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Abstract. A single server provides service to all arriving customers with service time following
general distribution. After every service completion the server has the option to leave for
phase one vacation of random length with probability p or continue to stay in the system
with probability 1− p. As soon as the completion of phase one vacation, the server may take
phase two vacation with probability q or to remain in the system with probability 1 − q,
after phase two vacation again the server has the option to take phase three vacation with
probability r or to remain in the system with probability 1−r. The vacation times are assumed
to be general. The server is interrupted at random and the duration of attending interruption
follows exponential distribution. Also we assume, the customer whose service is interrupted
goes back to the head of the queue where the arrivals are Poisson. The time dependent
probability generating functions have been obtained in terms of their Laplace transforms and
the corresponding steady state results have been obtained explicitly. Also the mean number
of customers in the queue and system and the waiting time in the queue and system are also
derived. Particular cases and numerical results are discussed.
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1. Introduction

Queueing system are powerful tool for modeling communication networks, trans-
portation networks, production lines, operating systems, etc. In recent years, com-
puter networks and data communication systems are the fastest growing technolo-
gies, which lead to glorious development in many applications. For example, the
swift advance in internet, audio data traffic, video data traffic, etc.
Vacation queues have been the subject of deep study in recent years because of

their theoretical structure as well as their applicability in various real life situations.
Recently the M [X]/G/1 queue with vacation has drawn the attention of various
researchers notable among them are Baba (1986, 1987), Lee (1989), Choudhury
and Madan (2005), Madan and Al-Rawwash (2005), Deepak Gupta et al. (2011),
Badamchi Zadeh (2012) and Kalyanaraman and Suvitha (2012).
Queuing systems with server vacations and/or random system breakdowns have

been studied by numerous researchers including the survey of Doshi (1986), Choi
and Park (1990), Takine and Sengupta (1997), Wang et al. (2001), Tian and
Zhang (2006), Fuhrmann (1981), Cramer (1988), Borthakur and Chaudhury (1997),
Chaudhury (2000), Badamchi Zadeh and Shankar (2008). White and Christie
(1985) have studied queues with service interruptions. They consider an M/M/1
queueing system with exponentially distributed interruptions. General distributed
service times and interruptions are considered by Thiruvengadam (1963), Baskar
et al. (2011), Balamani (2012), Maragatha Sundari and Srinivasan (2012), Vijaya
Laxmi and Seleshi (2013).
We assume that the customers arrive to the service station in batches of vari-

able size, but are served one by one. We assume that the service times, vacation
times have a general distribution while the time to interruptions is exponentially
distributed.
In this paper, we consider M [X]/G/1 queueing system with service interruption,

after every service completion the server has the option to leave for phase one
vacation of random length with probability p or continue to stay in the system
with probability 1− p. As soon as the completion of phase one vacation, the server
may take phase two vacation with probability q or to continue staying in the system
with probability 1 − q, after phase two vacation again the server has the option
to take phase three vacation with probability r or to remain in the system with
probability 1 − r. The vacation period has three heterogeneous phases. Also we
assume, the customer whose service is interrupted goes back to the head of the
queue where the arrivals are Poisson.
Here we derive time dependent probability generating functions in terms of

Laplace transforms. We also derive the average queue size, system size and av-
erage waiting time in the queue, the system. Some particular cases and numerical
results are also discussed.
This paper is organized as follows. The mathematical description of our model

is given in section 2. Definitions and Equations governing the system are given
in section 3. The time dependent solution have been obtained in section 4 and
corresponding steady state results have been derived explicitly in section 5. Average
queue size and average waiting time are computed in section 6 and 7 respectively.
Particular cases and numerical results are discussed in section 8 and 9 respectively.

2. Mathematical Description of the Model

We assume the following to describe the queueing model of our study.
a) Customers arrive at the system in batches of variable size in a compound
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Poisson process and they are provided one by one service on a first come - first
served basis. Let λcidt (i = 1, 2, . . .) be the first order probability that a batch of
i customers arrives at the system during a short interval of time (t, t + dt], where
0 ≤ ci ≤ 1 and

∑∞
i=1 ci = 1 and λ > 0 is the arrival rate of batches.

b) A single server provides service to all arriving customer, with the service time
having general distribution. Let B(v) and b(v) be the distribution and the density
function of the service time respectively.
c) We assume interruptions arrive at random while serving the customers and
assumed to occur according to a Poisson process with mean rate α > 0. Let β be the
server rate of attending interruption. Further we assume that once the interruption
arrives the customer whose service is interrupted comes back to the head of the
queue. Let µ(x)dx be the conditional probability of completion of the service during
the interval (x, x+ dx] given that the elapsed service time is x, so that

µ(x) =
b(x)

