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Abstract.In this work, we propose a modification of Steffensen’s method with some free
parameters. These parameters are then be used for further acceleration via the concept of
with memorization. In this way, we derive a fast Steffensen-type method with memory for
solving nonlinear equations. Numerical results are also given to support the underlying theory
of the article.
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1. Introduction

Finding the root of a nonlinear equation

f(z) =0, (1)

where f is a sufficiently differentiable function in a neighborhood of a simple zero
a is a classical problem in scientific computing, [10].

A derivative-free family of methods proposed by Steffensen in [9] for solving (1)
as follows (SM)

f(zk)

Tl = T — f[xk,wk]’ ﬂER\{O}, k:0,1,2,‘-- s (2)
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where wy, = x + S f(x). Considering this iterative expression, many higher order
methods with higher computational efficiency indices have been developed in the
literature (see e.g. [3], [4] and [7]).

The aim of this short communication is to state a one-step method with memory
of very high computational efficiency. We start from a modification of the one-step
two-point method of Steffensen (2) without memory with order 2, and increase
the convergence order to 3.56155 without any additional function evaluation which
provides a high computational efficiency index.

In general, the free nonzero parameter [ in Steffensen-like methods such (2) is
of great importance for accelerating the R-order of convergence without additional
calculations.

In this manner, we would like to obtain new methods for finding simple roots of
nonlinear equations, whose computational efficiency is higher than the efficiency
of existing methods known in literature in the class of one-step methods and even
higher than the efficiency indices of optimal three- and four-step methods of orders
eight and sixteen, respectively.

Recently, Dzunié¢ in [2] designed an efficient one-step bi-parametric iterative
method with memory (DM) possessing 3(3 + v/17) R-order of convergence as fol-
lows:

wy =z + Prf(xr),

! _ (k)
f (k)

k>0,

TR T e wi] + pef (wr)

where N;(1) stands for the Newton’s interpolatory polynomial of j-th order passing
through j+41 nodes at the point [. For example, we can define N3(t) as the Newton’s
interpolation polynomial of third degree, set through four available approximations
Tk Wiy Wk—1, Th—1-

It should be remarked that the notation of divided difference is used frequently
in this study.

Here, we aim at presenting a simple quadra-parametric modification of Stef-
fensen’s method without memory and make it with memory. Higher order of con-
vergence is attained without additional function evaluations, making the derived
method very efficient. Numerical examples are also given to demonstrate excellent
convergence features of the presented method with memory.

The rest of this paper is organized as follows. In Section 2, a modification of (2)
without memory is given possessing quadratic convergence. The main goal of this
paper is presented in Section 3 by contributing an iterative method with memory.
The proposed scheme is an extension over (2) and has a simple structure with an
increased computational efficiency. Its efficiency index is the same to (3). In Section
4, numerical reports are stated. Some discussions will be given in Section 5 to end
the paper.

2. Modified Steffensen’s Method

In order to modify (2) and have as much as possible of free parameters, we first
apply the backward finite difference approximation in the denominator of (2) and
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then introduce a weight function in what follows (MSM):

wy =z — Bf(xr), B € R\{0}, k>0,

f(xk) f(wk)
xk’wk] + Qf(-rk) —I—pf(wk) (1 + gf[mkvwk]) ’ q’p7£ eR.

(4)

Th+1 = Tk — f[

Theorem 2.1 Let the function f(z) be sufficiently differentiable in a neighbor-
hood of its simple zero «. If an initial approximation x( is sufficiently close to a.
Then, the order of convergence of the method (4) without memory is two with four
parameters.

Proof Introducing the notations ¢; = %;EZ;, dfa = f'(a), el = 41 —, e =

xp —, ew = wi — «, and t = f(wg)/flrk, wy], we can provide the final error
equation of (4) by applying the following piece of code written in the symbolic
package of Mathematica:

ClearAll["Global‘x*"]
fle_] :=dfa (e”1 + c2 e”2 + c3 "3 + c4 e~4)
fe = fle]l; fle = £’ [e]l;
ew = e - \[Beta] fe; fw = flew];
FD1 = (fe - fw)/(e - ew); t = fuw/FD1;
el = e - Series[fe/( FD1 + q fe + p fw),
{e, 0, 2}] (1 + \[Zeta] t) //FullSimplify

This gives the following error equation

er1=(c2+p+q—caf (@)B =+ f(@)B(—p+C))ex + O(e}). (5)

The relation (5) shows the quadratic convergence of (4). Now, the proof is complete.
|

In the next section, we aim at accelerating convergence without imposing further
functional evaluations per cycle. This means that using two function evaluations,
we must increase the R-order of convergence more than two [5]. This is possible by
approximating the free parameters involved in (4). The best method for our recent
goal would be the following bi-parametric case of (4)

wy =z, — Bf(xg), B € R\{0}, k>0,
flxg) (1+§ Flw) )7 £CR.

