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Abstract. In this paper, a Boussinesq equation is solved by using the Adomian’s decomposi-
tion method, modified Adomian’s decomposition method and homotopy analysis method. The
approximate solution of this equation is calculated in the form of series which its components
are computed by applying a recursive relation. The existence and uniqueness of the solution
and the convergence of the proposed methods are proved in detail. A numerical example is
studied to demonstrate the accuracy of the presented methods.
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1. Introduction

Boussinesq equation describes motions of long waves in shallow water under gravity
and in a one-dimensional nonlinear lattice [1-4]. In recent years some works have
been done in order to find the numerical solution of this equation, for example [5-
12]. In this work, we develop the ADM, MADM and HAM to solve the Boussinesq
equation as follows:

utt = αuxx + β(u2)xx + uxxxx, (1)

where α and β are arbitrary constants and the initial conditions are:
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u(x, 0) = f(x),
ut(x, 0) = g(x).

(2)

The paper is organized as follows. In section 2, the mentioned iterative methods
are introduced for solving Eq.(1). In section 3 we prove the existence and uniqueness
of the solution and convergence of the proposed methods. Finally, a numerical
example is solved in section 4.
In order to obtain an approximate solution of Eq.(1), let us integrate two times

from Eq.(1) with respect to t using the initial conditions we obtain,

u(x, t) =z(x, t) + α

∫ t

0

∫ t

0
D2(u(x, t)) dt dt+ β

∫ t

0

∫ t

0
F (u(x, t)) dt dt

+

∫ t

0

∫ t

0
D4(u(x, t)) dt dt,

(3)

where,

Di(u(x, t)) =
∂iu(x, t)

∂xi
, i = 2, 4,

F (u(x, t)) =
∂2u2(x, t)

∂x2
,

z(x, t) = f(x) + tg(x).

The double integrals in (3) can be written as [16]:

∫ t

0

∫ t

0
(D2(x, t)) dt dt =

∫ t

0
(x− t) D2(u(x, t)) dt,∫ t

0

∫ t

0
F (u(x, t)) dt dt =

∫ t

0
(x− t) F (u(x, t)) dt,∫ t

0

∫ t

0
(D4(x, t)) dt dt =

∫ t

0
(x− t) D4(u(x, t)) dt.

So, we can write Eq.(3) as follows:

u(x, t) =z(x, t) + α

∫ t

0
(x− t) D2(u(x, t)) dt+ β

∫ t

0
(x− t) F (u(x, t)) dt

+

∫ t

0
(x− t) D4(u(x, t)) dt.

(4)

In Eq.(4), we assume z(x, t) is bounded for all x, t in J = [a, T ](a, T ∈ R). The
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terms Di(u(x, t)) (i = 2, 4) and F (u(x, t)) are Lipschitz continuous with

|D2(u)−D2(u∗)| 6 L1|u− u∗|,

|F (u)− F (u∗)| 6 L2|u− u∗|,

|D4(u)−D4(u∗)| 6 L3|u− u∗|.

also,

|x− t| 6 M, ∀ a 6 x, t 6 T, M ∈ R+.

2. The iterative methods

2.1 Description of the MADM and ADM

The Adomian decomposition method is applied to the following general nonlinear
equation

Lu+Ru+Nu = g1, (5)

where u(x, t) is the unknown function, L is the highest order derivative operator
which is assumed to be easily invertible, R is a linear differential operator of order
less than L,Nu represents the nonlinear terms, and g1 is the source term. Applying
the inverse operator L−1 to both sides of Eq.(5), and using the given conditions
we obtain

u(x, t) = f1(x)− L−1(Ru)− L−1(Nu), (6)

where the function f1(x) represents the terms arising from integrating the source
term g1. The nonlinear operator Nu = G1(u) is decomposed as

G1(u) =
∞∑
n=0

An, (7)

where An, n > 0 are the Adomian polynomials determined formally as follows:

An =
1

n!

[
dn

dλn
[N(

∞∑
i=0

λiui)]

]
λ=0

. (8)

The first Adomian polynomials are [13-15]:

A0 = G1(u0),

A1 = u1G
′
1(u0),

A2 = u2G
′
1(u0) +

1

2!
u21G

′′
1(u0),

A3 = u3G
′
1(u0) + u1u2G

′′
1(u0) +

1

3!
u31G

′′′
1 (u0), . . .