1−B(x)
,

and therefore,

b(s) = µ(s)e−
∫ s

0
µ(x)dx,

d) After each service is over, the server may take a vacation with probability p or
to continue to stay in the system with probability 1−p. As soon as the completion
of phase one vacation, the server may take phase two vacation with probability q
or continue to stay in the system with probability 1− q, after phase two vacation
again the server has the option to take phase three vacation with probability r or
to remain in the system with probability 1− r.
e) The server’s vacation time follows a general (arbitrary) distribution with dis-
tribution function Vi(t) and density function vi(t). Let γi(x)dx be the conditional
probability of a completion of a vacation during the interval (x, x+ dx] given that
the elapsed vacation time is x, so that

γi(x) =
vi(x)

1− Vi(x)
, i = 1, 2, 3

and therefore,

vi(t) = γi(t)e
−

∫ t

0
γi(x)dx, i = 1, 2, 3.

f) On returning from vacation the server instantly starts serving the customer at
the head of the queue if any.
g) Various stochastic processes involved in the system are assumed to be indepen-
dent of each other.

3. Definitions and Equations Governing the System

We define
Pn(x, t) = Probability that at time t, the server is active providing service and

there are n (n ≥ 0) customers in the queue excluding the one being served and the
elapsed service time for this customer is x. Consequently Pn(t) =

∫∞
0 Pn(x, t)dx
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denotes the probability that at time t there are n customers in the queue excluding
one customer in the service irrespective of the value of x.

V
(i)
n (x, t) = Probability that at time t, the server is under ith vacation with

elapsed vacation time x and there are n (n ≥ 0) customers in the queue. Conse-

quently V
(i)
n (t)=

∫∞
0 V

(i)
n (x, t)dx denotes the probability that at time t there are

n customers in the queue and the server is under ith vacation irrespective of the x
for i = 1, 2, 3.
Rn(t)= Probability that at time t, the server is inactive due to the arrival of

interruption.
Q(t) = Probability that at time t, there are no customers in the queue or in

service and the server is idle but available in the system.
According to the mathematical model mentioned above, the system has the fol-

lowing set of differential-difference equations:

∂

∂x
P0(x, t) +

∂

∂t
P0(x, t) + [λ+ α+ µ(x)]P0(x, t) =0 (1)

∂

∂x
Pn(x, t) +

∂

∂t
Pn(x, t) + [λ+ α+ µ(x)]Pn(x, t) =λ

n∑
k=1

ckPn−k(x, t), n ≥ 1

(2)

∂

∂x
V

(1)
0 (x, t) +

∂

∂t
V

(1)
0 (x, t) + [λ+ γ1(x)]V

(1)
0 (x, t) =0 (3)

∂

∂x
V (1)
n (x, t) +

∂

∂t
V (1)
n (x, t) + [λ+ γ1(x)]V

(1)
n (x, t) =λ

n∑
k=1

ckV
(1)
n−k(x, t), n ≥ 1 (4)

∂

∂x
V

(2)
0 (x, t) +

∂

∂t
V

(2)
0 (x, t) + [λ+ γ2(x)]V

(2)
0 (x, t) =0 (5)

∂

∂x
V (2)
n (x, t) +

∂

∂t
V (2)
n (x, t) + [λ+ γ2(x)]V

(2)
n (x, t) =λ

n∑
k=1

ckV
(2)
n−k(x, t), n ≥ 1 (6)

∂

∂x
V

(3)
0 (x, t) +

∂

∂t
V

(3)
0 (x, t) + [λ+ γ3(x)]V

(3)
0 (x, t) =0 (7)

∂

∂x
V (3)
n (x, t) +

∂

∂t
V (3)
n (x, t) + [λ+ γ3(x)]V

(3)
n (x, t) =λ

n∑
k=1

ckV
(3)
n−k(x, t), n ≥ 1

(8)

d

dt
R0(t) =− (λ+ β)R0(t) (9)

d

dt
Rn(t) =− (λ+ β)Rn(t) + λ

n∑
k=1

ckRn−k(t) + α

∫ ∞

0
Pn−1(x, t)dx (10)

d

dt
Q(t) =− λQ(t) + βR0(t) + (1− p)

∫ ∞

0
µ(x)P0(x, t)dx

+ (1− q)

∫ ∞

0
γ1(x)V

(1)
0 (x, t)dx+ (1− r)

∫ ∞

0
γ2(x)V

(2)
0 (x, t)dx

+

∫ ∞

0
γ3(x)V

(3)
0 (x, t)dx (11)
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Equations are to be solved subject to the following boundary conditions:

Pn(0, t) =λcn+1Q(t) + (1− p)

∫ ∞

0
µ(x)Pn+1(x, t)dx

+ βRn+1(t) + (1− q)

∫ ∞

0
γ1(x)V

(1)
n+1(x, t)dx

+ (1− r)

∫ ∞

0
γ2(x)V

(2)
n+1(x, t)dx

+

∫ ∞

0
γ3(x)V

(3)
n+1(x, t)dx (12)

V (1)
n (0, t) = p

∫ ∞

0
µ(x)Pn(x, t)dx, n ≥ 0 (13)

