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Abstract. Traditional Data Envelopment Analysis (DEA) models for measuring the relative
efficiencies of a set of Decision Making Units (DMUs) the using various inputs to produce
various outputs are limited to crisp data. In real world situations, however, this assumption
may not always be true. When some inputs and outputs are unknown decision variables,
such as fuzzy data, rough data, interval data, the DEA model is called imprecise DEA. this
paper develops a procedure to measure the efficiencies of DMUs with fuzzy observations. The
basic idea is to transform a fuzzy DEA model to family of conventional crisp DEA models by
applying optimistic, intermediate and pessimistic concepts. A numerical example is given to
show the efficiency.
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1. Introduction

Data Envelopment Analysis (DEA) is a non-parametric method for evaluating the
relative efficiency of DMUs on the basis of multiple inputs and outputs. The original
DEA models [2,3] assume the inputs and outputs are measured by exact values on
a ratio scale. Cooper et al [4] addressed the problem of imprecise data in DEA
in its general form. The term imprecise data reflects the situation where some of
the input and output data are only know to lie with bounded interval (interval
number)while other data are known only up to an order. In this paper we assume
the inputs and outputs have fuzzy number form.The concept of fuzzy number and
arithmetic operations with these numbers were first introduce and investigated by
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Zadeh [12]. Mizumoto and Tanaka [8,9], Dubois and Prade [5]. One of the major
application using imprecise data arithmetic is treating DEA models
parameters are all or partially represented by fuzzy numbers or rough data[10,11].

In this paper we proposed, optimistic, intermediate and pessimistic concepts for
evaluating the relative efficiencies of DMUs which stand for DMUs with triangular
fuzzy number input and output terms. By this idea, the efficiency of DMU has three
parameters optimistic efficiency,intermediate efficiency and pessimistic efficiency
and then by using optimistic, intermediate and pessimistic efficiency all of the
DMUs are compared.
This paper is organized as follows: In section 2, definitions and notation of fuzzy

set theory is reviewed. In section 3, the Optimistic, Intermediate and Pessimistic
efficiency is presented. In section 4, we will classified DMUs based upon Optimistic,
Intermediate and Pessimistic efficiency. A numerical example is presented in section
5. Finally, section 6 concludes the paper with the summary and conclusions.

2. Preliminaries

We first review the fundamental notation and basic definitions of fuzzy set theory
initiated by Bellman and Zadeh [12].

Definition 2.1 If X is a collection of objects denoted generically by x, then a
fuzzy set in X is a set of ordered pairs:

Ã = {(x, Ã(x))|x ∈ X}

where Ã(x) is called the membership function which associates with each x ∈ X a
number in [0,1] indicating to what degree x is a number.

Definition 2.2 The α-level set of Ã is the setÃα = {x|Ã(x) ≥ α} where α ∈ [0, 1].
The lower and upper bounds of any α-level set Ãα are represented by finite number
infx∈Ãα

and supx∈Ãα
.

Definition 2.3 A fuzzy set Ã is convex if

Ã(λx+ (1− λ)y) ≥ min{Ã(x) , Ã(y)} ∀x, y ∈ X , λ ∈ [0, 1].

Definition 2.4 A convex fuzzy set Ã on R is a fuzzy number if the following
conditions hold:

(a) Its membership function is piecewise continuous function.

(b) There exist three intervals [a,b], [b,c] and [c,d] such that Ã is increasing on
[a,b], equal to 1 on [b,c], decreasing on [c,d] and equal to 0 elsewhere.

Definition 2.5 The support of a fuzzy set Ã is a set Ã is a set of elements in X
for which Ã(x) is positive, that is,

suppÃ = {x ∈ X|Ã(x) > 0}.
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Definition 2.6 A fuzzy number Ã = (al, am, au) is called triangular fuzzy number,
if membership function is defined as:

µÃ =



0 x < al

x−al

am−al al ⩽ x ⩽ am

−x+au

au−am am ⩽ x ⩽ au

0 x > al

.


We next define arithmetic on triangular fuzzy numbers.

