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Abstract.In this paper, the differential transformation method (DTM) is applied to solve
fuzzy fractional heat equations. The elementary properties of this method are given. The
approximate and exact solutions of these equations are calculated in the form of series with
easily computable terms. The proposed method is also illustrated by some examples. The
results reveal that DTM is a highly effective scheme for obtaining approximate analytical
solutions of fuzzy fractional heat equations.
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1. Introduction

Zadeh published his pioneering study in fuzzy theory in [19], hundreds of examples
have been supplied where the nature of uncertainty in the behavior of a given
system processes is fuzzy rather than stochastic nature. The theoretical framework
of fuzzy initial value problems (FIVPs) has been an active research field over the
last few years. The concept of fuzzy derivative was first introduced by Chang and
Zadeh in [6]. Dubois and Prade [7], defined and used the extension principle. Other
techniques have been discussed by Puri and Ralescu [16] and Goetshel and Voxman
[11].
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The most important contribution on these numerical methods is the Euler
method provided by Ma, M. Friedman, A. Kandel in [14]. S. Abbasbandy, T. Al-
lahviranloo in [1] developed four-stage order Runge-Kutta methods for a Cauchy
problem with a fuzzy initial value. T. Allahviranloo in [4] introduced DTM for
solving fuzzy differential equations (FDEs) and further methods can be found in
[8–10].
In recent years, considerable interest in fractional differential equations has been

stimulated due to their numerous applications in the areas of physics and engi-
neering [10, 18]. Since most fractional differential equations do not have exact
analytic solutions, approximation and numerical techniques, therefore, are used
extensively. Fuzzy fractional differential equations have been studied by scientists
and engineers such as T. Allahviranloo et al. in [5] and R.W. Ibrahim and H.A.
Jalab in [12]. Our idea is to find the approximate solution of fuzzy heat-like equa-
tions with differential transform method. The differential transform method was
first introduced by Zhou [20] who solved linear and nonlinear initial value problems
in electric circuit analysis. This method constructs an analytical solution in form
of polynomial expressions such as Taylor series expansion. But procedure is easier
than the traditional higher order Taylor series method, which requires symbolic
computation of the necessary derivatives of the data functions. The Taylor series
method is computationally expensive for higher orders. The differential transform
is an iterative procedure for obtaining analytic Taylor series solution of ordinary
or partial differential equations.
The rest of the paper is organized as follows. In Section 2, we call some defi-

nition on fuzzy numbers and fuzzy Caputo’s derivative. In Section 3, differential
transformation method for fuzzy heat-like equations and fuzzy heat like equations
are illustrated. Examples are shown in Section 4, and finally, conclusion is given in
Section 5.

2. Preliminaries

The basic definitions and notations of fuzzy numbers [11] and fuzzy Caputo’s
derivative are given in this section.

2.1 Definitions and notations

Definition 2.1 The fuzzy set A in X is a set of ordered pairs
A = {(x, µA(x))|x ∈ X}, where µA is called the membership function of x
in A and the range of µA is a subset of the nonnegative real number.

Definition 2.2 An arbitrary fuzzy number u in parametric form is an ordered
pair (u(r);u(r)) of functions u(r), u(r); 0 ⩽ r ⩽ 1 which satisfy the following
conditions [2]:
1. u(r) is a bounded left-continuous non-decreasing function over [0, 1].
2. u(r) is a bounded left-continuous non-increasing function over [0, 1].
3. u(r) ⩽ u(r),⩽ r ⩽ 1. The set of all such fuzzy numbers is represented by E1.