V (2)
n (0, t) = q

∫ ∞

0
γ1(x)V̄

(1)
n (x, t)dx, n ≥ 0 (14)

V (3)
n (0, t) = r

∫ ∞

0
γ2(x)V̄

(2)
n (x, t)dx, n ≥ 0 (15)

we assume that initially there are no customers in the system and the server is
idle. So the initial conditions are

Q(0) =1, V
(i)
0 (0) = V (i)

n (0) = 0, Rn(0) = 0,

Pn(0) =0 for n ≥ 0, i = 1, 2, 3. (16)

4. Generating Functions of the Queue Length: The Time-Dependent
Solution

In this section we obtain the transient solution for the above set of differential-
difference equations.
Theorem 4.1 The system of differential difference equations to describe an

M [X]/G/1 queue with service with service interruption and three phases of vacation
are given by equations (1) to (15) with initial conditions (16) and the generating
functions of transient solution are given by equation (63) to (67).
Proof :We define the probability generating functions for i=1, 2, 3.

P (x, z, t) =

∞∑
n=0

znPn(x, t);P (z, t) =

∞∑
n=0

znPn(t)

R(z, t) =

∞∑
n=0

znRn(t);C(z) =

∞∑
n=1

cnz
n

V (i)(x, z, t) =

∞∑
n=0

znV (i)
n (x, t);V (i)(z, t) =

∞∑
n=0

znV (i)
n (t) (17)

which are convergent inside the circle given by | z | ≤ 1 and define the Laplace
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transform of a function f(t) as

f̄(s) =

∫ ∞

0
e−stf(t)dt, ℜ(s) > 0.

We take the Laplace transform of equations (1) to (15) and using (16), we obtain

∂

∂x
P̄0(x, s) + (s+ λ+ α+ µ(x))P̄0(x, s) =0 (18)

∂

∂x
P̄n(x, s) + (s+ λ+ α+ µ(x))P̄n(x, s) =λ

n∑
k=1

ckP̄n−k(x, s), n ≥ 1 (19)

∂

∂x
V̄

(1)
0 (x, s) + (s+ λ+ γ1(x))V̄

(1)
0 (x, s) =0 (20)

∂

∂x
V̄ (1)
n (x, s) + (s+ λ+ γ1(x))V̄

(1)
n (x, s) =λ

n∑
k=1

ckV̄
(1)
n−k(x, s), n ≥ 1 (21)

∂

∂x
V̄

(2)
0 (x, s) + (s+ λ+ γ2(x))V̄

(2)
0 (x, s) =0 (22)

∂

∂x
V̄ (2)
n (x, s) + (s+ λ+ γ2(x))V̄

(2)
n (x, s) =λ

n∑
k=1

ckV̄
(2)
n−k(x, s), n ≥ 1 (23)

∂

∂x
V̄

(3)
0 (x, s) + (s+ λ+ γ3(x))V̄

(3)
0 (x, s) =0 (24)

∂

∂x
V̄ (3)
n (x, s) + (s+ λ+ γ3(x))V̄

(3)
n (x, s) =λ

n∑
k=1

ckV̄
(3)
n−k(x, s), n ≥ 1 (25)

(s+ λ+ β)R̄0(s) =0 (26)

(s+ λ+ β)R̄n(s) =λ

n∑
k=1

ckR̄n−k(s) + α

∫ ∞

0
P̄n−1(x, s)dx, n ≥ 1 (27)

(s+ λ)Q̄(s) =1 + βR̄0(s) + (1− p)

∫ ∞

0
µ(x)P0(x, s)dx

+ (1− q)

∫ ∞

0
γ1(x)V

(1)
0 (x, s)dx

+ (1− r)

∫ ∞

0
γ2(x)V

(2)
0 (x, s)dx

+

∫ ∞

0
γ3(x)V

(3)
0 (x, s)dx (28)
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Pn(0, s) =λcn+1Q̄(s) + (1− p)

∫ ∞

0
µ(x)Pn+1(x, s)dx

+ βRn+1(s) + (1− q)

∫ ∞

0
γ1(x)V

(1)
n+1(x, s)dx

+ (1− r)

∫ ∞

0
γ2(x)V

(2)
n+1(x, s)dx

+

∫ ∞

0
γ3(x)V

(3)
n+1(x, s)dx (29)

V̄ (1)
n (0, s) = p

∫ ∞

0
P̄n(x, s)µ(x)dx, n ≥ 0 (30)

V̄ (2)
n (0, s) = q

∫ ∞

0
V̄ (1)
n (x, s)γ1(x)dx, n ≥ 0 (31)

V̄ (3)
n (0, s) = r

∫ ∞

0
V̄ (2)
n (x, s)γ2(x)dx, n ≥ 0. (32)

Now multiplying equations (19), (21), (23), (25), (27) by zn and summing over
n from 1 to ∞, adding to equations (18), (20), (22), (24), (26) and using the
generating functions defined in equations (16), we get

