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1. Introduction

The history of stochastic differential equations (SDEs) can be seen to have started
form the classic paper of Einstein, where he presented a mathematical connection
between microscopic random motion of particles and the macroscopic diffusion
equation. Qualitative properties such as existence, uniqueness, controllability and
stability for various stochastic differential systems have been extensively studied by
many researchers, see for instance [1] and the references therein. On the other hand,
the existence of almost periodic solutions for deterministic differential equations
have been considerably investigated in lots of publications because of its significance
and applications in physics, mechanics and mathematical biology, see for example
[2-4] and the references therein. Recently, the concept of quadratic mean almost
periodicity was introduced by Bezandry and Diagana [5]. In [5], such a concept was
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subsequently applied to proving the existence and uniqueness of a quadratic mean
almost periodic solution to the following stochastic differential equations

dy(t) = Mx(t)dt+N(t, y(t))dt+ S(t, y(t))dw(t), t ∈ R

where M : D(M) ⊂ L2(Ω;H) → L2(Ω;H) for t ∈ R is a densely defined closed
linear operators, N : R× L2(Ω;H) → L2(Ω;H) and S : R× L2(Ω;H) → L2(Ω;L2

0)
are jointly continuous satisfying some additional conditions, and w(t) is a Wiener
process.
Bezandry and Diagana [6] have studied the existence and uniqueness of a

quadratic mean almost periodic solution to a non-autonomous semi-linear stochas-
tic differential equations such as

dy(t) = M(t)y(t)dt+N(t, y(t))dt+ S(t, y(t))dw(t), t ∈ R

where A(t) for t ∈ R is a family of densely defined closed linear operators satisfying
the so-called Acquistapace-Terreni condition in [7], N : R × L2(Ω;H) → L2(Ω;H)
and S : R×L2(Ω;H) → L2(Ω;L2

0) are jointly continuous satisfying some additional
conditions, and w(t) is a Wiener process. And Bezandry in [8] has considered the
existence of quadratic mean almost periodic solutions to a semi-linear functional
stochastic integro-differential equations in the form

y′(t) = My(t) +

∫ t

−∞
C(t− u)S(u, y(u))dw(u) +

∫ t

−∞
B(t− u)N2(u, y(u))du+N1(t, y(t)),

where t ∈ R,M : D(M) ⊂ L2(Ω;H) → L2(Ω;H) is a densely defined closed
(possibly unbounded) linear operator; B and C are convolution-type kernels in
L1(0,∞) and L2(0,∞), respectively, satisfying Assumptions 3.2 in [1]; N1, N2 :
R×L2(Ω;H) → L2(Ω;H) and G : R×L2(Ω;H) → L2(Ω;L2

0) are jointly continuous
functions. For more results on this topic, we refer the reader to the papers [9-12]
and the references therein.
Motivated by the above mentioned works [5,13,8], the main purpose of this paper

is to deal with the existence and uniqueness of quadratic mean almost periodic
solutions to a class of neutral stochastic functional differential equations in the
abstract form

d[y(t)− h(t, x(t))] = My(t)dt+ S(t, y(t))dw(t), t ∈ R (1)

where M : D(M) ⊂ L2(Ω;H) → L2(Ω;H) is the infinitesimal generator of an
analytic semigroup of linear operators {T (t)}t⩾0 on L2(Ω;H), g : R× L2(Ω;H) →
L2(Ω;Hα) and G : R × L2(Ω;H) → L2(Ω;L0

2) are jointly continuous functions,
w(t) is a Brownian motion. The main technique is based upon an appropriate
composition theorem combined with the Banach contraction mapping principle
and an analytic semigroup of linear operators. The obtained result can be seen as
a contribution to this emerging field.
The rest of this paper is organized as follows: In Sect. 2, in this paper some basic

definitions, lemmas and preliminary facts which will be need in the sequel. my
main result and its proofs are arranged in Sect. 3. In the last section, conclusions
and an example have been given to illustrate main result.
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2. Preliminaries

This section is mainly concerned with some definitions, lemmas and preliminary
facts which are used in what follows. For more details on this section, we refer
the reader to [5,6,9,10].Throughout the paper, (H, ∥.∥) and(K, ∥.∥) denote two
real Hilbert spaces.Let be a complete probability space. We let L2(K,H) de-
note the space of all Hilbert–Schmidt operators Φ : K → H, equipped with the
Hilbert–Schmidt norm ∥.∥2.For a symmetric nonnegative operator Q ∈ L2(K,H)
with finite trace we suppose that {w(t) : t ∈ R} is a Q–Wiener process defined
on (Ω,F,P)and with values in K.So, actually, ω can be obtained as follows: let
ωi(t), t ∈ R, i = 1, 2, be independent K-valued Q-Wiener processes, then

