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1. Introduction

An important example for a system of partial differential equation is a simple model
for viscous incompressible flow which is given by

−α△−→u + β−→u + ∇p =
−→
f in Ω,

div−→u = 0 in Ω,

−→u = 0 on ∂Ω,

(1)

where the vector valued function −→u and the scalar field p represent velocity
and pressure of the fluid, respectively and α, β are positive constant numbers.
Obviously, one has to factor the constants from p, for instance, by requiring∫
Ω p(x)dx = 0. The solution of (1) exist and is unique for any bounded and

connected Ω ⊆ ℜn with Lipschitz boundary condition [3]. In special case that
α = 1, β = 0 the problem is solved by Yingchun Jiang (see [12]). By mixed weak
formulation we change our problem to a saddle point problem and hence to indefi-
nite system [6, 8, 10]. Also by using divergence-free weak formulation we obtain a
positive definite linear system of reduced size involving only velocity. Note that the
pressure can be obtained by means of a postprocessing [11]. By adaptive wavelet
methods we obtain an approximation solution for this system of equations,that is
a nonlinear approximation [2]. However we can see a linear approximation in [14].

The adaptive method that we use in this paper to solve (1) takes the following
form:
Suppose that we have a wavelet basis{ψλ}λ∈Λ to be used for numerically resolving
the equation (1). Our adaptive scheme will iteratively produce finite sets Λj ⊆
Λ, j = 1, 2, ... and the Galerkin approximation uΛj

to u from the space SΛj :=
span({ψλ}λ∈Λj

).
The function uΛj

is a linear combination of Nj := #Λj wavelets, where #Λj
is the cardinal of Λj . Thus the adaptive method can be viewed as a particular
form of nonlinear N-term wavelet approximation and a benchmark for the perfor-
mance of such an adaptive method is provided by comparison with best N-term
approximation (in the energy norm) when full knowledge of u is available.

2. Idea

Suppose Λ is a countable set and

Ψ = {ψλ : λ ∈ Λ}

is a basis for Hilbert space H. Every v ∈ H has an expansion in terms of elements
of Ψ

v :=
∑
λ∈Λ

dλψλ. (2)

The coefficients dλ can be expressed via the dual basis, this is a collection of
functionals

Ψ̃ = {ψ̃λ : λ ∈ Λ}
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such that

⟨ψλ, ψ̃λ⟩ = δλ,λ′ λ, λ′ ∈ Λ (3)

where ⟨., .⟩ denotes the inner product on H. In fact the coefficients dλ in (2) are
given by

dλ = ⟨v, ψ̃λ⟩.

To simplify further expansion we introduce some compact notations:
Let us consider a given countable collection of functions Φ in H as a column vector,
so that an expansion with coefficients cϕ, ϕ ∈ Φ can be formally treated as an inner
product

CTΦ :=
∑
ϕ∈Φ

cϕϕ,

where CT denotes the transpose of C. Likewise for any v ∈ H the quantities ⟨Φ, v⟩
and ⟨v,Φ⟩ denote the column and row vector of coefficients ⟨ϕ, v⟩ and ⟨ϕ, v⟩ , ϕ ∈ Φ,
respectively.
Therefore (2) can be written briefly as dTΨ. Also for two countable collections Φ,Ψ
of functions, we consider the matrix

⟨Φ,Ψ⟩ = (⟨ϕ, ψ⟩)ϕ∈Φ,ψ∈Ψ.

Specifically, the above biorthogonality relation (3) becomes

⟨Ψ, Ψ̃⟩ = I

where I denotes the identity matrix.
Now suppose that  L is a bounded linear bijection that maps H into H∗, dual space
of H, that is

∥ Lv∥H∗ ∼ ∥v∥H , v ∈ H

where a ∼ b means that,there are constants c1, c2 such that

c1a ⩽ b ⩽ c2a.