∂

∂x
P̄n(x, z, s) + [s+ λ− λC(z) + α+ µ(x)]P̄ (x, z, s) = 0 (33)

∂

∂x
V̄ (1)
n (x, z, s) + [s+ λ− λC(z) + γ1(x)]V̄

(1)(x, z, s) = 0 (34)

∂

∂x
V̄ (2)
n (x, z, s) + [s+ λ− λC(z) + γ2(x)]V̄

(2)(x, z, s) = 0 (35)

∂

∂x
V̄ (3)
n (x, z, s) + [s+ λ− λC(z) + γ3(x)]V̄

(3)(x, z, s) = 0 (36)

(s+ λ− λC(z) + β)R̄(z, s) = αz

∫ ∞

0
P̄ (x, z, s)dx (37)

For the boundary conditions, we multiply both sides of equation (28) by zn sum
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over n from 0 to ∞ and use the equations (16), we get

zP̄ (0, z, s) =λC(z)Q̄(s) + βR̄(z, s)− βR̄0(s)

+ (1− p)

∫ ∞

0
µ(x)P̄ (x, z, s)dx

− (1− p)

∫ ∞

0
µ(x)P̄0(x, s)dx

+ (1− q)

∫ ∞

0
γ1(x)V̄

(1)(x, z, s)dx

− (1− q)

∫ ∞

0
γ1(x)V̄

(1)
0 (x, s)dx

+ (1− r)

∫ ∞

0
γ2(x)V̄

(2)(x, z, s)dx

− (1− r)

∫ ∞

0
γ2(x)V̄

(2)
0 (x, s)dx

+

∫ ∞

0
γ3(x)V̄

(3)
0 (x, z, s)dx−

∫ ∞

0
γ3(x)V̄0(x, s)dx

Using equation (28), the above equation becomes

zP̄ (0, z, s) =[1− sQ̄(s)] + λ(C(z)− 1)Q̄(s) + βR̄(z, s)

+ (1− p)

∫ ∞

0
µ(x)P̄ (x, z, s)dx

+ (1− q)

∫ ∞

0
γ1(x)V̄

(1)(x, z, s)dx

+ (1− r)

∫ ∞

0
γ2(x)V̄

(2)(x, z, s)dx+

∫ ∞

0
γ3(x)V̄

(3)(x, z, s)dx (38)

Performing similar operation on equations (30) to (32), we get

V̄ (1)(0, z, s) = p

∫ ∞

0
µ(x)P̄ (x, z, s)dx (39)

V̄ (2)(0, z, s) = q

∫ ∞

0
γ1(x)V̄

(1)(x, z, s)dx (40)

V̄ (3)(0, z, s) = r

∫ ∞

0
γ2(x)V̄

(2)(x, z, s)dx (41)

Integrating equation (33) between 0 to x, we get

P̄ (x, z, s) = P̄ (0, z, s)e−[s+λ−λC(z))+α]x−
∫ x

0
µ(t)dt (42)

where P̄ (0, z, s) is given by equation (38). Again integrating equation (42) by parts
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with respect to x, yields

P̄ (z, s) = P̄ (0, z, s)

[
1− B̄(s+ λ− λC(z) + α)

s+ λ− λC(z) + α

]
(43)

where

B̄(s+ λ− λC(z) + α) =

∫ ∞

0
e−[s+λ−λC(z)+α]xdB(x)

is the Laplace-Stieltjes transform of the essential service time B(x).
Now multiplying both sides of equation (42) by µ(x) and integrating over x, we

obtain ∫ ∞

0
P̄ (x, z, s)µ(x)dx = P̄ (0, z, s)B̄[s+ λ− λC(z) + α] (44)

Similarly, on integrating equations (34) to (36) from 0 to x, we get

V̄ (1)(x, z, s) = V̄ (1)(0, z, s)e−[s+λ−λC(z)]x−
∫ x

0
γ1(t)dt (45)

V̄ (2)(x, z, s) = V̄ (2)(0, z, s)e−[s+λ−λC(z)]x−
∫ x

0
γ2(t)dt (46)

V̄ (3)(x, z, s) = V̄ (3)(0, z, s)e−[s+λ−λC(z)]x−
∫ x

0
γ3(t)dt (47)

where V̄ (1)(0, z, s), V̄ (2)(0, z, s), and V̄ (3)(0, z, s) are given by equations (39) to
(41).
Again integrating equations (45) to (47) by parts with respect to x, yields

V̄ (1)(z, s) = V̄ (1)(0, z, s)

[
1− V̄1(s+ λ− λC(z))

s+ λ− λC(z)

]
(48)

V̄ (2)(z, s) = V̄ (2)(0, z, s)

[
1− V̄2(s+ λ− λC(z))

s+ λ− λC(z)

]
(49)

V̄ (3)(z, s) = V̄ (3)(0, z, s)

[
1− V̄3(s+ λ− λC(z))

s+ λ− λC(z)