(9)
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2.1.1 Adomian decomposition method

The standard decomposition technique represents the solution of u(x, t) in (5)
as the following series,

u(x, t) =
∞∑
i=0

ui(x, t), (10)

where, the components u0, u1, . . . which can be determined recursively

u0 = z(x, t),

u1 = α

∫ t

0
(x− t) A0(x, t) dt+ β

∫ t

0
(x− t) B0(x, t) dt+

∫ t

0
(x− t) L0(x, t) dt,

(11)

...

un+1 = α

∫ t

0
(x− t) An(x, t) dt+ β

∫ t

0
(x− t) Bn(x, t) dt+

∫ t

0
(x− t) Ln(x, t) dt, n > 0.

Substituting (11) into (9) leads to the determination of the components of u.

2.1.2 The modified Adomian decomposition method

The modified decomposition method was introduced by Wazwaz [16]. The mod-
ified forms was established on the assumption that the function z(x, t) can be
divided into two parts, namely z1(x, t) and z2(x, t). Under this assumption we set

z(x, t) = z1(x, t) + z2(x, t). (12)

Accordingly, a slight variation was proposed only on the components u0 and u1.
The suggestion was that only the part z1 be assigned to the zeroth component u0,
whereas the remaining part z2 be combined with the other terms given in (12) to
define u1. Consequently, the modified recursive relation

u0 = z1(x, t),

u1 = z2(x, t)− L−1(Ru0)− L−1(A0), (13)

...

un+1 = −L−1(Run)− L−1(An), n > 1,

was developed.
To obtain the approximation solution of Eq.(1), according to the MADM, we

can write the iterative formula (13) as follows:
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u0 = z1(x, t),

u1 = z2(x, t) + α

∫ t

0
(x− t) A0(x, t) dt+ β

∫ t

0
(x− t) B0(x, t) dt+

∫ t

0
(x− t) L0(x, t) dt

...

un+1 = α

∫ t

0
(x− t) An(x, t) dt+ β

∫ t

0
(x− t) Bn(x, t) dt+

∫ t

0
(x− t) Ln(x, t) dt, n > 1.

(14)

The operators Dj(u) (j = 2, 4) and F (u) are usually represented by the infinite
series of the Adomian polynomials as follows:

D2(u) =
∞∑
i=0

Ai,

F (u) =

∞∑
i=0

Bi,

D4(u) =

∞∑
i=0

Li

where Ai, Bi, and Li are the Adomian polynomials.
Also, we can use the following formula for the Adomian polynomials [17]:

An = D2(sn)−
n−1∑
i=0

Ai,

Bn = F (sn)−
n−1∑
i=0

Bi,

Ln = D4(sn)−
n−1∑
i=0

Li

(15)

where sn =
∑n

i=0 ui(x, t) is the partial sum.

2.2 Description of the HAM

Consider

N [u] = 0,

where N is a nonlinear operator, u(x, t) is an unknown function and x is an
independent variable. Let u0(x, t) denotes an initial guess of the exact solution
u(x, t), h ̸= 0 an auxiliary parameter, H1(x, t) ̸= 0 an auxiliary function, and L an
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auxiliary linear operator with the property L[s(x, t)] = 0 when s(x, t) = 0. Then
using q ∈ [0, 1] as an embedding parameter, we construct a homotopy as follows:

(1− q)L[ϕ(x, t; q)− u0(x, t)]− qhH1(x, t)N [ϕ(x, t; q)] =

Ĥ[ϕ(x, t; q);u0(x, t), H1(x, t), h, q].
(16)

It should be emphasized that we have great freedom to choose the initial guess
u0(x, t), the auxiliary linear operator L, the non-zero auxiliary parameter h, and
the auxiliary function H1(x, t).
Enforcing the homotopy (16) to be zero, i.e.,

Ĥ1[ϕ(x, t; q);u0(x, t), H1(x, t), h, q] = 0, (17)

we have the so-called zero-order deformation equation

(1− q)L[ϕ(x, t; q)− u0(x, t)] = qhH1(x, t)N [ϕ(x, t; q)]. (18)

When q = 0, the zero-order deformation Eq. (18) becomes

ϕ(x; 0) = u0(x, t), (19)

and when q = 1, since h ̸= 0 and H1(x, t) ̸= 0, the zero-order deformation Eq.
(18) is equivalent to

ϕ(x, t; 1) = u(x, t). (20)

Thus, according to (19) and (20), as the embedding parameter q increases from
0 to 1, ϕ(x, t; q) varies continuously from the initial approximation u0(x, t) to the
exact solution u(x, t). Such a kind of continuous variation is called deformation in
homotopy [18-21].
Due to Taylor’s theorem, ϕ(x, t; q) can be expanded in a power series of q as

follows

ϕ(x, t; q) = u0(x, t) +

∞∑
m=1

um(x, t)qm, (21)

where,

um(x, t) =
1

m!