Note that in this case, by Riesz representation theorem, the equation

 Lu = f (4)

has a unique solution u ∈ H for every f ∈ H∗.
The basic idea is to transform the equation (4) into an infinite discrete system

of equations. This can be done with the aid of suitable bases for the underlaying
spaces. Given such bases seeking the solution u of (4) is equivalent to finding the
expansion of the sequence d such that u = dTΨ. Inserting this into (4) yields
( LΨ)Td = f . This gives the the following system of equations



64 H. Jamali & A. Askari Hemmat/ IJM2C, 04 - 01 (2014) 61-75.

⟨ LΨ,Ψ⟩Td = ⟨f,Ψ⟩T . (5)

When Ψ is a wavelet basis, the solution to (5) gives the wavelet coefficients of the
solution u to (4).
An advantage of wavelet bases is that they allow for trivial preconditioning of the
linear system (5) [4]. This preconditioning is given by the matrix D, where D is a
fixed positive diagonal matrix such that

∥D−1d∥ℓ2(Λ) ∼ ∥dTΨ∥H . (6)

The result is

D⟨ LΨ,Ψ⟩TDD−1d = D⟨f,Ψ⟩T ,

or

AU = F, (7)

where

A := D⟨ LΨ,Ψ⟩TD,U := D−1d, F := D⟨f,Ψ⟩T ∈ ℓ2(Λ). (8)

Now assume that  L is positive definite and selfadjoint, that is, the bilinear form
a defined on H×H by

a(u, v) := ⟨ Lu, v⟩,

is symmetric. Also assume that  L is elliptic in the sense that

a(v, v) ∼ ∥v∥2H , v ∈ H.

It follows that H is also a Hilbert space with respect to the inner product a and
this inner product induces an equivalent norm, called the energy norm, on H by

∥.∥2a := a(., .).

Combining this with (6), we obtain that ∥.∥a and ∥.∥ℓ2(Λ) are equivalent, thus there
exist constants c1, c2 > 0 such that,

c1∥.∥2ℓ2(Λ) ⩽ ∥.∥2a ⩽ c2∥.∥2ℓ2(Λ). (9)

It follows that the unique solution of (4) is also the unique solution of the variational
equation

a(u, v) = ⟨f, v⟩, v ∈ H.

The typical examples satisfying in the above assumptions are Poisson’s, Helmholtz
or the biharmonic equations on bounded domains in ℜn. In these examples H is a
Sobolev space; [7, 9].
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3. Divergence Free-Wavelets

In this section we present a divergence-free wavelet basis for the space

−→
H (ℜN ) := {

−→
f ∈ −→

H (div;ℜn) : div
−→
f = 0},

of divergence-free vector fields in L2(ℜn)n, where

−→
H (div;ℜn) := {

−→
f ∈ L2(ℜn)n : div

−→
f ∈ L2(ℜn)},

which will be used later,(for more information see [13]).
Assume that ϕ is an a-refinable function in the sense that

ϕ(x) =
∑
k∈Zn

akϕ(2x− k).

The Laurant series

a(z) :=
∑
k∈Zn

akz
k

with z = e−iξ, ξ ∈ ℜn is called the symbol of ϕ.
For abbreviation we use the following notations:

E := {(e1, e2, ..., en)T : ei ∈ {0, 1}}, E∗ := E\{0}.

For e ∈ E we define

ϕe(.) := ϕ(2.− e).

Since Zn =
∪
e∈E{e+ 2k : k ∈ Zn} and ϕe(x− k) = ϕ(2x− (e+ 2k)) then∑
k∈Zn

akϕ(2x− k) = ϕ(x) =
∑
e∈E

∑
k∈Zn

ae+2kϕe(x− k)

where the sequences {ae+2k}k∈Zn determine the subsymbols

ae(z) :=
∑
k∈Zn

ae+2kz
k

of the symbol a(z) of ϕ. Since

a(z) =
∑
e∈E

zeae(z),

it is clear that a(z) is determined by its subsymbols.
We will define functions ψe for e ∈ E∗, such that this system is ℓ2-stable. To this
end, we choose symbols ae(z), (e ∈ E∗), such that the functions ψe are defined by
the subsymbols of ae(z):

ψe(x) :=
∑
ẽ∈E

∑
k∈Zn

aeẽ+2kϕẽ(x− k).
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Also, define a new system ψ
(ν)
e via its symbol a(ν),e(z) which is given by:

aν,e(z) := ae(z)


2

1+zν
if eν = 0,

1−zν
2 if eν = 1.

Definition 3.1 Let e ∈ E∗, ie be an index (1 ⩽ ie ⩽ n) with eie = 1. For i ̸= ie
we define:

(
−→
ψ Λ
e,i)j :=



0 if j ̸∈ {i, ie} ,

ψ
((i))
e if j = i,

−1
4( ∂
∂xi
ψ
((i,ie))
e ) if j = ie ,

(10)

where ψ
((i))
e := ψ

(1,...,i−1,i+1,...,n)
e , ψ

((0))
e := ψ

(1,...,n)
e , and ψ(i,j) = (ψ(i))(j).