]
(50)

where

V̄1(s+ λ− λC(z)) =

∫ ∞

0
e−[s+λ−λC(z)]xdV1(x)

V̄2(s+ λ− λC(z)) =

∫ ∞

0
e−[s+λ−λC(z)]xdV2(x)
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V̄3(s+ λ− λC(z)) =

∫ ∞

0
e−[s+λ−λC(z)]xdV3(x)

is the Laplace-Stieltjes transform of the first phase, second phase and third phase
of vacation time V1(x), V2(x) and V3(x) respectively.
Now multiplying both sides of equations (45), (46), (47) by γ1(x), γ2(x) and

γ3(x) and integrating over x, we obtain∫ ∞

0
V̄ (1)(x, z, s)γ1(x)dx = V̄ (1)(0, z, s)V̄1[s+ λ− λC(z)] (51)

∫ ∞

0
V̄ (2)(x, z, s)γ2(x)dx = V̄ (2)(0, z, s)V̄2[s+ λ− λC(z)] (52)

∫ ∞

0
V̄ (3)(x, z, s)γ3(x)dx = V̄ (3)(0, z, s)V̄3[s+ λ− λC(z)] (53)

Using equation (44) in equation (39), we get

V̄ (1)(0, z, s) = pB̄(a)P̄ (0, z, s) (54)

where a = s+ λ− λC(z) + α, a1 = s+ λ− λC(z).
Now using equations (51) and (54) in (40), we get

V̄ (2)(0, z, s) = pqV̄1(a1)B̄(a)P̄ (0, z, s) (55)

By using equations (52) and (55) in (41), we get

V̄ (3)(0, z, s) = pqrV̄1(a1)V̄2(a1)B̄(a)P̄ (0, z, s) (56)

Using equation (44), (51) to (56) in (38), we get

[z − B̄(a)(1− p+ pV̄1(a1)(1− q + qV̄2(a1)(1− r + rV̄3(a1)))]P̄ (0, z, s)

= [1− sQ̄(s)] + λ(C(z)− 1)Q̄(s) + βR̄(z, s) (57)

From (37), we get

R̄(z, s) =
αz

a2
P̄ (0, z, s)

[
1− B̄(a)

a

]
(58)

where Now using equation (58) in (57), we have

P̄ (0, z, s) =
a2a[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3]− αzβ(1− B̄(a))
(59)

Similarly using equation (59), in equations (54), (55) and (56), we get

V̄ (1)(0, z, s) =
pB̄(a)a2a[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3]− αzβ(1− B̄(a))
(60)
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V̄ (2)(0, z, s) =
pqV̄1(a1)B̄(a)a2a

aa2[z − B̄(a)(1− p+ pV̄1(a)a3]− αzβ(1− B̄(a))

[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)] (61)

V̄ (3)(0, z, s) =
pqrV̄1(a1)V̄2(a1)B̄(a)a2a

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))

[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)] (62)

Using equations (59) to (62) in equations (43), (48), (49), (50) and (58), we get

P̄ (z, s) =
a2(1− B̄(a))[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ
(63)

V̄ (1)(z, s) =
pB̄(a)aa2[1− sQ̄(s) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))

[
1− V1(a1)

a1

]
(64)

V̄ (2)(z, s) =
pqB̄(a)aa2V̄1(a1)[1− sQ̄(s) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))

[
1− V2(a1)

a1

]
(65)

V̄ (3)(z, s) =
pqrB̄(a)aa2V̄1(a1)V̄2(a1)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))

×
[
1− V3(a1)

a1

]
(66)

R̄(z, s) =
αz(1− B̄(a))[1− sQ̄(s) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))
(67)

Thus P̄ (z, s), V̄ (1)(z, s), V̄ (2)(z, s), V̄ (3)(z, s) and R̄(z, s) are completely deter-
mined from equations (63) to (67) which completes the proof of the theorem.

5. The Steady State Results

In this section, we shall derive the steady state probability distribution for our
queueing model. These probabilities are obtained by suppressing the argument
t wherever it appears in the time-dependent analysis. This can be obtained by
applying the Tauberian property,

lim
s→0

sf̄(s) = lim
t→∞

f(t)

In order to determine P̄ (z, s), V̄ (1)(z, s), V̄ (2)(z, s), V̄ (3)(z, s) and R̄(z, s) com-
pletely, we have yet to determine the unknown Q which appears in the numerators
of the right hand sides of equations (63) to (67). For that purpose, we shall use the
normalizing condition

P (1) + V (1)(1) + V (2)(1) + V (3)(1) +R(1) +Q = 1
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The steady state probabilities for an M [X]/G/1 queue with service interruption
and three phases of vacation are given by