∂mϕ(x, t; q)

∂qm
|q=0.

Let the initial guess u0(x, t), the auxiliary linear parameter L, the nonzero aux-
iliary parameter h and the auxiliary function H1(x, t) be properly chosen so that
the power series (21) of ϕ(x, t; q) converges at q = 1, then, we have under these
assumptions the solution series
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u(x, t) = ϕ(x, t; 1) = u0(x, t) +
∞∑

m=1

um(x, t). (22)

From Eq.(21), we can write Eq.(18) as follows

(1− q)L[ϕ(x, t, q)− u0(x, t)] = (1− q)L[

∞∑
m=1

um(x, t) qm] = q h H1(x, t)N [ϕ(x, t, q)]

⇒ L[

∞∑
m=1

um(x, t) qm]− q L[

∞∑
m=1

um(x, t)qm] = q h H1(x, t)N [ϕ(x, t, q)]

(23)

By differentiating (23) m times with respect to q, we obtain

{L[
∞∑

m=1

um(x, t) qm]− q L[
∞∑

m=1

um(x, t)qm]}(m)

= {q h H1(x, t)N [ϕ(x, t, q)]}(m)

= m! L[um(x, t)− um−1(x, t)]

= h H1(x, t) m
∂m−1N [ϕ(x, t; q)]

∂qm−1
|q=0 .

Therefore,

L[um(x, t)− χmum−1(x, t)] = hH1(x, t)ℜm(um−1(x, t)), (24)

where,

ℜm(um−1(x, t)) =
1

(m− 1)!

∂m−1N [ϕ(x, t; q)]

∂qm−1
|q=0, (25)

and

χm =

{
0, m 6 1
1, m > 1

Note that the high-order deformation Eq. (24) is governing the linear operator
L, and the term ℜm(um−1(x, t)) can be expressed simply by (25) for any nonlinear
operator N .
To obtain the approximation solution of Eq. (1), according to HAM, let
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N [u(x, t)] =u(x, t)− z(x, t)− α

∫ t

0
(x− t) D2(u(x, t)) dt−

β

∫ t

0
(x− t) F (u(x, t)) dt−

∫ t

0
(x− t) D4(u(x, t)) dt,

so,

ℜm(um−1(x, t)) =um−1(x, t)− z(x, t)− α

∫ t

0
(x− t) D2(um−1(x, t)) dt−

β

∫ t

0
(x− t) F (um−1(x, t)) dt−

∫ t

0
(x− t) D4(um−1(x, t)) dt.

(26)

Substituting (26) into (24)

L[um(x, t)− χmum−1(x, t)] = hH1(x, t)[um−1(x, t)− α

∫ t

0
(x− t) D2(um−1(x, t)) dt

− β

∫ t

0
(x− t) F (um−1(x, t)) dt−

∫ t

0
(x− t) D4(um−1(x, t)) dt+ (1− χm)z(x, t)(x)].

(27)

We take an initial guess u0(x, t) = z(x, t), an auxiliary linear operator Lu = u,
a nonzero auxiliary parameter h = −1, and auxiliary function H1(x, t) = 1. This
is substituted into (27) to give the recurrence relation

u0(x, t) = z(x, t),

un+1(x, t) = α

t∫
0

(x− t) D2(un(x, t)) dt+ β

t∫
0

(x− t) F (un(x, t)) dt

+

t∫
0

(x− t) D4(un(x, t)) dt, n > 0.

(28)

Therefore, the solution u(x, t) becomes

u(x, t) =

∞∑
n=0

un(x, t) = z(x, t) +

∞∑
n=1

(
α

∫ t

0
(x− t) D2(un(x, t)) dt

+ β

∫ t

0
(x− t) F (un(x, t)) dt+

∫ t

0
(x− t) D4(un(x, t)) dt

)
. (29)

3. Existence and convergence of iterative methods

In the following theorem we consider,
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α1 := TM(|α|L1 + |β|L2 + L3).