T4l = Tk — Flaw, wr] Jlee,we]

where it reads

er+1 = —(=1+ f'(a)B)(c2 = Qe + O(e})- (7)

Note that the effect of the other two parameters p and ¢ could be ignored by
considering the other two parameters.
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3. Modified Steffensen’s Method with Memory

Now we try to construct a method with memory consists of the calculation of
parameters

B = Bk, (8)
and

§ =&k (9)
as the iteration proceeds by the formulas g = f’(la) and &, =¢o, for k=1,2,---,

where f'(a) and ¢ are approximations to f(a) and ¢, respectively.
As a matter of fact, in this way we minimize the factors —1+ f’(a) 8 and ¢ — (g
that appear in (7). Hence, we present the following scheme (PM)

wy =z — Pif(or),

1 N3 (wy)
= A\ = aAxT .\ k 2 17
P = Ni(an) . 5;“ 2N () (10)
_ _ Lk f(wk)
Pt = [k, wy] <1 &k f[xkvwk]> : k20

The two self-accelerating parameters, i.e., 8, and & are calculated using infor-
mation available from the current and previous iterations. Moreover, it is assumed
that initial estimates &y and 5y should be chosen before starting the iterative pro-
cess.

Theorem 3.1 Let the function f(x) be sufficiently differentiable in a neighbor-
hood of its simple zero a. If an initial approximation x( is sufficiently close to a.
Then, the R-order of convergence of the one-step method (10) with memory is at

least (3 + v/17).

Proof. Let {z}} be a sequence of approximations generated by (10). We first
must find the asymptotic error constants for the two self-accelerator parameters.

1!
and & = 7]\73 (wr)

Nj () 2N3(wg)
as in Theorem 2.1, we could write the following two pieces of Mathematica codes:

Following the substitutions £ =

, and similar notations

ClearAll["Global‘*"]
Alt_]:= InterpolatingPolynomial [{{e, fx}, {ew, fw}, {el, fx1}}, tl
Approximation = 1/A’[el] // Simplify;
fx = flax(e + c2*xe”2 + c3*%e”3 + cdxe”4);
fwu = flax(ew + c2*xew”2 + c3*ew”3 + cd*ew 4);
fx1 = flax(el + c2*xel”2 + c3*el”3 + cd*xel”4);
b = Series[Approximation, {e, 0, 2}, {ew, 0, 2},
{e1, 0, 0}] //Simplify;
Collect[Series[-1 + b*fla, {e, 0, 1}, {ew, 0, 1},
{e1, 0, 0}1, {e, ew, el}, Simplifyl]

which results in

—1+ Brf' (o) ~ c3ep—1€5—1 ., (11)

and also
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ClearAll["Global‘*"]
A[t_] :=InterpolatingPolynomial[{{e, fx}, {ew, fw},
{e1, fx1}, {ewl, fwill}}, t]
Approximation = A’’[ewl]/(2 A’ [ewl]) // Simplify;
fx = flax(e + c2*e”2 + c3*e”3 + cd*xe”4);
fw = flax(ew + c2*ew™2 + c3*ew™3 + cd*ew™4);
fxl = flax(el + c2*xel”2 + c3*el”3 + cd*xel”4);
fwl = flax(ewl + c2*ewl”™2 + c3*ewl"3 + cd*xewl”4);
h = Series[Approximation, {e, 0, 2}, {ew, 0, 2},
{e1, 0, 0}, {ewl, 0, 0}] //Simplify;
Collect[Series[c2 - h, {e, 0, 1}, {ew, 0, 1}, {el, 0, 0},
{ewl, 0, 0}], {e, ew, el, ewl}, Simplify]

which results in
C2 — & ~ CaCkp—_1€k—1w; (12)
wherein ew = ej_1 4, € = ex_1, €l = . Therefore, one may obtain
ert1 ~ —(c3er—16k—1,w)(Caek—1€k—11)€R- (13)
We also have ej_1 .4 ~ (=1 + Br—1f"(«))er—1. So, we attain
ert1 ~ —(cseaci ) (=14 Be—1f'(@))er—1)%€x. (14)
and
el ~ —czca(—1+ Br_1f' (@))%} _iei. (15)

Note that in general we know that the error equation should read ex41 ~ Aei,
where A and p are to be determined. Hence, one has e ~ Aei_l, and subsequently

Ep_1 ~ A*l/pe;;:/P' (16)