ω(t) =

{
ω1(t) if t ⩾ 0

ω2(−t) if t ⩽ 0

isQ-Wiener process with R as time parameter.Nt = σ{ω(s) : s ⩽ t} is the σ-algebra
generated by ω.
The collection of all strongly measurable, square integrable, H-valued random

variable, denoted by L2(Ω;R), is a Banach space equipped with norm ∥y∥L2(Ω;H) =

(E∥y∥2)
1

2 , where the expectation E is defined E[y] =
∫
Ω x(ω)dP (ω).

Let K0 = Q
1

2K and L2
0 = L2(K0,H) with respect to the norm

∥Φ∥2L0
2
= ∥ϕQ

1

2 ∥22 = Tr(ϕQϕ∗).

Let 0 ∈ ρ(A) where ρ(M) is the resolvent of M . Then for 0 < α ⩽ 1, it is possible
to define the fractional power (−M)α , as a closed linear operator on its domain
D((−M)α). Furthermore, the subspace D((−M)α) is dense in L2(Ω;H) and the
expression

∥y∥α = ∥(−M)αx∥L2(Ω;H), x ∈ D((−M)α)

defines a norm on D((−M)α). we denote by L2(Ω;Hα) the Banach space
D((−M)α) with norm ∥y∥α.
The following properties hold by [14].

Proposition 2.1. suppose 0 < γ ⩽ µ ⩽ 1. Then the following properties hold:
(i) L2(Ω;Hµ) is a Banach space and L2(Ω;Hµ) → L2(Ω;Hγ) is continuous.
(ii) the function s → (−M)µT (s) is continuous on (0,∞) and there exists Aµ > 0
such that ∥(−M)µT (t)∥ ⩽ Aµe

−δtt−µ for each t > 0.
(iii) For each y ∈ D((−M)µ) and t ⩾ 0, (−M)µT (t)x = T (t)(−M)µx.
(iv) (−M)−µ is a bounded linear operator in L2(Ω;H) with D((−M)µ) =
Im((−M)−µ).

In the following results and definitions, we let (Y, ∥.∥Y), (X, ∥.∥X) and (Z, ∥.∥Z)
be Banach spaces and let L2(Ω;Y),L2(Ω;X) and L2(Ω;Z) be their corresponding
L2-spaces, respectively.
Definition 2.1. [5] A stochastic process y : R → L2(Ω;Y) is said to be continuous
whenever

lim
t→s

E∥y(t)− y(s)∥2Y = 0.
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Definition 2.2. [5] A continuous stochastic process y : R → L2(Ω;Y) is said to
be quadratic mean almost periodic if for each ϵ > 0 there exists l(ϵ) > 0 such that
any interval of length l(ϵ) contains at least a number τ for which

sup
t∈R

E∥y(t+ τ)− y(t)∥2Y < ϵ.

The collection of all stochastic processes y : R → L2(Ω;Y) which are quadratic
mean almost periodic is then denoted by MP (R;L2(Ω;Y)).
Proposition 2.2. If y belongs to MP (R;L2(Ω;X)) , then the following hold true:
(i) the mappingt → E∥y(t)∥2Y is uniformly continuous,
(ii) there exists a constant N > 0, such that E∥y(t)∥2Y ⩽ N , for each t ∈ R,
(iii) y is stochastically bounded.

Let C(R;L2(Ω;X)) denote the space of all continuous stochastic processes
y : R → L2(Ω;X). The notation CUB(R;L2(Ω;Y)) stands for the collection of
all stochastic processes x : R → L2(Ω;Y), which are continuous and uniformly
bounded. we know from [2] that CUB(R;L2(Ω;X)) is a Banach space endowed
with the norm:

∥y∥∞ = sup
t∈R

(E∥y(t)∥2Y)
1

2 .

