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Abstract. The computation of the inverse roots of matrices arises in evaluating unsymmetric
eigenvalue problems, solving nonlinear matrix equations, computing some matrix functions,
control theory and several other areas of applications. It is possible to approximate the ma-
trix inverse pth roots by exploiting a specialized version of Newton’s method, but previous
researchers have mentioned that some iterations have poor convergence and stability proper-
ties. In this work, a stable recursive technique to evaluate an inverse pth root of a given matrix
is presented. The scheme is analyzed and its properties are investigated. Computational exper-
iments are also performed to illustrate the strengths and weaknesses of the proposed method.
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1. Introduction

The inverse root of a matrix plays a significant role in certain linear algebra compu-
tations. An inverse pth root of a matrix can be approximated by employing iterative
methods.
Laasonen [10] by considering the scalar equation ax2 − 1 = 0, has introduced

an algorithm using Newton’s method for evaluating a−1/2. He extended the scalar
iteration to matrix iteration by exploiting the matrices which have real positive
eigenvalues. His proposed iteration converges quadratically and is utilized to ap-
proximate of matrix inverse square root. However, he stated that if the recursions
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continue indefinitely, due to round off errors, divergence occur and thus the pro-
cess should be stopped as soon as difference between two successive steps no longer
enhances. For computing inverse square root of a matrix, Sherif [12] proposed two
iterative method based on Newton’s method. He considered the matrix equation
(XA)−1 −X = 0 and applied Newton’s method for the purpose of approximating
the solution of the matrix equation X2A− I = 0. He also introduced an iteration
scheme that converges to the principal inverse square root of A which has condi-
tional stability. For the evaluation of matrix inverse pth root, Lakić [9] with the
assumption that A is diagonalizable, obtained some family of iterations and he
proved that the iterations converges to inverse pth root of a matrix. In addition, he
proves for the special case, if A ∈ Cn×n be a Hermitian positive definite matrix,
then the proposed iterations converges to A−1/p which is the principal inverse pth

root of A.
For computation of the matrix inverse pth root, one approach is to apply Newton’s

method for the equation X−p − A = 0. In other words, by considering the matrix
iteration

Xk+1 =
1

p

(
(p+ 1)Xk −Xp+1

k A
)
, X0 = A (1)

which has conditional stability, the matrix inverse pth root can be estimated. Ian-
nazzo [7] and following him, Guo [4] have solved the instability issue by employing
a special auxiliary variable and X0 = 1

c I where c is a constant. They have proved
that the proposed method is convergent and also it has good stability. Furthermore,
for the evaluation of matrix inverse root, Bini et. al. [1] by assuming the iteration
(1) with X0 = I have shown the convergence of the residual Rk = I −Xp

kA. Then
they have proved that if ∥R0∥ < 1 then ∥Rk∥ is monotonically converges to 0 where
k → ∞. Furthermore, Bini et. al. [1] have shown that if all the eigenvalues of A are
real and positive and ρ(A) < p+1 then Xk converges to any inverse pth root of A.
This result completely agree with Smith’s idea in [14] that is if the initial matrix
X0 satisfies ρ(I −Xp

0A) < 1, then Xk generated by (1) converges to an inverse pth

root of A, where ρ denotes the spectral radius of A.
For the evaluation of the pth root of a matrix, first Hoskins and Walton [6]

considered the iteration

Xk+1 =
1

p

(
(p− 1)Xk +AX1−p

k

)
, X0 = A. (2)