It is clear that ie is not uniquely determined, but this is not important for finding

a basis for
−→
H (ℜn) [13].

Theorem 3.2 Let φ ∈ L2(ℜn) be ℓ2-stable, compactly supported and a∗-refinable
such that its Fourier transform (φ̂) satisfies

|φ̂(ξ)| ⩽ C(1 + ∥ξ∥)−ϵ−n/2.

Let ϕ ∈ L2(ℜn) be the a-refinable function defined by the symbol

a(z) = a∗(z)

n∏
ν=1

1 + zν
2

.

Moreover, suppose {ψe : e ∈ E∗} is a pre-wavelet system of compactly supported
functions induced by ϕ such that the corresponding symbols ae(z) are divisible by
1 + zν , if eν = 0 and that the resulting symbols are finite. Then the system

{
−→
ψ Λ
e,i,j,k : (e, j, k) ∈ E∗ × Z× Zn, i ̸= ie} (11)

defined by (10) forms a Riesz-basis for
−→
H (ℜn).

Proof See [13]. ■

4. Basic Facts

Let Z+ be the set of non-negative integers. For any m ∈ Z+, Cm(Ω) is the space of
functions which, together with their derivatives of order less than or equal to m,
are continuous on Ω that is,

Cm(Ω) = {v ∈ C(Ω) | ∂αv ∈ C(Ω) for |α| ⩽ m}.



H. Jamali & A. Askari Hemmat/ IJM2C, 04 - 01 (2014) 61-75. 67

We set

C∞(Ω) = {v ∈ C(Ω)| v ∈ Cm(Ω) ∀m ∈ Z+}.

Also we say that v ∈ C(Ω) has a compact support if supp(v) = {x ∈ Ω| v(x) ̸= 0}
is a proper compact subset of Ω. Later on, we need the space

C∞
0 (Ω) = {v ∈ C∞(Ω)| supp(v) is a proper subset of Ω}.

In order to give an adaptive wavelet solution to (1) we consider the space H :=

{
−→
f ∈ H1

0 (Ω)
n

: div
−→
f = 0} where H1(Ω) is a Sobolev space and H1

0 (Ω) is the

completeness of C∞
0 (Ω) in H1(Ω). It is obvious that H ⊆

−→
H (Ω)

∩−→
H 0(div; Ω) where

−→
H 0(div; Ω) := clos−→

H (div;Ω)
C∞
0 (Ω)n and

−→
H (Ω) is defined as in the first paragraph

of section 3. Now assume that Λdf is a countable set such that

Ψdf := {
−→
ψ df
λ : λ ∈ Λdf}

satisfy in (10) forms a Riesz basis for H. We use |λ| := j to denote the level of the
wavelets.It was shown in [15] that

∥
∑
λ∈Λdf

cλ
−→
ψ df
λ ∥H1(Ω)n ∼

∑
λ∈Λdf

22|λ||cλ|2. (12)

According to section 2 we can discretize the problem (1) for α, β = 1 (the other
cases are similar). The weak formulation of the problem (1) is∫

Ω
(∇u∇v + uv)dx =

∫
(fv)dx, ∀v.

Thus the bilinear form a(., .) in section 2 has the following form

a(u, v) = ⟨∇u,∇v⟩ + ⟨u, v⟩.

For −→u ∈ H we have −→u =
∑

λ∈Λdf dλψ
df
λ , thus (1) is equivalent to

a(−→u ,
−→
ψ df
λ′) = ⟨

−→
f ,

−→
ψ df
λ′⟩ ∀λ′ ∈ Λdf ,

and in turns, it is equivalent to

a(
∑
λ∈Λdf

dλ
−→
ψ df
λ ,

−→
ψ df
λ′) = ⟨

−→
f , ψdfλ′ ⟩,

or ∑
λ∈Λdf

dλa(
−→
ψ df
λ , ψ

df
λ′ ) = ⟨

−→
f , ψdfλ′ ⟩.