Proposition 2.3. MP (R;L2(Ω;Y)) ⊂ CUB(R;L2(Ω;Y)) is a closed subspace.
Proposition 2.4. (MP (R;L2(Ω;Y)), ∥.∥MP (R;L2(Ω;Y))) is a Banach space endowed
with the norm:

∥y∥AP (R;L2(Ω;Y)) = sup
t∈R

(E∥y(t)∥2Y)
1

2 .

Definition 2.3. [2] The function N : R × L2(Ω;X) → L2(Ω;Z), (t, x) → F (t, x),
which is jointly continuous, is said to be quadratic mean almost periodic in t ∈ R
uniformly in x ∈ B where B ⊂ L2(Ω;X) is compact if for any ϵ > 0, there exists
l(ϵ,B) > 0 such that any interval of length l(ϵ,B) contains at least a number τ for
which

sup
t∈R

(E∥N(t+ τ, y)−N(t, y)∥2Z) < ϵ.

for each stochastic process x : R → B.
Proposition 2.5. Let N : R × L2(Ω;X) → L2(Ω;Z), (t, x) → N(t, x), be a
quadratic mean almost periodic process in t ∈ R uniformly in x ∈ B, where
B ⊂ L2(Ω;X) is compact. Suppose that N is Lipschitz in the following sense:

E∥N(t, y)−N(t, x)∥2Z ⩽ M̃E∥y − x∥2X

for all y, x ∈ L2(Ω;X) and for each t ∈ R, where Ã > 0. Then for any
quadratic mean almost periodic process Ψ : R → L2(Ω;X), the stochastic pro-
cess t → F (t,Ψ(t)) is quadratic mean almost periodic.
Definition 2.4. A Nt-progressively process {y(t)}t∈R is called a mild solution of
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the problem (1.1) on R if the function s → MT (t − s)h(s, y(s)) is integrable on
(−∞, t) for each t ∈ R, and y(t) satisfies

y(t) = T (t− a)[y(a)− h(a, y(a))] + h(t, y(t))

+

∫ t

a
MT (t− s)h(s, y(s))ds+

∫ t

a
T (t− s)S(s, y(s))dω(s)

for all t ⩾ a and for each a ∈ R.
Let us list the following assumptions:

(H1) The operatorM : D(M) ⊂ L2(Ω;H) → L2(Ω;H) is the infinitesimal generator
of an analytic semigroup of linear operators {T (t)}t ⩾ 0 on L2(Ω;H) and A, δ are
positive numbers such that ∥T (t)∥ ⩽ Me−δt for t ⩾ 0.
(H2) There exists a positive number α ∈ (0, 1) such that g : R × L2(Ω;H) →
L2(Ω;Hα) is quadratic mean almost periodic in t ∈ R uniformly in y ∈ B1 where
B1 ⊂ L2(Ω;H) being a compact subspace. also, g is Lipschitz in the sense that:
there exists Lg > 0 such that

E∥(−M)αh(t, y)− (−M)αh(t, x)∥2 ⩽ LhE∥y − x∥2,

for all t ∈ R and for each stochastic processes x, y ∈ L2(Ω;H).
(H3) The function G : R×L2(Ω;H) → L2(Ω;L0

2) is quadratic mean almost periodic
in t ∈ R uniformly in y ∈ B2 where B2 ⊂ L2(Ω;H) being a compact subspace.
Moreover, S is Lipschitz in the sense that: there exists LS > 0 such that

E∥S(t, x)− S(t, y)∥2L0
2
⩽ LSE∥y − x∥2

for all t ∈ R and for each stochastic processes x, y ∈ L2(Ω;H).

3. Main Results

In this Section, we Prove our Main Theorem.
Theorem 3.1. suppose the conditions (H1)-(H3) are satisfied, then the problem
(1.1) admits a unique quadratic mean almost periodic mild solution on R provide
that

L0 = [3Lg∥(−M)−α∥2 + 3A2
1−αLhδ

−2α[Γ(α)]2 +
3TrQM2LS

2δ
< 1,

where Γ(.) is the gamma function. Proof. Let Λ : AP (R;L2(Ω;H)) →
C(R;L2(Ω;H)) be the operator defined by

Λy(t) = h(t, y(t)) +

∫ t

−∞
MT (t− s)h(s, y(s))ds

+

∫ t

−∞
T (t− s)S(s, y(s))dω(s), t ∈ R.