Let Ã = (al, am, au) and B̃ = (bl, bm, bu) be two triangular fuzzy numbers. Define,

x > 0, x ∈ R : xÃ = (xal, xam, xau),

x < 0, x ∈ R : xÃ = (xau, xam, xal),

Ã+ B̃ = (al + bl, am + bm, au + bu),

Ã− B̃ = (al − bu, am − bm, au − bl).

3. Optimistic, Intermediate and Pessimistic Efficiency

In original DEA measure of the efficiency of any DMU is obtained as the maximum
of a ratio of weighted outputs to weighted inputs subject to the condition that the
similar ratios for every DMU be less than or equal to unity. The mathematical
model is as follows:

θo =max

∑s
r=1 urYro∑k
i=1 viXio

s.t.∑s
r=1 urYrj∑k
i=1 viXij

⩽ 1 j = 1, 2, . . . , n (1)

ur , vi ⩾ 0 i = 1, 2, . . . , k , r = 0, 1, 2, . . . , s , o ∈ {1, 2, . . . , n}

Here the Xij , Yrj (all positive) are crisp outputs and inputs. When Xij , Yrj are
triangular fuzzy number we have following model:

θo =max

∑s
r=1 ur(y

l
ro, y

k
ro, y

u
ro)∑k

i=1 vi(x
l
io, x

m
io , x

u
io)

s.t.∑s
r=1 ur(y

l
rj , y

m
rj , y

u
rj)∑k

i=1 vi(x
l
ij , x

m
ij , x

u
ij)

⩽ 1 j = 1, 2, . . . , n (2)

ur , vi ⩾ 0 i = 1, 2, . . . , k , r = 0, 1, 2, . . . , s , o ∈ {1, 2, . . . , n}
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3.1 Optimistic Efficiency

For any DMU of the best situation is given by the following model:

θuo =max

∑s
r=1 ury

u
ro∑k

i=1 vix
l
io

s.t.∑s
r=1 ury

l
rj∑k

i=1 vix
u
ij

⩽ 1 j ̸= o (3)

∑s
r=1 ury

u
ro∑k

i=1 vix
l
io

⩽ 1

ur , vi ⩾ 0 i = 1, 2, . . . , k , r = 0, 1, 2, . . . , s , o ∈ {1, 2, . . . , n}

In this model DMUo has a best situation (least input most output)and for other
DMUs conversely. θuo is the value of optimistic efficiency for DMUo.

3.2 Intermediate Efficiency

For any DMU of the intermediate situation is given by the following model:

θmo =max

∑s
r=1 ury

m
ro∑k

i=1 vix
m
io

s.t.∑s
r=1 ury

m
rj∑k

i=1 vix
m
ij

⩽ 1 j = 1, 2, . . . , n (4)

ur , vi ⩾ 0 i = 1, 2, . . . , k , r = 0, 1, 2, . . . , s , o ∈ {1, 2, . . . , n}

In model (4), all of the DMUs are in similar condition. θmo is the value of inter-
mediate efficiency for DMUo.

3.3 Pessimistic Efficiency

For any DMU of the worst situation is given by the following model:

θlo =max

∑s
r=1 ury

l
ro∑k

i=1 vix
u
io

s.t.∑s
r=1 ury

u
rj∑k

i=1 vix
l
ij

⩽ 1 j ̸= o (5)

∑s
r=1 ury

l
ro∑k

i=1 vix
u
io

⩽ 1

ur , vi ⩾ 0 i = 1, 2, . . . , k , r = 0, 1, 2, . . . , s , o ∈ {1, 2, . . . , n}
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In model (5), DMUo has a worst situation (least output and most input) and for
other DMUs conversely. θlo is the value of pessimistic efficiency for DMUo.
We assume that xlij , xmij , xuij , ylrj , ymrj , yurj for i(i = 1, 2, 3, . . . , k) ,j (j =

1, 2, 3, . . . , n) and r (r = 1, 2, 3, . . . , s) are constants and strictly positive.