Theorem 3.1.
Let 0 < α1 < 1, then Boussinesq equation (1), has a unique solution.
Proof. Let u and u∗ be two different solutions of (3) then

|u− u∗| =
∣∣∣∣α

t∫
0

(x− t)[D2(u(x, t))−D2(u∗(x, t))]dt+ β

t∫
0

(x− t)[F (u(x, t))− F (u∗(x, t))]dt

+

t∫
0

(x− t)[D4(u(x, t))−D4(u∗(x, t))]dt

∣∣∣∣
6 |α|

t∫
0

|x− t||D2(u(x, t))−D2(u∗(x, t))|dt+ |β|
t∫

0

|x− t||F (u(x, t))− F (u∗(x, t))|dt

+

t∫
0

|x− t||D4(u(x, t))−D4(u∗(x, t))|dt

6 TM(|α|L1 + |β|L2 + L3)|u− u∗| = α1|u− u∗|.

From which we get (1 − α1)|u − u∗| 6 0. Since 0 < α1 < 1, then |u − u∗| = 0.
Implies u = u∗ and completes the proof.
Theorem 3.2.
The series solution u(x, t) =

∑∞
i=0 ui(x, t) of equation (1) using ADM (or

MADM) is convergent when

0 < α1 < 1, |u1(x, t)| <∞.

Proof. Denote as (C[J ], ∥ . ∥) the Banach space of all continuous functions on J
with the norm ∥ f(t) ∥= max |f(t)|, for all t in J . Define the sequence of partial
sums sn, let sn and sm be arbitrary partial sums with n > m. We are going to
prove that sn is a Cauchy sequence in this Banach space:

∥ sn − sm ∥ = max
∀t∈J
|sn − sm| = max

∀t∈J

n∑
i=m+1

ui(x, t)|

= max
∀t∈J

∣∣∣∣α
t∫

0

(x− t)(

n−1∑
i=m

Ai)dt+ β

t∫
0

(x− t)(

n−1∑
i=m

Bi)dt+

t∫
0

(x− t)(

n−1∑
i=m

Li)dt

∣∣∣∣.
From [18], we have
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n−1∑
i=m

Ai = D2(sn−1)−D2(sm−1),

n−1∑
i=m

Bi = F (sn−1)− F (sm−1),

n−1∑
i=m

Li = D4(sn−1)−D4(sm−1).

So,

∥ sn − sm ∥ = max
∀t∈J

∣∣∣∣α
t∫

0

(x− t)[D2(sn−1)−D2(sm−1)]dt

+ β

t∫
0

(x− t)[F (sn−1)− F (sm−1)]dt+

t∫
0

(x− t)[D4(sn−1)−D4(sm−1)]dt

∣∣∣∣
6 |α|

t∫
0

|x− t||D2(sn−1)−D2(sm−1)dt

+ |β|
t∫

0

|x− t||F (sn−1)− F (sm−1)|dt+
t∫

0

|x− t||D4(sn−1)−D4(sm−1)dt

6 α1 ∥ sn − sm ∥ .

Let n = m+ 1, then

∥ sn − sm ∥6 α1 ∥ sm − sm−1 ∥6 α2
1 ∥ sm−1 − sm−2 ∥6 . . . 6 αm

1 ∥ s1 − s0 ∥ .

From the triangle inequality we have

∥ sn − sm ∥ 6∥ sm+1 − sm ∥ + ∥ sm+2 − sm+1 ∥ + · · ·+ ∥ sn − sn−1 ∥

6 [αm
1 + αm+1

1 + · · ·+ αn−m−1
1 ] ∥ s1 − s0 ∥

6 αm
1 [1 + α1 + α2

1 + · · ·+ αn−m−1
1 ] ∥ s1 − s0 ∥

6 αm
1

[
1− αn−m

1

1− α1

]
∥ u1(x, t) ∥ .