P (1) =
λE(I)β[1− B̄(α)]Q

Dr

V (1)(1) =
λpαβE(I)B̄(α)E(V1)Q

Dr

V (2)(1) =
λpqαβE(I)B̄(α)E(V2)Q

Dr

V (3)(1) =
λpqrαβE(I)B̄(α)E(V3)Q

Dr

R(1) =
λαE(I)[1− B̄(α)]Q

Dr

where

Dr = −λE(I)(α+ β)[1− B̄(α)] + αβB̄(α)[1− λpE(I)(E(V1 + q(E(V2 + rE(V3)))]
(68)

P (1), V (1)(1), V (2)(1), V (3)(1), R(1) and Q are the steady state probabilities that
the server is providing essential service, first phase of vacation, second phase of
vacation, third phase of vacation and server under idle respectively without regard
to the number of customers in the queue.
Multiplying both sides of equations (63) to (67) by s, taking limit as s → 0,

applying Tauberian property and simplifying, we obtain

P (z) =
f1(z)(1− B̄)λ(C(z)− 1)Q

D(z)
(69)

V (1)(z) =
pf1(z)f2(z)B̄[V̄1 − 1]Q

D(z)
(70)

V (2)(z) =
pqf1(z)f2(z)V̄1B̄[V̄2 − 1]Q

D(z)
(71)

V (3)(z) =
pqrf1(z)f2(z)V̄1V̄2B̄[V̄3 − 1]Q

D(z)
(72)

R(z) =
λαz(1− B̄)(C(z)− 1)Q

D(z)
(73)

where

D(z) = f1(z)f2(z)[z − B̄(1− p+ pV̄1f3(z))]− αzβ(1− B̄),

f1(z) = λ − λC(z) + β, f2(z) = λ − λC(z) + α, f3(z) = 1 − q + qV̄2f4(z)
f4(z) = 1 − r + rV̄3, B̄ = B̄(f2(z)), V̄1 = V̄1(λ − λC(z)), V̄2 = V̄2(λ − λC(z)) and
V̄3 = V̄3(λ− λC(z)).

Let Wq(z) denote the probability generating function of the queue size irrespec-
tive of the state of the system. Then adding equations (69) to (73), we obtain

Wq(z) = P (z) + V (1)(z) + V (2)(z) + V (3)(z)
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Wq(z) =
f1(z)(1− B̄)λ(C(z)− 1)Q

dr

+
pf1(z)f2(z)B̄[V̄1 − 1]Q

dr

+
pqf1(z)f2(z)V̄1B̄[V̄2 − 1]Q

dr

+
pqrf1(z)f2(z)V̄1V̄2B̄[V̄3 − 1]Q

dr

+
λαz(1− B̄)(C(z)− 1)Q

dr
(74)

we see that for z=1, Wq(1) is indeterminate of the form 0/0. Therefore, we ap-
ply L’Hopital’s rule and on simplifying we obtain the result (74), where C(1)=
1, C ′(1) = E(I) is mean batch size of the arriving customers, −B̄′(0) =
E(B),−V̄ ′

i (0) = E(Vi), i = 1, 2, 3.

Wq(1) =
λE(I)[(α+ β)(1− B̄(α)) + pαβB̄(α)E(V1) + q(E(V2) + rE(V3))]Q

Dr
(75)

and Dr is given by equation (68). Therefore adding Q to equation (75), equating
to 1 and simplifying, we get

Q = 1− ρ (76)

and hence the utilization factor ρ of the system is given by

ρ = λpE(I)[E(V1) + q(E(V2) + rE(V3))]−
λE(I)

B̄(α)
(
1

β
+

1

α
)[1− B̄(α)] (77)

where ρ < 1 is the stability condition under which the steady state exists. Equation
(76) gives the probability that the server is idle. Substituting Q from (76) into (74),
we have completely and explicitly determined Wq(z), the probability generating
function of the queue size.

6. The Average Queue Size

Let Lq denote the average number of customers in the queue under the steady
state. Then

Lq =
d

dz
Wq(z) at z = 1

since this formula gives 0/0 form, then we writeWq(z) given in (74) asWq(z) =
N(z)
D(z)

where N(z) and D(z) are numerator and denominator of the right hand side of
(74) respectively. Then we use

Lq = lim
z→1

d

dz
Wq(z) =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q (78)
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where primes and double primes in (78) denote first and second derivative at z =
1 respectively. Carrying out the derivative at z = 1, we have

N ′(1) =λE(I)(α+ β)[1− B̄(α)]

+ λpαβE(I)B̄(α)[E(V1) + q(E(V2) + rE(V3))] (79)

N ′′(1) =λE(I(I − 1))(α+ β)[1− B̄(α)]

+ 2λ2(E(I))2(α+ β)B̄′(α)

+ 2λE(I)(1− B̄(α))[α− λE(I)]

− 2λ2p(E(I))2[(α+ β)B̄(α)

+ αβB̄′(α)][E(V1) + q(E(V2) + rE(V3))]

+ αβpB̄(α)[λ2(E(I))2(E(V 2
1 ) + qE(V 2

2 ) + rE(V 2
3 )))