They only focus on symmetric positive definite matrices that Xk are all converges
to A1/p. Moreover, Smith [13] showed that this iteration is not generally numerical
convergent. In addition, even is the matrix A is a symmetric positive definite,
the iteration is not numerically stable unless the condition number is extremely
restricted. For solving instability of the equation (2), Iannazzo [7] has introduced
the auxiliary variable Nk = AX−1

k . He shows that for initial matrix I, his proposed
iterations converge to the principal roots. It should be emphasized that Iannazzo’s
algorithm has quadratic convergence and is known to be stable in neighborhood of
solution.
More recently, Iannazzo and Meini [8] proposed the cyclic reduction algorithm to

palindromic matrix polynomials. They have shown that the proposed algorithm is
convergence. The proposed algorithm related to other algorithms as the evaluation
and interpolation at the roots of unity of a certain Laurent matrix polynomial, the
trapezoidal rule for a certain integral and an algorithm based on the finite sections
of a tridiagonal block Toeplitz matrix are given. Furthermore, Soleymani et. al. [15]
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introduced some iterative methods for computing the matrix sign function. They
have analytically shown that the new iterations are asymptotically stable and also
convergent.
In this work, we developed the conditional stable recursion introduce in [11] by

present authors for computing the inverse pth roots. The convergence and stabil-
ity of the two new techniques which involves some special Newton’s method are
explored. Numerical experiments and comparisons are also performed.

2. Newton’s Method

In this part, we summarize some basic concepts which was mentioned in [10, 12].
Assume a nonsingular matrix A ∈ Cn×n has no eigenvalues on R−. A solution X
of the nonlinear matrix equation

XpA− I = 0 (3)

is called an inverse pth root of A. In particular, the principal inverse pth root is the
unique matrix X such that X−p −A = 0 and the eigenvalues lie in the segment

S = {z ∈ C\{0} : −π/p < arg(z) < π/p} , (4)

that is denoted byX = A−1/p [4]. It should be mentioned that for a nonsingular n×
n complex matrix A, an inverse pth root X always exists. Moreover, one approach
for computingX is to use Newton’s iteration to solve the nonlinear matrix equation

(XA)−1 −Xp−1 = 0, (5)

where X = A−1/p is a solution of the equation (5). It is known that change of
the standard form is motivated to apply Newtons method easily. For the standard
version, using the normal Newtons method give us problematic iteration [5].
For a function F : Cn×n → Cn×n, the solution of F (X) = 0 using Newton’s

method

Xℓ+1 = Xℓ − F ′(Xℓ)
−1F (Xℓ), ℓ = 0, 1, 2, . . . (6)

where X0 is given and F ′ is the so called “Fréchet derivative” of F [3, 12]. For a
nonsingular A ∈ Cn×n, it is required to solve

F (X) ≡ (XA)−1 −Xp−1 = 0 (7)

By using the Taylor series expansion for F about X and also “Sherman-Morrison
formula” [16], present authors obtained the Fréchet derivative of F as follows:

F ′(X)H = −

A−1X−1HX−1 +

p−2∑
j=0

Xp−j−2HXj

 (8)

Thus, we can stated the Newton’s method for the inverse pth root as: given X0,
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solve the following matrix equation{
A−1X−1

k HkX
−1
k +

∑p−2
j=0 X

p−j−2
k HkX

j
k = (XkA)

−1 −Xp−1
k

Xk+1 = Xk +Hk, k = 0, 1, 2, . . .
(9)

Newton’s method requires the solution for Hk in (9). For values of greater than
2, this can be accomplished using the “Kronecker product” and “vec operator”
together by using the identities (9). Finally it can be written as(XT ⊗ (XA)−1) +

p−2∑
j=0

((Xj)T ⊗Xp−j−2)

 vec(H) = vec((XA)−1 −Xp−1) (10)

Since (10) is an n2×n2 linear system, storage and computation tests are expensive
for it to be solved using Gaussian elimination [10, 12]. For this reason, applying of
this reation should be avoided in computations. As was done in [7], to reduce the
cost of solving (10), it is reasonable to assume the commutativity relation

X0H0 = H0X0

holds. Then (9) can be written as the following matrix equation{
(X2

kA)
−1Hk + (p− 1)Xp−2

k Hk = (X2
kA)

−1Hk + (p− 1)HkX
p−2
k = (XkA)

−1 −Xp−1
k

Xk+1 = Xk +Hk, k = 0, 1, 2, . . .