2.2 Fuzzy Caputo’s derivative

We denote CF[a, b] as a space of all fuzzy-valued functions which are continuous
on [a, b], and the space of all Lebesque integrable fuzzy-valued functions on the
bounded interval [a, b] ⊂ R by LF[a, b], we denote the space of fuzzy-value functions
f(x) which have continuous H-derivative up to order n − 1 on [a, b] such that
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f (n−1)(x) ∈ ACF([a, b]) by AC(n)F([a, b]), where ACF([a, b]) denote the set of all
fuzzy-valued functions which are absolutely continuous.
Definition 2.3 Let f(x) ∈ CF[a, b]∩LF[a, b], the fuzzy Riemann-Liouville integral
of fuzzy-valued function f is defined as following:(

Iαa+f
)
(x; r) =

[(
Iαa+f

)
(x; r),

(
Iαa+f

)
(x; r)

]
,

where 0 ⩽ r ⩽ 1 and

(
Iαa+f

)
(x; r) =

1

Γ(α)

∫ x

a

f(t)dt

(x− t)1−α
, 0 ⩽ r ⩽ 1,

(
Iαa+f

)
(x; r) =

1

Γ(α)

∫ x

a

f(t)dt

(x− t)1−α
, 0 ⩽ r ⩽ 1.

Let f(x) ∈ CF((0, a]) ∩ LF(0, a), be a given function such that f(t; r) =
[f(t; r), f(t; r)] for all t ∈ (0, a] and 0 ⩽ r ⩽ 1. We define the fuzzy fractional
Riemann-Liouville derivative of order 0 < α < 1 of f in the parametric form,

RLDαf(t; r) =:
1

Γ(1− α)

[ d
dt

∫ t

0
(t− s)−αf(s; r)ds,

d

dt

∫ t

0
(t− s)−αf(s; r)ds

]
,

provided that equation defines a fuzzy number RLDαf(t) ∈ E. In fact,

RLDαf(t; r) :=
[
RLDαf(t; r),RLDαf(t; r)

]
.

Obviously, RLDαf(t) = d
dtI

1−αf(t) for t ∈ (0, a]. For more information, see [3].

3. Differential transformation method and fuzzy fractional heat equation

3.1 Generalized two-dimensional differential transformation method

In this section we shall derive the generalized two-dimensional DTM that we
have developed for the numerical solution of linear partial differential equations
with space and time-fractiol derivatives.
Consider a function of two variables u(x, y), and suppose that it can be repre-

sented as a product of two single-variable functions, that is, u(x, y) = f(x)g(y).
Based on the properties of generalized two-dimensional differential transform, the
function u(x, y) can be represented as:

u(x, y) =

∞∑
k=0

Fα(k)(x− x0)
kα

∞∑
h=0

Gβ(h)(y − y0)
hβ

=

∞∑
k=0

∞∑
h=0

Uα,β(k, h)(x− x0)
kα(y − y0)

hβ (1)
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where 0 < α, β ⩽ 1, Uα,β = Fα(k)Gβ(h) is called the spectrum of u(x, y). The
generalized two-dimensional differential transform of the function u(x, y) is given
by

Uα,β(k, h) =
1

Γ(αk + 1)Γ(βh+ 1)
[(Dα

x0
)k(Dβ

y0
)hu(x, y)](x0,y0), (2)

where (Dα
x0
)k = Dα

x0
Dα

x0
· · ·Dα

x0
, k -times. In case of α = 1, and β = 1 the gen-

eralized two-dimensional differential transform (1) reduces to the classical two-
dimensional differential transform [15]. Next, we give some useful theorems about
writing the generalized differential transform in equivalent forms under certain
conditions from [13].

Theorem 3.1 Suppose that Uα,β(k, h), Vα,β(k, h), and Wα,β(k, h) are the differen-
tial transformations of the functions u(x, y), v(x, y), and w(x, y), respectively, then
1 if u(x, y) = v(x, y)± w(x, y), then Uα,β(k, h) = Vα,β(k, h)±Wα,β(k, h),
2 if u(x, y) = λv(x, y), λ ∈ R then Uα,β(k, h) = λVα,β(k, h)
3. if u(x, y) = v(x, y)w(x, y), then

Uα,β(k, h) =
k∑

r=0

h∑
s=0

Vα,β(r, h− s)Wα,β(k − r, s)

4. if u(x, y) = (x− x0)
mα(y − y0)

nβ , then

Uα,β(k, h) = δ(k −m,h− n) =

{
1, k = m,h = n
0, otherwise

Theorem 3.2 If u(x, y) = Dα
x0
v(x, y), 0 < α ⩽ 1, then the generalized differential

transform (2) can be written as

Uα,β(k, h) =
Γ(α(k + 1) + 1)

Γ(αk + 1)
Vα,β(k + 1, h).