Since 0 < α1 < 1, we have (1− αn−m
1 ) < 1, then

∥ sn − sm ∥6
αm
1

1− α1
max
∀t∈J
|u1(x, t)|. (30)
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But |u1(x, t)| < ∞, so, as m → ∞, then ∥ sn − sm ∥→ 0. We conclude that sn
is a Cauchy sequence in C[J ], therefore the series is convergent and the proof is
complete.
Theorem 3.3.
If the series solution (28) of problem (1) using HAM is convergent then it con-

verges to the exact solution of the problem (1).
Proof. We assume:

u(x, t) =

∞∑
m=0

um(x, t),

D̂2(u(x, t)) =

∞∑
m=0

D2(um(x, t)),

F̂ (u(x, t)) =

∞∑
m=0

F (um(x, t)),

D̂4(u(x, t)) =
∞∑

m=0

D4(um(x, t)),

where,

lim
m→∞

um(x, t) = 0.

We can write,

n∑
m=1

[um(x, t)− χmum−1(x, t)] = u1 + (u2 − u1) + · · ·+ (un − un−1)

= un(x, t).

(31)

Hence, from (31),

lim
n→∞

un(x, t) = 0. (32)

So, using (32) and the definition of the linear operator L, we have

∞∑
m=1

L[um(x, t)− χmum−1(x, t)] = L

[ ∞∑
m=1

[um(x, t)− χmum−1(x, t)]

]
= 0.

Therefore from (31), we can obtain that,

∞∑
m=1

L[um(x, t)− χmum−1(x, t)] = hH1(x, t)

∞∑
m=1

ℜm−1(um−1(x, t)) = 0.
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Since h ̸= 0 and H1(x, t) ̸= 0 , we have

∞∑
m=1

ℜm−1(um−1(x, t)) = 0. (33)

By substituting ℜm−1(um−1(x, t)) into the relation (33) and simplifying it, we
have

∞∑
m=1

ℜm−1(um−1(x, t)) =

∞∑
m=1

[um−1(x, t)− α

t∫
0

(x− t)D2(um−1(x, t))dt

− β

t∫
0

(x− t)F (um−1(x, t))dt−
t∫

0

(x− t)D4(um−1(x, t))dt

+ (1− χm)z(x, t)]

= u(x, t)− z(x, t)− α

t∫
0

(x− t)D̂2(u(x, t))dt

− β

t∫
0

(x− t)F̂ (u(x, t))dt−
t∫

0

(x− t)D̂4(u(x, t))dt.

(34)

From (33) and (34), we have

u(x, t) = z(x, t)+α

∫ t

0
(x−t) D̂2(u(x, t)) dt+β

∫ t

0
(x−t) F̂ (u(x, t)) dt+

∫ t

0
(x−t) D̂4(u(x, t)) dt.

Therefore, u(x, t) must be the exact solution.

4. Numerical example

In this section, we compute a numerical example which is solved by the ADM,
MADM and HAM. The program has been provided with Mathematica 6 according
to the following algorithm where ε is a given positive value.
Algorithm :
Step 1. Set n← 0.
Step 2. Calculate the recursive relations (11) for ADM, (14) for MADM and

(28) for HAM.
Step 3. If |un+1 − un| < ε then go to step 4,
else n← n+ 1 and go to step 2.
Step 4. Print u(x, t) =

∑n
i=0 ui(x, t) as the approximate of the exact solution.

Example 4.1
Consider the Boussinesq equation as follows:

utt = uxx − 6(u2)xx + uxxxx,
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subject to the initial conditions:

u(x, 0) = 1
x2 ,

ut(x, 0) =
−2
x2 .

Table 1. Numerical results of the Example 4.1

(x, t) Errors

ADM(n=15) MADM(n=12) HAM(n=4)

(0.1, 0.12) 0.070513 0.062725 0.023378
(0.2, 0.15) 0.071572 0.063668 0.023706
(0.3, 0.22) 0.072673 0.064235 0.024458
(0.4, 0.26) 0.072785 0.064788 0.024842
(0.5, 0.30) 0.073472 0.065325 0.025173
(0.7, 0.33) 0.074185 0.065864 0.025663

Table 1, shows that the approximate solution of the Boussinesq equation is con-
vergent with 4 iterations by using the HAM. By comparing the results of Table
1, one can observe that the HAM is more rapid convergent than the ADM and
MADM.

5. Conclusion

The HAM has been shown to solve effectively, easily and accurately a large class of
nonlinear problems with the approximations which are convergent rapidly to exact
solutions. In this work, the HAM has been successfully employed to obtain the
approximate solution to analytical solution of the Boussinesq equation. For this
purpose, we showed that the HAM has more rapid convergence than the ADM and
MADM. Also, the example shows that the number of computations in HAM is less
than the number of computations in ADM and MADM.
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