(11)
By using the relation (11), the simplified Newton’s iteration is obtained as follows
[11]:

Xk+1 = pXk

(
(p− 1)I +AXp

k

)−1
, (12)

Suppose that A is diagonalizable. It is known that there exists a nonsingular
matrix Q such that

Q−1AQ = Λ = diag(λ1, . . . , λn), (13)

where λ1, . . . , λn are the eigenvalues of A. However, the iteration (12) can be diag-
onalized. If the following definition is made,

Dk = Q−1YkQ, (14)

then, from (14), we have

Dk+1 = pDk((p− 1)I + ΛDp
k)

−1 (15)

Assuming the initial matrix D0 is diagonal, then it is known that all successive
iterates Dk are also diagonal. The convergence of the diagonalized iterates can be
analyzed as follows

Dk = diag(d
(k)
1 , . . . , d(k)n ). (16)
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The iteration (16) thus becomes

d
(k+1)
i =

pd
(k)
i

(p− 1) + λ(d
(k)
i )p

, i = 0, 1, 2, . . . (17)

Thus, it is sufficient to only consider the scalar Newton iteration

zn+1 =
pzn

(p− 1) + azpn
, n = 0, 1, 2, . . . (18)

for the inverse pth root of a.
It is known that even the scalar iterations of (18) has fractal behavior. It guides

us to investigate the existence of regions where Newton’s iterates converge to fixed
points of the function. We would like to find the initial values for which the Newton
iteration converges to a special root. In particular case p = 2, the the solution is
easy while for the cases p > 2 finding appropriate initial guess is very complicated.
As was done in [7] we explore the behavior of the Newton iteration (18), we utilized
MATLAB 2013(Ra) with a square of 90, 000 points to generate plots of the set of
points for which the iteration converges to a specific root and also their boundary
points of the iterates. The associated pictures for p = 2, 3, 4, and 5 are shown in Fig.
1. For p > 2 the Newton’s iterations do not have simple boundaries and have fractal
behavior. It must be pointed out that we would like to obtain the principal root.
Hence, the iteration must be started at a point inside the sector (4). Therefore,
finding the suitable value of z belonging to the sector is difficult. Moreover, as
can be seen for any point belong to nonnegative real axis, Newton’s iteration (12)
converges to the principal inverse pth root. According to this discussion it can be
concluded that for positive definite matrix, the Newton iterations (12) converges to
the unique positive definite inverse pth root of A where the initial guess matrix is
positive definite which is presented in [6]. It should be emphasized that this result
is consistent for the computation of matrix pth root presented by [13].
For numerical stability of the iterations, Sadeghi et. al [11] have shown that it

is required that the error amplification factor does not exceed unity in modulus.
That is,

∣∣∣∣∣1− 1

p

p∑
r=1

(
λi

λj

) r−1

p

∣∣∣∣∣ < 1 (19)

For the inverse square root (p = 2) of an Hermitian positive definite A, (19) is
equivalent to κ2(A) ⩽ 9, where κ(·) is condition number for matrix A. For the
cube root of a Hermitian positive definite A, (19) requires that κ2(A) ⩽ 1.79.
It should be noticed that this condition for higher order roots are sought, and
therefore the condition for numerical stability becomes more restrictive.