First It proves that Λy is well defined. From Proposition 2.5,we infer that s →
h(s, y(s)) is in MP (R;L2(Ω;H). therefore using Proposition 2.2 (ii) it follows that
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there exists a constant Ng > 0 such that E∥(−M)αh(t, y(t))∥2Ng, for all t ∈ R.
Moreover, from the continuity of s → MT (t− s) and s → T (t− s) in the uniform
operator topology on (−∞, t) for each t ∈ R and the estimate

E∥
∫ t

−∞
MT (t− s)h(s, y(s))ds∥2

= E∥
∫ t

−∞
(−M)1−αT (t− s)(−M)αh(s, y(s))ds∥2

⩽ A2
1−αE(

∫ t

−∞
e−δ(t−s)(t− s)α−1∥(−M)αh(s, y(s))∥ds)2

⩽ A2
1−α(

∫ t

−∞
e−δ(t−s)(t− s)α−1ds)2

× ((

∫ t

−∞
e−δ(t−s)(t− s)α−1E∥(−M)αh(s, y(s))∥2ds)

⩽ FhM
2
1−α(

∫ t

−∞
e−δ(t−s)(t− s)α−1ds)2 = FhA

2
1−αδ

−2α[Γ(α)]2,

Hence s → MT (t − s)h(s, y(s)) and s → T (t − s)S(s, y(s)) are integrable on
(−∞, t) for every t ∈ R, then Λy is well defined and continuous.
Next, we show that Λy(t) ∈ MP (R;L2(Ω;H). we can define

Λ1y(t) =

∫ t

−∞
MT (t− s)h(s, y(s))ds

and

Λ2y(t) =

∫ t

−∞
T (t− s)S(s, y(s))dω(s)

we show that Λ1y(t) is quadratic mean almost periodic.since h(., y(.)) ∈
MP (R;L2(Ω;Hα), by Definition 2.2, it follows that for any ϵ > 0, there exists
l(ϵ) > 0 such that every interval of length l(ϵ) contains at least a number τ with
the property that

E∥(−M)αh(t+ τ, y(t+ τ))− (−M)αh(t, y(t))∥2 < ϵ

A2
1−αδ

−2α[Γ(α)]2
,

for each t ∈ R.



S. Ahmadi/ IJM2C, 06 - 01 (2016) 49-59. 55

using Cauchy-Schwarz inequality, we get

E∥Λ1y(t+ τ)− Λ1y(t)∥2

E∥
∫ t

−∞
MT (t− s)[h(s+ τ, y(s+ τ))− h(s, y(s))]ds∥2

= E∥
∫ t

−∞
(−M)1−αT (t− s)[(−M)αh(t+ τ, y(t+ τ))− (−M)αh(t, y(t))]ds∥2

⩽ A2
1−αE(

∫ t

−∞
e−δ(t−s)(t− s)α−1 × ∥(−M)αh(s+ τ, x(s+ τ))− (−M)αh(s, y(s))∥ds)2

⩽ A2
1−αE[(

∫ t

−∞
e−δ(t−s)(t− s)α−1ds)

× (

∫ t

−∞
e−δ(t−s)(t− s)α−1∥(−M)αh(s+ τ, y(s+ τ))− (−M)αh(s, y(s))∥2ds)]

⩽ A2
1−α(

∫ t

−∞
e−δ(t−s)(t− s)α−1)

× (

∫ t

−∞
e−δ(t−s)(t− s)α−1E∥(−M)αh(s+ τ, y(s+ τ))− (−M)αh(s, y(s))∥2ds)

⩽ A2
1−α(

∫ t

−∞
e−δ(t−s)(t− s)α−1ds)2 × sup

t∈R
E∥(−M)αh(t+ τ, y(t+ τ))− (−M)αh(t, y(t))∥2

⩽ ϵ

δ−2α[Γ(α)]2
(

∫ t

−∞
e−δ(t−s)(t− s)α−1ds)2 = ϵ

Therefore, Λ1y(.) is quadratic mean almost periodic.
Similarly, by using Proposition 2.5,hence s → S(s, y(s)) is quadratic mean almost

periodic. Therefore, it follows from Definition 2.2 that for any ϵ > 0, there exists
l(ϵ) > 0 such that every interval of length l(ϵ) contains at least a number τ with
the property that

E∥S(t+ τ, y(t+ τ))− S(t, y(t))∥2L0
2
<

2δϵ

TrQM2
,

for each t ∈ R. Now, let us prove that Λ2y(t) is quadratic mean almost periodic.
We adopt the techniques developed in [2]. Let ω̃(t) := ω(t + τ) − ω(τ) for each
t ∈ R, note that ω̃ is also a Brownian motion and has the same distribution as ω.
Now, we consider