Theorem 3.3 If u(x, y) = Dγ
x0v(x, y),m − 1 < γ ⩽ m, and v(x, y) = f(x)g(y),

then the generalized differential transform (2) can be written as

Uα,β(k, h) =
Γ(αk + γ + 1)

Γ(αk + 1)
Vα,β(k +

γ

α
, h).

3.2 Fuzzy fractional heat equation

Consider the fuzzy fractional heat equation with the indicated initial conditions
[17]:

∂αu

∂tα
=

∂2u

∂x2
+ k, 0 < x < 1, t > 0, 0 < α < 1,

u(x, 0) = f(x), 0 < x < 1,

where f(x) ∈ CF((0, 1]).
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4. Examples

Example 1. Consider the following fuzzy fractional heat equation with indicated
initial condition [17],

∂αu

∂tα
=

∂2u

∂x2
, 0 < x < 1, t > 0, (3)

u(x, 0) = f̃(x) = k̃ sin(πx), 0 < x < 1. (4)

We can write the initial condition as follows:

u(x, 0) = f̃(x) = k̃
( ∞∑

i=0

sin(iπx/2)(πx)i

i!

)
, 0 < x < 1. (5)

Taking the differential transform of (3), we have

Γ(α(h+ 1) + 1)

Γ(αh+ 1)
U(k, h+ 1) = (k + 1)(k + 2)U(k + 2, h), (6)

From the initial condition, we find

U(i, 0) = k̃
πi

i!
sin(

πi

2
) i = 0, 1, 2, · · · (7)

By applying Eqs. (7) into Eqs. (6), we can obtain some values of U(k, h) as follows:

U(i, 0) = 0, i = even,

U(1, 0) = k̃π, U(3, 0) = k̃
π3

3!
, U(5, 0) = k̃

π5

5!
, · · ·

U(1, 1) = k̃
π3

Γ(α+ 1)
, U(3, 1) = k̃

π5

3!Γ(α+ 1)
, · · ·U(i, 1) = 0, i = even

U(1, 2) = k̃
π5

Γ(2α+ 1)
, U(3, 2) = k̃

π7

3!Γ(2α+ 1)
, · · ·U(i, 2) = 0, i = even

...

Consequently substituting all U(k, h) into Eq. (1), we obtain the series form solu-
tions of Eq. (3) and (4) as

u(x, t) = k̃(πx− π3

3!
x3 +

π5

5!
x5 − · · · )(1− π2tα

Γ(α+ 1)
+

π4t2α

Γ(2α+ 1)
− · · · )

=

∞∑
n=0

(−1)nπ2ntnα

Γ(nα+ 1)
k̃ sin(πx)

The approximate solutions DTM of order 6 and 8 are compared and plotted for
α = 0.85, 0.90, 0.95, 1, x = 0.5, t = 0.5 and k̃(r) = (0.75 + 0.25r, 1.25 − 0.25r) in
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Figure 1.
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Figure 1. The approximate solutions for different values of α of Exp. 1.

Example 2. Consider the following fuzzy fractional heat equation with the indi-
cated initial condition [17],

∂αu

∂tα
=

x2

2

∂2u

∂x2
, 0 < x < 1, t > 0, 0 < α < 1, (8)

u(x, 0) = f(x) = k̃x2, 0 < x < 1. (9)

The parametric form of (8) is

∂αu

∂tα
=

x2

2

∂2u

∂x2
, 0 < x < 1, t > 0, (10)

∂αu

∂tα
=

x2

2

∂2u

∂x2
, 0 < x < 1, t > 0, (11)

Taking the differential transform of (10) and (11), we have

Γ(α(h+ 1) + 1)

Γ(αh+ 1)
U(k, h+ 1)

=
1

2

h∑
s=0

k∑
r=0

δ(r − 2, h− s)(k + 1− r)(k + 2− r)U(k + 2− r, s), (12)

Γ(α(h+ 1) + 1)

