete
phase type renewal process with representation (α, T ) where α = (0.3, 0.7) and

T =

(
0.6 0.074

0.0575 0.45

)
so that µ = 0.47454 and ρ = 0.42146. For the same inter-

arrival distribution, similar results have been presented in Table 2 for the GI/D-
MSP/1/15 queue with N = 6. For this table and for all the figures, the D −

MSP representation is taken as L =

(
0.35 0.1
0.12 0.3

)
M =

(
0.3 0.25
0.2 0.38

)
so that µ =

0.565672, ρ = 0.35356.
Figure 1 depicts the system length probabilities that the server is turned on

and working for different N threshold values. Observation is that the probabilities
are increasing up to N − 1 and then has a sharp decrease in the trend indicating
that after N − 1 threshold value, the server becomes busy immediately thereby
decrease in the probabilities. Further indication is that as N value increases, there
is a certain drop in the level of the busyness probabilities which certainly makes
the model more effective from server point of view.
The effect of arrival rate (λ) on the average queue length (Lq) for different N
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Figure 1. System length distributions when server turned on and working.
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Figure 2. Impact of arrival rate on average queue length.
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Figure 3. Effect of buffer space on loss probability.
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threshold values is shown in Figure 2 for geometric arrival distribution. Here we
observe that as λ increases obviously there is an increase in the queue length. From
customers’ point of view, certainly one has to wait longer in the queue when the
arrival rate is slower and starting threshold value (N) is larger. Thus from Figures
1 and 2, one can see that proper choice of N is necessary to keep the customers’
waiting and the server’s utilization are at an optimum level.
The effect of the buffer space (K) on the loss probability is shown in Figure 3

for different arrival distributions Geometric, Arbitrary and Deterministic. It can be
seen that as K increases, there is a sharp decrease in the loss probability and finally
tends to zero value as larger K occurs in the case of infinite buffer space models.
Further, amongst all distributions considered here, the Deterministic distribution
yields least loss probability.

6. Conclusion

In this paper, we have carried out an analysis of a discrete-time single server N
threshold policy in the finite buffer queue with renewal input and discrete Marko-
vian service process. The proposed model has potential applications in the areas
of computer and telecommunication systems. We have obtained the steady-state
distributions of system length at pre-arrival and arbitrary epochs using the supple-
mentary variable and the imbedded Markov chain techniques. Various performance
measures such as the probability of blocking, average queue-length and average
waiting time in the queue have been carried out. The results for the early arrival
system can also be obtained in a similar manner. The techniques used in this pa-
per can be applied to analyze more complex models such as GI/D-MSP/c/N and
DMAP/D-MSP/1/N queues with N threshold policy. We may study these queue-
ing models under single or multiple or any other type of vacation policy which are
left for future investigations.

References

[1] Alfa A.S., Xue J. and Ye Q., Perturbation theory for the asymptotic decay rates in the queues with
Markovian arrival process and/or Markovian service process, Queueing Systems, 36 (2000), 287–301.

[2] Bocharov P.P., D’Apice, C., Pechinkin, A.V. and Salerno, S., The stationary characteristics of the
G/MSP/1/r queueing system, Automation and Remote Control, 64 (2003), 127–142.

[3] Bruneel H. and Kim, B. G., Discrete-Time Models for Communication Systems Including ATM,
Kluwer Academic Publishers, Boston, (1993).

[4] Chaudhry M.L. and Gupta U.C., Queue Length Distributions at Various Epochs in Discrete-Time
D-MAP/G/1/N Queue and Their Numerical Evaluations, International Journal of Information and
Management Sciences. 14 (2003), 67–83.
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