Theorem 3.1 For DMUo o ∈ {1, 2, . . . , n} θlo ⩽ θmo ⩽ θuo .

Proof prove of theorem with due attention to inputs and outputs is obvious.
■

For calculation θlo, θmo θuo the models (1),(2), and (3) are replaced with the
following LP problems respectively:

1. Optimistic efficiency

θuo =max
s∑

r=1

ury
u
ro

s.t.

k∑
i=1

vix
l
io = 1 (6)

s∑
r=1

ury
l
rj −

k∑
i=1

vix
u
ij ⩽ 0 j ̸= o

s∑
r=1

ury
u
ro −

m∑
i=1

vix
l
io ⩽ 0 o ∈ {1, 2, . . . , n}

ur , vi ⩾ 0 i = 1, 2, . . . , k , r = 0, 1, 2, . . . , s ,

2. Intermediate efficiency

θmo =max

s∑
r=1

ury
m
ro

s.t.

k∑
i=1

vix
m
io = 1 (7)

s∑
r=1

ury
m
rj −

k∑
i=1

vix
m
ij ⩽ 0

ur , vi ⩾ 0 i = 1, 2, . . . , k , r = 0, 1, 2, . . . , s
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3. Pessimistic efficiency

θlo =max

s∑
r=1

ury
l
ro

s.t.

k∑
i=1

vix
u
io = 1 (8)

s∑
r=1

ury
u
rj −

k∑
i=1

vix
l
ij ⩽ 0 j ̸= o

s∑
r=1

ury
l
ro −

k∑
i=1

vix
u
io ⩽ 0 o ∈ {1, 2, . . . , n}

ur , vi ⩾ 0 i = 1, 2, . . . , k , r = 0, 1, 2, . . . , s ,

With using (4),(5), and (6) the efficiency for DMUo is a triplet instance
,(θlo, θmo , θuo ) You should notice that this triplet (θlo, θmo , θuo ) is not always a
T.F.N. For simplicity we named it triplet efficiency.

4. Categorization and Discrimination of the Units

Considering that the optimistic, intermediate and pessimistic efficiency of any
DMU lies an triangular fuzzy number, all DMUs can be divided into one of the
three following categories:

Category (1) Includes all DMUs which are strong efficient in any situation:

E++ = {DMUj , j = 1, 2, . . . , n : θlj = 1},

Category (2) Includes all DMUs which are weak efficient in any situation:

E+ = {DMUj , j = 1, 2, . . . , n : θuj = 1, θmj ⩽ 1, θlj < 1},

Category (3) Includes all DMUs which are inefficient in any situation:

E− = {DMUj , j = 1, 2, . . . , n : θuj < 1}.

5. Numerical Example

We provide a numerical example to illustrate our method. Table 1 presented a data
set, consisting of five DMUs each consuming one input and producing one output.
The efficiency scores obtained by applying models (6), (7), and (8),represented in
Table 2.
As can be observed from Table 2, DMU2 is classified in E++, is strong efficient,

DMU1, DMU3, and DMU4 are classified in E+ as they are weak efficient in any
case. DMU5 is classified in E−, is inefficient.
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Table 1. Input and output

data for numerical example.

DMUs I O

DMU1 (4,5,7) (1,2,3)
DMU2 (6,7,8) (5,7,8)
DMU3 (2,3,4) (1,3,8)
DMU4 (2,5,6) (1,2,4)
DMU5 (2,7,10) (2,5,7)

Table 2. The efficiency scores

of DMUs.

DMUs Value of efficiency

DMU1 (0.0357,0.4,1)
DMU2 (1,1,1)
DMU3 (0.0714,,1.0,1)
DMU4 (0.0417,0.4,1)
DMU5 (0.0500,0.7,1)

6. Conclusions

In This paper, we discusses and developed an imprecise DEA procedure based upon
the CCR model. We consider the inputs and outputs of DMUs as the triangular
fuzzy numbers. We then find the efficiency scores that might attain in an imprecise
data setting. At the next, we use these efficiency scores to optimistic, intermediate
and pessimistic concepts and categorize units in three classes.
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