Now let D := diag(2−|λ|)Λdf×Λdf [4], thus by (7) our problem is equivalent to

AU = F, (13)



68 H. Jamali & A. Askari Hemmat/ IJM2C, 04 - 01 (2014) 61-75.

where A,U, F, satisfy (8).It is easy to show that the matrix A is quasi-sparse in
the sense that if A = (aλ,λ′)λ,λ′∈Λdf then there is a constant CA such that for some
σ > n

2 and β > n

|aλ,λ′ | ⩽ CA2−||λ|−|λ′||σ(1 + d(λ, λ′)−β)

where d(λ, λ′) := 2min{|λ|,|λ
′|}dist(supp(ψλ), supp(ψλ′)) [1, 9]. Also it was shown

in [5] that, this quasi-sparse matrix defines a bounded operator on ℓ2(Λdf ).
Note that the bilinear form a is symmetric and bounded on H1

0 (Ω), also by
Sobolev inequality we have

a(−→u ,−→u ) ∼ ∥−→u ∥2H1
0 (Ω)n , ∀−→u ∈ H1

0 (Ω)n.

Because of boundedness of A onℓ2(Λdf ) we have

∥AU∥ℓ2(Λdf ) ⩽ C∥U∥ℓ2(Λdf ), (14)

also a(−→u ,−→v ) = ⟨AU, V ⟩ and (12) imply that

⟨AU,U⟩ = a(−→u ,−→u ) ⩾ c1∥−→u ∥2H1
0 (Ω)n ⩾ cA∥U∥2ℓ2(Λdf ), (15)

that means, A is positive definite.Also, since

cA∥U∥2ℓ2(Λdf ) ⩽ ⟨AU,U⟩ ⩽ ∥AU∥ℓ2(Λdf )∥U∥ℓ2(Λdf ),

we have

cA∥U∥ℓ2(Λdf ) ⩽ ∥AU∥ℓ2(Λdf ) ⩽ CA∥U∥ℓ2(Λdf ). (16)

By the above we have the following theorem:

Theorem 4.1 The matrix A in (13) is quasi-sparse, bounded, positive definite,
symmetric and also

∥AU∥ℓ2(Λdf ) ∼ ∥U∥ℓ2(Λdf ), ∀U = D−1d, (17)

where −→u = dΨdf .

5. Adaptive Scheme

In this section we shall present an adaptive algorithm in order to resolve the solution
to (13). This algorithm generates step by step an ascending sequence of (nested)
Λj and approximate solutions UΛj

supported in Λj so that on the one hand the
cardinality of (Λj\Λj−1) which is denoted by #(Λj\Λj−1) stays as small as possible,
while on the other hand the error estimate satisfy the following property

∥U − UΛj
∥ℓ2(Λdf ) ⩽ ϵj := 2−jϵ0,

where ϵ0 is an upper bound for ∥U∥ℓ2(Λdf ).
Note that the matrix A is quasi-sparse and it is compressible of order s for s >
min{σn −

1
2 ,

β
n −1}. Thus there are two positive sequences (αj)j⩾0 and (βj)j⩾0 that
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are both summable and for every j ⩾ 0 there exists a matrix Aj with at most 2jαj
nonzero entries per row and per column such that

∥A−Aj∥ ⩽ 2−jsβj . (18)

Now let V ∈ ℓ2(Λdf ), for each n ⩾ 1 let v∗n be the n-th largest of the number |vλ|
and let V ∗ := (v∗n)∞n=1. For each 0 < τ < 2 we let ℓωτ (Λdf ) denote the collection of
all vectors V ∈ ℓ2(Λdf ) for which

|V |ℓωτ (Λdf ) := supn⩾1n
1

τ v∗n

is finite. This expression defines a quasi norm for ℓωτ (Λdf ) and we define

∥V ∥ℓωτ (Λdf ) := |V |ℓωτ (Λdf ) + ∥V ∥ℓ2(Λdf ).

Hence we have a norm for ℓωτ (Λdf ). It is shown in [5], That the matrix A maps
ℓωτ (Λdf ) boundedly into itself for τ = (12 + s)−1 that is, for every V ∈ ℓωτ (Λdf ), we
have

∥AV ∥ℓωτ (Λdf ) ⩽ C∥V ∥ℓωτ (Λdf ).

Following [5], for an accuracy η, we assume that we have the following routines
at our disposal.

COARSE [W,η] → (Λ, W̄ )
(i) Define N := #(supp W ) and sort the nonzero entries of W into decreasing
order in module and obtain the vector λ∗ := (λ1, ..., λN ) of indices which gives the
decreasing rearrangement W ∗ = (|wλ1

|, ..., |wλN
|) of nonzero entries of W ; then

compute ∥W∥ℓ2(Λdf ) =
∑N

i=1 |wλi
|2.