3. Stable Version of the Newton’s Method

In this section, we present a modification of the proposed stable variant Newton
method for computing matrix inverse pth roots in [11]. For this purpose, an auxiliary
variable Mk = AXp

k was introduced. Then they have obtained the following variant
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Figure 1. Fractal behavior of the Newton’s iteration (18) for the solution of axp − 1 = 0.

of coupled Newton’s iteration
X0 = I, M0 = A

Xk+1 = Xk

(
(p−1)I+Mk

p

)−1

Mk+1 = Mk

(
(p−1)I+Mk

p

)−p

(20)

It is clear that the sequence Xk converges to A−1/p and the sequence Mk converges
to the identity matrix. Numerical experiment reveal that by modification of this
scheme, considerable accuracy can be obtained. The modification employs matrix
square root which can be evaluated by MATLAB command sqrtm(A). First of all,
for given matrix A with no non-positive real eigenvalues, the normalized matrix
square root can be considered as follows

C =
B

∥B∥
. (21)

where B = A1/2. Clearly ρ(C) ⩽ ∥C∥ = 1 and consequently, the matrix C has the
set of eigenvalues belongs to right half-plane and thus the spectrum of B belong
to the set D introduced by Iannazzo [7] as follows

D = {z ∈ C : Rez > 0, |z| ⩽ 1} ∪ R+, (22)

whenever R+ denotes the open positive real axis. For the computation of matrix
pth root, he has shown that if eigenvalues of the matrix A belong to D then the
Newton’s method is converges quadratically to matrix pth root [7]. Here, we demon-
strate that Newton’s method can be applied for the equation XpC − I = 0. By
using this assumption the inverse pth root of a given matrix A can be evaluated
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accurately. Assume we have S = C−2/p for even p and S = C−1/p for odd p. Hence,
for even p we have

X = S.∥B∥−2/p

= C−2/p.∥B∥−2/p

=
(

B
∥B∥

)−2/p
.∥B∥−2/p

= B−2/p

= A−1/p

and also for odd p it can be seen

X =
(
S.∥B∥−1/p

)2
=

(
C−1/p.∥B∥−1/p

)2
=

((
B

∥B∥

)−1/p
.∥B∥−1/p

)2

= B−2/p

= A−1/p

The developed algorithm is given as follows.

Algorithm 1: (Computing matrix inverse pth roots using CNM)

(1) Compute B = A1/2;

(2) Put C = B
∥B∥ ;

(3) Using iteration (20);

If p is an even integer, compute S = C−2/p and set X = S.∥B∥−2/p;

If p is an odd integer, compute S = C−1/p and set X =
(
S.∥B∥−1/p

)2
;

(4) End.

It should be emphasized that in this algorithm for the computation of the matrix
power−p, we first evaluate the binary power technique of the matrix and then apply
the inversion of the matrix. We have carried out the recursion till the stop criteria
is hold. Notice that the scheme which computes the matrix square root is highly
effective in obtaining substantial accuracy. In our implementation, the sqrtm(A)

presented in MATLAB which uses the Schur method is employed.
In this part, an analysis to show the stability of the proposed method is presented.

According to [2] an iteration Xk+1 = g(Xk) is defined be stable in a neighborhood
of a solution X = g(X) if the associated error matrices Ek = Xk −X satisfy

Ek+1 = L(Ek) +O(∥Ek∥2), (23)
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where L is a linear operator with bounded powers. Now we provide an analysis for
the stability of the proposed method. To perform an error analysis, error matrices
Ek = Xk − A−1/p and Fk = Mk − I are introduced and all the terms that are
quadratic in their errors are removed.
From Mk = I + Fk, we have(

(p−1)I+Mk

p

)−p
=

(
(p−1)I+I+Fk

p

)−p

≊
(
I + Fk

p

)−p

≊ I − Fk

(24)

The symbol ≊ denoted equality up to second order terms the errors. The relation
for the errors is thus,(

Ek+1

Fk+1

)
≊

(
I −1

pA
−1/p

0 0

)(
Ek

Fk

)
= L

(
Ek

Fk

)
. (25)

Since the coefficient matrix L is such that L2 = L and thus has powers which are
bounded, it follows that the iteration is stable.