E∥Λ2y(t+ τ)− Λ2y(t)∥2

= E∥
∫ t+τ

−∞
T (t+ τ − s)S(s, y(s))dω(s)−

∫ t

−∞
T (t− s)S(s, y(s))dω(s)∥2

= E∥
∫ t

−∞
T (t− s)[S(s+ τ, y(s+ τ))− S(s, y(s))]dω̃(s)∥2

Thus using estimate on Ito integral established in Ichikawa [11], we obtain that
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E∥Λ2y(t+ τ)− Λ2y(t)∥2

= E∥
∫ t

−∞
T (t− s)[S(s+ τ, y(s+ τ))− S(s, y(s))]dω̃(s)∥2

⩽ TrQE[

∫ t

−∞
∥T (t− s)[S(s+ τ, y(s+ τ))− S(s, y(s))]∥2ds]

⩽ TrQE[

∫ t

−∞
∥T (t− s)∥2∥S(s+ τ, y(s+ τ))− S(s, y(s))∥2L0

2
ds]

⩽ TrQM2

∫ t

−∞
e−2δ(t−s)E∥S(s+ τ, y(s+ τ))− S(s, y(s))∥2L0

2
ds

⩽ TrQM2(

∫ t

−∞
e−2δ(t−s)ds) sup

t∈R
E∥S(t+ τ, y(t+ τ))− S(t, y(t))∥2L0

2

< 2δϵ

∫ t

−∞
e−2δ(t−s)ds = ϵ.

Thus, Λ2y(.) is quadratic mean almost periodic. And in view of the above, it is
clear that Λ maps AP (R;L2(Ω;H) into itself.
Now we should prove that Λ is a strict contraction on AP (R;L2(Ω;H). Indeed,

for each t ∈ R, x, y ∈ AP (R;L2(Ω;H), we have

E∥Λy(t)− Λx(t)∥2 ⩽ 3E∥h(t, y(t))− h(t, x(t))∥2α

+ 3E(∥
∫ t

−∞
AT (t− s)[h(s, y(s))− h(s, x(s))]ds∥)2

+ 3E(∥
∫ t

−∞
T (t− s)[S(s, y(s))− S(s, x(s))]dω(s)∥)2

⩽ 3∥(−M)−α∥2E∥(−M)αh(t, y(t))− (−M)αh(t, x(t))∥2

+ 3E(∥
∫ t

−∞
(−M)1−αT (t− s)[(−M)αh(s, y(s))− (−M)αh(s, x(s))]ds∥)2

+ 3TrQE(

∫ t

−∞
∥(T (t− s)[S(s, y(s))− S(s, x(s))]∥2ds)

⩽ 3∥(−M)−α∥2supt∈RE∥(−M)αh(t, y(t))− (−M)αh(t, x(t))∥2

+ 3A2
1−αE(

∫ t

−∞
e−δ(t−s)(t− s)α−1∥(−M)αh(s, y(s))− (−M)αh(s, x(s))∥ds)2

+ 3TrQE(

∫ t

−∞
∥T (t− s)∥2∥[S(s, y(s))− S(s, x(s))]∥2L0

2
ds)

⩽ 3Lh∥(−M)−α∥2supt∈RE∥y(t)− x(t)∥2 + 3A2
1−αE[(

∫ t

−∞
e−δ(t−s)(t− s)α−1ds)

× (

∫ t

−∞
e−δ(t−s)(t− s)α−1∥(−M)αh(s, y(s))− (−M)αh(s, x(s))∥2)]
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+ 3TrQA2

∫ t

−∞
e−2δ(t−s)E∥[S(s, y(s))− S(s, x(s))]∥2L0

2
ds

⩽ 3Lh∥(−M)−α∥2supt∈RE∥y(t)− x(t)∥2 + 3A2
1−αE(

∫ t

−∞
e−δ(t−s)(t− s)α−1ds)

× (

∫ t

−∞
e−δ(t−s)(t− s)α−1E∥(−A)αg(s, x(s))− (−A)αg(s, y(s))∥2)