(ii) For k = 1, 2, ..., form the sum
∑k

j=1 |wλj
|2 in order to find the smallest

value k such that this sum exceeds ∥W∥2ℓ2(Λdf ) − η2. For this k define K = k and

set Λ := {λj : j = 1, ...,K}; define W̄ by w̄λ = wλ for λ ∈ Λ and w̄λ = 0 for λ /∈ Λ.

Now, let 0 < η < ∥V ∥ℓ2(Λdf )and W be a finitely supported approximation to V such
that ∥V −W∥ℓ2(Λdf ) ⩽ dη for some d < 1, then it is obvious that the COARSE

[W, (1 − d)η] produces W̄ supported on Λ which ∥V − W̄∥ℓ2(Λdf ) ⩽ η. (Note that

the output W̄ of COARSE, by construction, satisfies ∥W − W̄∥ℓ2(Λdf ) ⩽ η).
Moreover, we have the following lemma [5]:

Lemma 5.1 If V ∈ ℓωτ (Λdf ), τ = (s+ 1
2)−1, for some s > 0 then the outputs W̄ , Λ

of COARSE requires at most 2N arithmetic operations and NlogN sorts,where
N = #supp(W ). Moreover,

∥W̄∥ℓωτ (Λdf ) ⩽ C∥V ∥ℓωτ (Λdf ) (19)

and Λ (the cardinality of supp(W̄ ) ) is bounded by

#(Λ) ⩽ C∥V ∥
1

s

ℓωτ (Λ
df )η

1

s . (20)
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Corollary 5.2 If F̄ is an optimal N-term approximation of the data F with ac-
curacy η, then for η̃ ⩾ η COARSE [F̄ , η̃− η] produces an approximation G to F
with support Λη̃, such that ∥G− F∥ℓ2(Λdf ) ⩽ η̃. Moreover, if F ∈ ℓωτ (Λdf ), then

#(Λη̃) ⩽ Cη̃
−1

s ∥F∥
1

s

ℓωτ (Λ
df ),

with C depending only on s.

To simplify our notations we will denote the notation COARSE [F, η̃] instead
of the output of COARSE [F̄ , η̃ − η].
Now let V be a vector of finite support and N = #supp V and V[j] be the vector

that agrees with V in its 2j largest entries and zero otherwise for j = 1, ..., log[N ]
and for j > [logN ] let V[j] = V (note that this process requires at most NlogN
sorts).

APPLY A[V, η] → (W,Λ):
(i) Sort the nonzero entries of the vector V and form the vectors
V[0], V[j] − V[j−1], j = 1, ..., [logN ] with N := supp V and define V[j] := V for
j > logN .

(ii) Compute ∥V ∥2ℓ2(Λdf ), ∥V[0]∥2ℓ2(Λdf ), ∥V[j] − V[j−1]∥2ℓ2(Λdf ), j = 1, ..., [logN ].

(iii) Set k = 0
(a) Compute Rk := CA∥V − V[k]∥ℓ2(Λdf ) + 2−ksβk∥V [0]∥ℓ2(Λdf ) +∑k−1
j=0 2−jsβj∥V[k−j] − V[k−j−1]∥ℓ2(Λdf ), where CA and βj were introduced in

(16) and (18).

(b) If Rk ⩽ η stop and output k, otherwise replace k by k+ 1 and return to (a).

(iv) For the output k of (iii) and for j = 0, 1, ..., k compute nonzero en-
tries in the matrices Ak−j which have a column index in common with one of the
nonzero entries of V[j] − V[j−1].

(v) For the output k of (iii) compute Wk as the follow

Wk := AkV[0] +Ak−1(V[1] − V[0]) + ...+A0(V[k] − V[k−1]),

and take W := Wk and Λ := suppW , where Ak are as in (18).

Lemma 5.3 The outputs W , Λ of APPLY A[η, V ] have the following properties:
(i)

∥AV −W∥ℓ2(Λdf ) ⩽ η. (21)

Moreover if V ∈ ℓωτ (Λdf ) with τ = (s+ 1
2)−1 then

(ii)

#(Λ) ⩽ C∥V ∥
1

s

ℓωτ (Λ
df )η

− 1

s (22)

and

∥W∥ℓωτ (Λdf ) ⩽ C∥V ∥ℓωτ (Λdf ). (23)
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(iii) The number of arithmetic operations needed to compute (W,η) bounded by

Cη−
1

s ∥V ∥
1

s

ℓωτ (Λ
df )η

− 1

s + 2N with n := suppV and the number of sorts needed to

compute W is bounded by CNlogN .