+ λE(I(I − 1))(E(V1) + q(E(V2) + rE(V3)))

+ 2qλ2(E(I))2E(V1)(E(V2) + rE(V3))

+ 2qrλ2(E(I))2E(V2)E(V3)] (80)

D′(1) =αβB̄(α)[1− λE(I)p(E(V1) + q(E(V2) + rE(V3)))]

− λE(I)(α+ β)[1− B̄(α)] (81)

D′′(1) =− 2λE(I)(α+ β)[1 + λE(I)B̄′(α)(1− p+ pV̄1f3(z))

− B̄(α)(λpE(I)E(V1) + λpqE(I)(E(V2) + rE(V3)))]

+ [2λ2(E(I))2 − λαE(I(I − 1))− λβE(I(I − 1))]

× [1− B̄(α)(1− p+ pV̄1f3(z)]

+ αβ2λE(I)B̄′(α)(λpE(I)E(V1) + λpqE(I)(E(V2) + rE(V3)))

− αβ(1− p+ pV̄1f3(z)[λ
2(E(I))2B̄′′(α)− λE(I(I − 1))B̄′(α)]

− αβB̄(α)[pλ2(E(I))2(E(V 2
1 ) + q(E(V 2

2 )

+ rE(V 2
3 ))) + λpE(I(I − 1))(E(V1) + q(E(V2) + rE(V3)))

+ 2pqλ2(E(I))2E(V1)(E(V2) + rE(V3))

+ 2pqrλ2(E(I))2E(V2)E(V3)]− 2λαβE(I)B̄′(α)

− αβ[−λ2(E(I))2B̄′′(α) + λE(I(I − 1))B̄′(α)] (82)

where E(B2), E(V 2
1 ), E(V 2

2 ), E(V 2
3 ) are the second moment of service time

and vacation times respectively. E(I(I − 1)) is the second factorial moment
of the batch size of arriving customers. Then if we substitute the values
N ′(1), N ′′(1), D′(1), D′′(1) from equations (79) to (82) into equations (78) we ob-
tain Lq in the closed form. Further, we find the mean system size L using Little’s
formula. Thus we have

L = Lq + ρ (83)

where Lq has been found by equation (78) and ρ is obtained from equation (77).
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7. The Average Waiting Time

Let Wq and W denote the mean waiting time in the queue and in the system
respectively. Then using Little’s formula, we obtain

Wq =
Lq

λ

W =
L

λ

Where Lq and L have been found in equations (78) and (83).

8. Particular Cases

Case 1: If there is no third phase of extended vacation. i.e, r=0.
Then our model reduces to a single server M [X]/G/1 queue with service inter-

ruption and two phases of server vacation.
In this case, we find the idle probability Q, utilization factor ρ and the average

queue size Lq can be simplified to the following expressions.

Q =1− λpE(I)[E(V1) + qE(V2)]−
λE(I)

B̄(α)
(
1

β
+

1

α
)[1− B̄(α)]

ρ =λpE(I)[E(V1) + qE(V2)] +
λE(I)

B̄(α)
(
1

β
+

1

α
)[1− B̄(α)]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q
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where

N ′(1) =λE(I)(α+ β)[1− B̄(α)]

+ λpαβE(I)B̄(α)[E(V1) + qE(V2)]

N ′′(1) =λE(I(I − 1))(α+ β)[1− B̄(α)]

+ 2λ2(E(I))2(α+ β)B̄′(α)

+ 2λE(I)(1− B̄(α))[α− λE(I)]

− 2λ2p(E(I))2[(α+ β)B̄(α)

+ αβB̄′(α)][E(V1) + qE(V2)]

+ αβpB̄(α)[λ2(E(I))2(E(V 2
1 ) + qEV 2

2 ))

+ λE(I(I − 1))(E(V1) + qE(V2))

+ 2qλ2(E(I))2E(V1)E(V2)

D′(1) =αβB̄(α)[1− λE(I)p(E(V1) + qE(V2)]

− λE(I)(α+ β)[1− B̄(α)]

D′′(1) =− 2λE(I)(α+ β)[1 + λE(I)B̄′(α)− B̄(α)(λpE(I)E(V1)

+ λpqE(I)E(V2))] + [2λ2(E(I))2

− λαE(I(I − 1))− λβE(I(I − 1))][1− B̄(α)]

+ 2αβλE(I)B̄′(α)(λpE(I)E(V1) + λpqE(I)E(V2))

− αβ[λ2(E(I))2B̄′′(α)− λE(I(I − 1))B̄′(α)]

− αβB̄(α)[pλ2(E(I))2(E(V 2
1 ) + qE(V 2

2 )

+ λpE(I(I − 1))(E(V1) + qE(V2))

+ 2pqλ2(E(I))2E(V1)E(V2)]− 2λαβE(I)B̄′(α)

− αβ[λ2(E(I))2B̄′′(α) + λE(I(I − 1))B̄′(α)]

Case 2: If there is no second phase and third phase of extended vacation, C(z) = z
i.e, q = r= 0, E(I) = 1 and E(I(I − 1)) = 0.
Then our model reduces to a single server M/G/1 queue with service interruption

and Bernoulli schedule server vacation.
In this case we find the idle probability Q, utilization factor ρ and the average

queue size Lq can be simplified to the following expressions.