4. Numerical Experiments

In this section, we supplement the theory which has been developed so far with
several numerical implementations. All the computations have been done using
MATLAB 2013(Ra). We also used Higham’s Matrix Function Toolbox [5]. In ad-
dition, the accuracy is measured by means of the size of:

e(X̂) = ∥AX̂p − I∥, (26)

Res(X̂) =
∥AX̂p − I∥

∥A∥
, (27)

and

ρA−1(X̂) =
∥ AX̂p − I ∥

∥ X̂ ∥∥
∑p

i=0(X̂
iAX̂p−i − I) ∥

, (28)

where X̂ is the computed inverse pth roots of A and ∥ · ∥ is any norm (In our tests

we use the Frobniuos norm). Note that ρA−1(X̂) was presented by Guo in [4].
Test 1. First example made considering an 4 × 4 symmetric positive definite

well-conditioned matrix with condition number κ(A) = 10. This matrix is defined
by

A =


5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4

 .
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Numerical experiments are presented to compare the behavior of our proposed
methods and other schemes. Our method is denoted by CNM which means the
coupled Newton’s method. Other methods include the A−1/p = exp(−1

p log(A))

based method [5] which can be calculated using the functions expm and logm in
MATLAB, and also Schur Newton method [4]. Results are arranged in Tables 1 to
3. Furthermore, we have implemented the values of p = 5ℓ for ℓ = 1, 2, 3, 4 and 5.
According to tables, in comparison to well-known scheme, it can be seen that the
the proposed method has comparable accuracy.

Table 1. Comparing error e(X̂) among different methods for Test 1.

p CNM exp(− 1
p
log(A)) Schur Newton method

5 8.2623e-13 1.8544e-15 4.9340e-15
25 3.7221e-11 8.4099e-15 4.2026e-14
125 7.1852e-11 6.2919e-14 1.4384e-13
625 8.1553e-11 2.2286e-13 6.9880e-13
3125 8.2415e-11 5.3474e-13 3.5952e-12

Table 2. Comparing error Res(X̂) among different methods for Test 1.

p CNM exp(− 1
p
log(A)) Schur Newton method

5 7.2465e-14 1.6264e-16 4.3274e-16
25 3.2645e-12 7.3759e-16 3.6859e-15
125 6.3018e-12 5.5184e-15 1.2616e-14
625 7.1527e-12 1.9546e-14 6.1289e-14
3125 7.2283e-12 4.6899e-14 3.1532e-13

Table 3. Comparing error ρA−1(X̂) among different methods for Test 1.

p CNM exp(− 1
p
log(A)) Schur Newton method

5 3.7886e-15 8.5037e-18 2.2625e-17
25 6.1883e-15 1.3982e-18 6.9873e-18
125 4.6837e-16 4.1015e-19 9.3768e-19
625 2.1179e-17 5.7879e-20 1.8148e-19
3125 8.5545e-19 5.5505e-21 3.7318e-20

Test 2. In this example, six matrices A,B,C,D,E, and F are assumed. These
matrices that are either well conditioned or ill conditioned can be utilized to com-
pare the accuracy of the proposed methods. The result are reported on Table 4 for
CNM. From result, it can be concluded that the accuracy is not feasible for the
ill conditioned matrices. For instance, for the matrices A,D and F which are ill
conditioned, the errors are larger than other matrices that are well conditioned.

A =

1 1 1
1 2 3
1 3 6

 , B =

0.6 0.3 0.1
0.2 0.7 0.1
0.1 0.1 0.8

 , C =

4 1 1
2 4 1
0 1 4



D =

1.00 0.50 0.33
0.50 0.33 0.25
0.33 0.25 0.20

 , E =

 5 + i 2 + i 3i
2 + i 5 + i 4 + 1i
1− 2i 3− 2i 6− 2i

 , F =

−1 −2 2
−4 −6 6
−4 −16 13


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Table 4. Comparison the errors among different matrices using CNM in Test 2.