Now,based on the above routines we are prepared to describe our algorithm
in order to construct finitely supported U j , j = 0, 1, ..., which approximate the
solution U of(7).
Assume that ϵ is the target accuracy, α is the real number such that
∥I − αA∥ := ρ < 1, (α exists since A is a positive definite matrix) and
K := min{l ∈ N : ρl−1(2αc2l + ρ) ⩽ (8c2c1 + 2)−1}, where c1, c2 are as in (9).

SOLVE [ϵ, A, F ] → (Uϵ,Λϵ)

(i) Set U0 = 0,Λ0 = ∅, ϵ0 := c−1
A c2∥F∥ℓ2(Λdf ).

(ii) While ϵj > c1ϵ, do

(ii.1) Set V 0 := U j

(ii.2) For l = 0, 1, ...,K − 1 :

(1) COARSE [F, ρlϵj ] → (Fl,Λl,F )
(2) APPLY A[V l, ρlϵj ] → (W l,Λl,A)
(3) V l+1 := V l − α(W l − Fl)

(ii.3) COARSE[V K , 4
c1

(8c2c1 + 2)−1ϵj ] → (Λj+1, U
j+1)

(ii.4) Set ϵj+1 := ϵj
2 , j + 1 → j

(iii) Accept Uϵ := U j as a solution.

In the following theorem we give the error estimation for ∥U − Uϵ∥.

Theorem 5.4 Let ϵ be the target accuracy and the solution U of AU = F belongs
to ℓωτ (Λdf ) for τ = (s+ 1

2)−1 with 0 < s < min{σn − 1
2 ,

β
n − 1} then

∥U − Uϵ∥ℓ2(Λdf ) ⩽ ϵ. (24)

Proof By the step (ii) in SOLVE, it is enough to show that

∥U − U j∥ℓ2(Λdf ) ⩽ c−1
1 ϵj . (25)

we proceed, by induction. By (9) and (16) we have

∥U − U0∥ℓ2(Λdf ) = ∥U∥ℓ2(Λdf ) ⩽ ∥A−1∥∥F∥ℓ2(Λdf ) ⩽ c−1
A ∥F∥ℓ2(Λdf ) = ϵ0c

−1
1 ,

therefore (25) is true for j = 0.
Now assume that (25) is true for j, that is ∥U − Uj∥ℓ2(Λdf ) ⩽ c−1

1 ϵj .

Let U j(V ) be the exact iterates with initial V , then

U l+1(U j) = U l(U j) + α(F −AU l(U j)),

combining this with definition of V l+1, we obtain

V l+1 − U l+1(U j) = V l + α(Fl −W l) − U l(U j) − α(F −AU l(U j))
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= (I − αA)(V l − U l(U j)) + α((Fl − F ) + (AV l −W l)).

Hence by step (ii) of SOLVE and properties of COARSE and APPLY (lemma
(5.1) and lemma (5.2)) we have

∥V l+1 − U l+1(U j)∥ℓ2(Λdf ) ⩽ ρ∥V l − ul(U j)∥ℓ2(Λdf ) + 2αρlϵj ,

since V 0 = U j and U0(U j) = U j , then

∥V l+1 − U l+1(U j)∥ℓ2(Λdf ) ⩽ ρl+1∥V 0 − U0(U j)∥ℓ2(Λdf )

+2αϵj

l∑
i=0

ρiρl−i = 2αϵj

l∑
i=0

ρl = 2αϵj(l + 1)ρl,

therefore by setting K instead l + 1,

∥V K − UK(U j)∥ℓ2(Λdf ) ⩽ 2αϵjKρ
K−1. (26)

Also by induction assumption, (26) and definition of K:

∥V K − U∥ℓ2(Λdf ) ⩽ ∥V K − UK(U j)∥ℓ2(Λdf ) + ∥UK(U j) − U∥ℓ2(Λdf )

⩽ 2αKϵjρ
K−1 + ρK∥U − U j∥ℓ2(Λdf ) ⩽ 2αKϵjρ

K−1 + ρKϵjc
−1
1

= (2αK + ρc−1
1 )ρKϵj = c−1

1 (2αKc1 + ρ)ρK−1ϵj

⩽ (
8c2
c1

+ 2)−1ϵjc
−1
1 .