Q =1− λpE(V1)−
λ

B̄(α)
(
1

β
+

1

α
)[1− B̄(α)]

ρ =λpE(V1) +
λ

B̄(α)
(
1

β
+

1

α
)[1− B̄(α)]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where
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N ′(1) =λ(α+ β)[1− B̄(α)] + λpαβB̄(α)E(V1)

N ′′(1) =2λ2(α+ β)B̄′(α) + 2λ(1− B̄(α))[α− λ]

− 2λ2p[(α+ β)B̄(α) + αβB̄′(α)]E(V1)

+ αβpB̄(α)λ2E(V 2
1 )

D′(1) =αβB̄(α)(1− λpE(V1))− λ(α+ β)[1− B̄(α)]

D′′(1) =− 2λ(α+ β)[1 + λB̄′(α)− B̄(α)λpE(V1)]

+ 2λ2[1− B̄(α)] + 2pαβλ2B̄′(α)E(V1)

− αβλ2B̄′′(α)− αβB̄(α)pλ2E(V 2
1 )

− 2λαβB̄′(α)− αβλ2B̄′′(α)

The above equations coincides with Balamani (2012).
Case 3: When the vacation follows exponential distribution for case 2 then the

results coincide with Baskar et al. (2011).

9. Numerical Results

To numerically illustrate the results obtained in this work, we consider that the
service time and vacation times are exponentially distributed with rates µ and γ.
In order to see the effect of various parameters on server’s idle time Q, utilization

factor ρ and various other queue characteristics such as L,W , Lq,Wq. We base our
numerical example on the result found in case 2.
For this purpose in Table 1, we can choose the following arbitrary values: α=

2, β= 4, µ =8, γ =3, p=0.7 while λ varies from 0.1 to 1.0 such that the stability
condition is satisfied.
It clearly shows as long as increasing the arrival rate, the server’s idle time

decreases while the utilization factor, the average queue size, system size and the
average waiting time in the queue and the system of our queueing model are all
increases.

Table 1. Computed values of various queue characteristics

λ Q ρ Lq L Wq W
0.1 0.957917 0.042083 0.008058 0.050141 0.080576 0.501409
0.2 0.915833 0.084167 0.020099 0.104266 0.100497 0.521330
0.3 0.873750 0.126250 0.036759 0.163009 0.122529 0.543362
0.4 0.831667 0.168333 0.058797 0.227131 0.146993 0.567827
0.5 0.789583 0.210417 0.087139 0.297556 0.174279 0.595112
0.6 0.747500 0.252500 0.122917 0.375417 0.204862 0.625695
0.7 0.705417 0.294583 0.167533 0.462116 0.239332 0.660166
0.8 0.663333 0.336667 0.222744 0.559411 0.278430 0.699264
0.9 0.621250 0.378750 0.290787 0.669537 0.323097 0.743930
1.0 0.579167 0.420833 0.374544 0.795378 0.374544 0.795378

In Table 2, we choose the following values: α= 6, β= 5, µ =7, λ =0.7, p=0.3
while γ varies from 1 to 10 such that the stability condition is satisfied.
It clearly shows as long as increasing the vacation rate, the server’s idle time

increases while the utilization factor, average queue size, system size and average
waiting time in the queue and system of our queueing model are all decreases.
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Table 2. Computed values of various queue characteristics

γ ρ Q Lq L Wq W
1 0.430000 0.570000 0.577708 1.007708 0.825297 1.439583
2 0.325000 0.675000 0.308051 0.633051 0.440073 0.904359
3 0.290000 0.710000 0.258894 0.548894 0.369849 0.784135
4 0.272500 0.727500 0.240299 0.512799 0.343285 0.732570
5 0.262000 0.738000 0.230893 0.492893 0.329848 0.704133
6 0.255000 0.745000 0.225318 0.480318 0.321883 0.686169
7 0.250000 0.750000 0.221666 0.471666 0.316666 0.673809
8 0.246200 0.753750 0.219104 0.465354 0.313006 0.664792
9 0.243300 0.756667 0.217215 0.460548 0.310307 0.657926
10 0.241000 0.759000 0.215767 0.456767 0.308239 0.652525

10. Conclusion

In this paper we considered a single server queue with Extended Bernoulli vacation
and service interruption. Customers arrive at the system in batches of variable size
in a compound Poisson process and the single server provides services to all arriv-
ing customers. Using supplementary variable technique the probability generating
functions of number of customers in the queue at different server states are ob-
tained. Some performance measures are calculated from the probability generating
functions. Further we performed numerical analysis by assuming particular values
to the parameters.
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