Matrix κ(A) p e(X̂) Res(X̂) ρA−1 (X̂)

5 3.4043e-14 4.2890e-15 2.0457e-16
A 61.9839 49 6.3178e -01 7.9597 e-02 4.9429e-05

1982 6.4008 e-01 8.0642 e -02 3.0789e-08
5 6.8056e-15 5.2822e-15 7.9390e-17

B 2.5324 49 5.7838e-14 4.4891e-14 9.0072e-18
1982 1.7984e-12 1.3958e-12 1.7608e-19
5 6.1515e-15 8.2203e-16 5.4832e-17

C 2.4642 49 3.7884e-14 5.0625e-15 3.0728e-18
1982 1.9488e-12 2.6042e-13 9.5342e-20
5 9.0266 e-01 6.3854 e-01 6.8533 e-03

D 524.0568 49 9.4211 e-01 6.6645 e-01 1.3512e-004
1982 9.4576e-01 6.6903 e-01 8.7375e-008
5 2.7361e-14 2.2644e-15 1.9394e-16

E 9.6468 49 1.7626e-13 1.4588e-14 1.1315e-17
1982 2.0755e-12 1.7177e-13 8.0121e-20
5 2.6757e 00 1.1541e-01 2.8635e-02

F 204.7808 49 2.7654 e 00 1.1924e-01 3.0032e-04
1982 2.7700 e 00 1.1943e-01 1.7981e-07

Test 3. In this example we would like to investigate the impact of the dimension
of matrices in obtained accuracy. For this purpose two different matrices A and B
which are defined as

A = (aij) =


0 if i < j

1 if i = j

−1 if i > j

, B = (bij) =


0.1 if i < j

1 if i = j

−0.1 if i > j

.

are supposed. We have approximated the inverse 67th root of the presented matrices
and we reported the accuracy for different dimension. Result are illustrated in Table
5. Moreover, by increasing the dimension of matrix using CNM, error also soared
for the matrix A while for the matrix B, increasing dimension does not have any
affect to increase the error.

Table 5. Comparison errors for evaluating A−1/67 using CNM in Test 3.

Matrix N e(X̂) Res(X̂) ρA−1 (X̂)

3 2.5767e-14 1.05196e-14 3.0723e-18
4 5.9520e-14 1.8821e-14 5.1645e-18
5 6.6576e-14 1.71899e-14 3.5564e-18
6 2.8578e00 6.2363e-01 4.3538e-05

A 7 4.2699e00 8.0693e-01 3.6197e-05
8 4.4771e00 7.4619e-01 2.8531e-05
9 3.7691e00 5.6187e-01 2.3040e-05
10 3.2159e00 4.3363e-01 2.2451e-05
11 3.1960e00 3.9340e-01 2.8256e-05

3 2.4397e-14 1.3946e-14 2.0537e-18
4 5.3564e-14 2.6389e-14 2.9198e-18
5 8.2451e-14 3.6157e-14 3.2037e-18
6 7.5790e-14 3.01958e-14 2.2301e-18

B 7 2.4551e-13 9.0131e-14 5.7032e-18
8 1.6313e-13 5.5759e-14 3.0839e-18
9 1.3038e-13 4.1822e-14 2.0527e-18
10 1.6987e-13 5.1454e-14 2.2683e-18
11 1.6222e-13 4.6636e-14 1.8643e-18
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5. Conclusion

In this work, we have developed an algorithm using normalization of an arbitrary
matrix A which does not have negative eigenvalues for evaluating the inverse roots
of matrices for integer p. This method that has considerable accuracy in comparison
other popular method, can compute the matrix inverse root. Numerical experiments
indicate that the proposed method is sensitive about the condition number of a
matrix. In other words, if the matrix A is ill conditioned then the accuracy of the
method will be reduced. Furthermore, numerical tests reveal that for some matrices,
by increasing the dimension of the matrix errors will be enhanced suddenly for
CNM.
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