Γ(αh+ 1)
U(k, h+ 1)

=
1

2

h∑
s=0

k∑
r=0

δ(r − 2, h− s)(k + 1− r)(k + 2− r)U(k + 2− r, s), (13)
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From the initial conditions, we find

U(k, 0) =

{
k̃, k = 2,
0, k = 0, 1, 3, 4, · · · . (14)

By applying Eq. (14) into Eqs. (12) and (13), we can obtain some values of U(k, h)
as follows:

U(k, 1) =

{
k̃

Γ(α+1) , k = 2,

0, k = 0, 1, 3, 4, · · · .
(15)

U(k, 2) =

{
k̃

Γ(2α+1) , k = 2,

0, k = 0, 1, 3, 4, · · · .
(16)

...

Consequently substituting all U(k, h) into Eq. (1), we obtain the series form solu-
tions of Eq. (8) and (9) as

u(x, t) = k̃x2(1 +
tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ · · · )

= k̃x2
∞∑
n=0

tnα

Γ(nα+ 1)

Therefore, the exact solution is given by

u(x, t) = k̃x2
∞∑
n=0

tnα

Γ(nα+ 1)

The approximate solutions DTM of order 6 and 8 are compared and plotted for
α = 0.85, 0.90, 0.95, 1, x = 1.0, t = 2.0 and k̃(r) = (0.75 + 0.25r, 1.25 − 0.25r) in
Figure 2.

Example 3. Consider the inhomogeneous fuzzy fractional heat equation

∂αU

∂tα
=

∂2U

∂x2
+ k̃, 0 < x < 1, t > 0, 0 < α < 1, (17)

with initial condition,

U(x, 0) = k̃x2, 0 < x < 1, (18)

and k̃ = (0.75 + 0.25r, 1.25− 0.25r).
The parametric form of (17) is

∂αU

∂tα
=

∂2U

∂x2
+ (1.25− 0.25r), 0 < x < 1, t > 0, (19)
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Figure 2. The approximate solutions for different values of α of Exp. 2.

∂αU

∂tα
=

∂2U

∂x2
+ (0.75 + 0.25r), 0 < x < 1, t > 0, (20)

One can readily find the differential transform of (19) and (20), as follows,

Γ(α(h+ 1) + 1)

Γ(αh+ 1)
U(k, h+ 1) =

(k + 1)(k + 2)U(k + 2, h) + (1.25− 0.25r)δ(k, h), (21)

Γ(α(h+ 1) + 1)

Γ(αh+ 1)
U(k, h+ 1) =

(k + 1)(k + 2)U(k + 2, h) + (0.75 + 0.25r)δ(k, h). (22)

From the initial conditions, we find

U(k, 0) =

{
1.25− 0.25r, k = 2,

0, k = 0, 1, 3, 4, · · · . (23)

U(k, 0) =

{
0.75 + 0.25r, k = 2,

0, k = 0, 1, 3, 4, · · · . (24)

By applying Eqs. (23) and (24) into Eqs. (21) and (22), we can obtain some value
of U(k, h) as follows:

U(k, 1) =

{
3(1.25−0.25r)

Γ(α+1) , k = 0,

0, k = 1, 2, 3, · · · .
(25)

U(k, 1) =

{
3(0.75+0.25r)

Γ(α+1) , k = 0,

0, k = 1, 2, 3, · · · .
(26)

U(k, 2) = 0, k = 0, 1, 2, · · · . (27)
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U(k, 2) = 0, k = 0, 1, 2, · · · . (28)

...

Consequently substituting all U(k, h) into Eq. (1), we obtain the series form solu-
tions of Eq. (17) and (18) as

u(x, t) = (1.25− 0.25r)(
3tα

Γ(α+ 1)
+ x2), u(x, t) = (0.75 + 0.25r)(

3tα

Γ(α+ 1)
+ x2)

which is the exact solution of (17) with initial condition (18).

5. Conclusion

In this work, we used the differential transformation method for approximate solu-
tion of fuzzy fractional heat equations and illustrated by some numerical examples.
The results showed that the DTM is remarkably effective and very simple.
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