+ 3TrQA2Lh

∫ t

−∞
e−2δ(t−s)ds)supt∈RE∥y(t)− x(t)∥2

⩽ 3Lh∥(−M)−α∥2supt∈RE∥y(t)− x(t)∥2 + 3A2
1−α(

∫ t

−∞
e−δ(t−s)(t− s)α−1ds)2supt∈RE∥y(t)− x(t)∥2

+ 3TrQA2Lh
1

2δ
supt∈RE∥y(t)− x(t)∥2

⩽ 3Lh∥(−M)−α∥2supt∈RE∥y(t)− x(t)∥2

+ 3A2
1−αLhδ

−2α[Γ(α)]2 × supt∈RE∥y(t)− x(t)∥2 + 3TrQM2Lh

2δ
supt∈RE∥y(t)− x(t)∥2

= [3Lh∥(−M)−α∥2 + 3A2
1−αLhδ

−2α[Γ(α)]2 +
3TrQM2Lh

2δ
× supt∈RE∥y(t)− x(t)∥2

by using the arithmetic geometic inequality, Cauchy-Schwarz inequality and Ito
isometry identity.
Note that

supt∈RE∥y(t)− x(t)∥2 ⩽ [supt∈R(E∥y(t)− x(t)∥2)
1

2 ]2

Thus, it follows that, for each t ∈ R,

(E∥Λy(t)− Λx(t)∥2)
1

2 ⩽
√

L0∥y − x∥MP (R;L2(Ω;H).

Hence

∥Λy − Λx∥MP (R;L2(Ω;H) = supt∈R(E∥y(t)− x(t)∥2)
1

2 ⩽
√

L0∥y − x∥MP (R;L2(Ω;H),

which implies that Λ is a contraction by (3.1).

4. Conclusion

So by the contraction principle, we conclude that there exists a unique fixed point
y(.) for Λ in MP (R;L2(Ω;H), such that Λy = y, that is

y(t) = h(t, y(t)) +

∫ t

−∞
MT (t− s)h(s, x(s))ds+

∫ t

−∞
T (t− s)S(s, y(s))dω(s))
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for all t ∈ R. If we let y(a) = h(a, x(a)) +
∫ t
−∞MT (a− s)h(s, y(s))ds+

∫ t
−∞ T (a−

s)S(s, y(s))dω(s), then

T (t− a)y(a) = T (t− a)h(a, y(a)) +

∫ t

−∞
MT (t− s)h(s, y(s))ds+

∫ t

−∞
T (t− s)S(s, y(s))dω(s).

But for t ⩾ a,∫ t

a
T (t− s)S(s, y(s))dω(s)

=

∫ t

−∞
T (t− s)S(s, y(s))dω(s)−

∫ a

−∞
T (t− s)S(s, y(s))dω(s)

= y(t)− h(t, y(t))−
∫ t

−∞
MT (t− s)h(s, y(s))ds− T (t− a)[y(a)− h(a, y(a))]

+

∫ a

−∞
MT (t− s)h(s, y(s))ds = y(t)− h(t, y(t))

−
∫ t

a
MT (t− s)h(s, y(s))ds− T (t− a)[y(a)− h(a, y(a))].

In conclusion,
y(t) = T (t − a)[y(a) − h(a, y(a))] + h(t, y(t)) +

∫ t
a MT (t − s)h(s, y(s))ds +∫ t

a T (t − s)S(s, y(s))dω(s) is a mild solution of the problem (1.1) and y(.) ∈
MP (R;L2(Ω;H).
a simple example to illustrate main theorem. I examine the existence and unique-
ness of quadratic mean almost periodic solutions for the following stochastic partial
differential equation

∂

∂t
[y(t, ξ)− h(t, y(t, ξ))] =

∂2

∂ξ2
y(t, ξ) + S(t, y(t, ξ))dω(t), t ∈ R, ξ ∈ D, (2)

where D ⊂ Rn(n ⩾ 1) is a bounded subset with C2 boundary ∂D.
Let H := L2(D) be equipped with its natural topology and define an operator

A on L2(R;H) by

Ax(t, .) =
∂2

∂ξ2
x(t, .), x ∈ H2(D ∩H1

0 (D).

It is well known that (see [15-18]) A is the infinitesimal generator of an analytic
semigroup {T (t)}t⩾0 on L2(R;H) satisfying (H1). Therefore, under assumptions
(H2)-(H3), if we assume that (3.1) holds, by Theorem 3.1 we can say (4.1) has a
unique quadratic mean almost periodic mild solution.
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