This inequality and (ii.3) in SOLVE yield to:

∥U j+1 − U∥ℓ2(Λdf ) ⩽ ∥U j+1 − V K∥ℓ2(Λdf ) + ∥V K − U∥ℓ2(Λdf )

⩽ 4c2
c21

(
8c2
c1

+ 2)−1ϵj + (
8c2
c1

+ 2)−1ϵjc
−1
1

=
ϵj
c1

(
8c2
c1

+ 2)−1(
4c2
c1

+ 1) =
ϵj

2
c−1
1

= ϵj+1c
−1
1 ,

as we desired. ■
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Theorem 5.5 The number of arithmetic operations used to compute Uϵ is bounded

by a multiple of ϵ
−1

s and the number of sort operations is bounded by a multiple

of ϵ
−1

s |logϵ|.

Proof By corollary 5.2 the number of arithmetic operations arising from COARSE
in step (ii.2) from j to j+1 is bounded by

C(
K−1∑
l=0

ρ
−l

s )ϵ
−1

s

j ∥F∥
1

s

ℓωτ (Λ
df ), (27)

and APPLY needs at most

C(

K−1∑
l=0

ρ
−l

s ∥V l∥ℓωτ (Λdf )) + 2

K∑
l=0

Nl (28)

arithmetic operations and

K∑
l=0

Nl logNl (29)

sorts, where Nl := suppV l.
By lemma 5.3

∥W l∥ℓωτ (Λdf ) ⩽ C∥V l∥ℓωτ (Λdf ),

also by lemma 5.1

∥Fl∥ℓωτ (Λdf ) ⩽ ∥F∥ℓωτ (Λdf ),

but ,according to SOLVE we have V l = V l−1 + α(W l−1 − Fl−1), therefore

∥V l∥ℓωτ (Λdf ) ⩽ C(∥V l−1∥ℓωτ (Λdf ) + ∥Fl−1∥ℓωτ (Λdf )).

Consequently,

∥V l∥ℓωτ (Λdf ) ⩽ C(∥V 0∥ℓωτ (Λdf ) + ∥F∥ℓωτ (Λdf )). (30)

Now assume that Uϵ := U j+1 for some fixed j ∈ N , then

∥V 0∥ℓωτ (Λdf ) = ∥U j∥ℓωτ (Λdf ) ⩽ ∥U∥ℓωτ (Λdf ),

from this and (30), we can conclude that ∥V l∥ℓωτ (Λdf ) for 1 ⩽ l ⩽ K is bounded,
that is

∥V l∥ℓωτ (Λdf ) ⩽ C. (31)

By definition of V l, we have

#(suppV l) ⩽ #(suppV l−1) + #(suppFl−1) + #(suppW l−1),
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now according to the corollary 5.2, #(suppFl−1) ⩽ C∥F∥ℓωτ (Λdf )(ρ
l−1ϵj)

−1

s and by

lemma 5.3, #(suppW l−1) ⩽ C∥V l−1∥
1

s

ℓωτ (Λ
df )(ρ

l−1ϵj)
−1

s . Since ϵj > ϵ we have

#(suppV l) ⩽ #(suppV l−1) + C(ρl−1ϵ)
−1

s .

Also

#(suppV 0) = #(suppU j) ⩽ Cϵ
−1

s .

Therefore

#(suppV l) ⩽ Cϵ
−1

s . (32)

Now, we note that the number of total arithmetic operations from j to j + 1 is at
most the summation of (27) and (28). On the other hand the number of total sorts
is at most (29). Combining these with (31) and (32), give the desired results. ■

6. Conclusions

Using divergence free wavelets and mixed weak formulation we change the gen-
eralized stokes equation to an positive definite linear system. Then we design an
adaptive algorithm in order to give an adaptive approximated solution to the prob-
lem. This algorithm generates step by step an ascending sequence of nested Λj and
approximated solutions U j supported in Λj such that the cardinality of (Λj−Λj−1)
stays as small as possible, while the error estimate satisfies

∥U − U j∥ℓ2(Λdf ) ⩽ ϵj := 2−jϵ0,

where U is the exact solution of the system and ϵ0 is an upper bound for ∥U∥ℓ2(Λdf ).
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