Hence, we firstly have

~ —C3Cq\ — — ! (6 2 Ck 62 62.
Ck+1 3 4( 1+6k lf( )) ((1+5k—1fl(a))(C2Ck—l)> k—1%k (17)

Thus, it is easy to obtain

eh ~ A*Q/pCeiJr;, (18)

wherein

1
C = —czey(—1+ B 'a2< > 19
R Y ) emroney ) A
This results in the equation p = 3 + 127’ with two solutions {% (3— \/17),

% (3 + \/17)}. Clearly the value for p = % (3 + \/17) ~ 3.56155 is acceptable and
would be the convergence R-order of the method (10) with memory. The proof is
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complete. W

We emphasize that the increase of the convergence order is obtained without any
additional function evaluations, which points to very high computational efficiency.

The computational efficiency index of (10) is 3.56155 ~ 1.8872, which is same
to (3), and is clearly much higher than 22 ~ 1.4142 of (2) and (4), 87 ~ 1.6817
of optimal eighth-order method [6] and 165 ~ 1.7411 of optimal sixteenth-order
schemes.

4. Numerical Computations

In this section we compare the behavior of different methods for solving an example
in programming package Mathematica [11]. Numerical experiments have been per-
formed with 1500 precision digits, being large enough to minimize round-off errors
as well as to clearly observe the computed asymptotic error constants requiring
small number divisions. In fact, it clearly shows the high computational R-order of
the proposed method.

We compare the methods SM using 8 = 0.1, MSM using 8 = 0.1, p = ¢ = 1/4,
& =0, DM and PM. All experiments have been carried out on a personal computer
equipped with an AMD 3.1 GHz dual-core processor and Windows 32-bit XP
operating system.

In the meantime, the computational order of convergence (coc) has been com-
puted by

Il f )/ f )
In (wim1) /S Cwna)

(20)

Here the stop termination is |f(zx)| < 10720, We have used By = & = 0.1
whenever required.

Example 4.1 We consider the following nonlinear test function
f(@) = (z — 2tan(z))(a® — 8), (21)

where a@ = 2. The results are provided in Tables 1-2 for two different initial ap-
proximations.

The values of initial guess zg were selected close to a to guarantee convergence
of iterative methods.

Tables 1-2 evidently show that proposed scheme (10) exhibits 3.56 convergence.
Iterative scheme (10) is evidently believed to be more favorable than other listed
methods due to its fast speed and acceptable accuracy.

We remark that convergence behavior was verified for additional test functions
and we attained similar superiority for our proposed Steffensen-like method with
memory.

5. Conclusion
For the first time, iterative methods with memory for solving nonlinear equations,

that use information from the current and previous iterate, were considered in [10].
After Traub’s research this class of methods was studied seldom in the literature
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Table 1. Results of comparisons for Example 4.1 by g = 1.7.

| Methods | [f(z3)] |f (z4)] |f (25)| |f (w6)] | ]
SM 4.1583 3.0743 1.4436 0.25430 2.
MSM 23.499 18.452 12.275 0.60559 2.
DZ 0.13132 2.0026 x 10~7  1.0181 x 10727  5.1731 x 10™%° | 3.57002
PM 1.8921 x 1076 4.5864 x 1072*  1.0569 x 10~%  7.5269 x 107318 | 3.54512

Table 2. Results of comparisons for Example 4.1 by xo = 1.92.

| Methods | |f (3)| |f (z4)] |f (@s5)] |f ()| | ]
SM 0.032743 0.00010819 1.1761 %1079  1.3898 x 10~ 1@ 2.
MSM 0.0018889 2.9274 x 1077 7.0285 x 1071 4.0516 x 1030 2.
DZ 0.041691 5.5105 x 1078 8.4457 x 10732 5.2177 x 107115 | 3.57209
PM 1.4425 x 10715 1.3731 x 10757  1.6322 x 107297 24848 x 10~ ™! | 3.56056

in spite of its capability to reach high computational efficiency. Recent results pub-
lished in [2] and [3] showed considerably high computational efficiency of methods
with memory using new accelerating techniques based on varying free parameters
calculated by interpolating polynomials in each iteration.

For these reasons, in this paper we have constructed a family of Steffensen-
type methods without memory possessing quadratic convergence with four free
parameters. Then, by using suitable accelerators we have constructed a method
with memory possessing a high computational efficiency index.

Numerical results have also been provided to support the theoretics given in
Sections 2-3. Observing the analytical and numerical results, one may conclude
that the proposed variant of Steffensen’s method with memory is an efficient tool
for solving nonlinear equations.

The application of the developed method for matrix problems (such as the ones
in [8]) and its dynamical studies (see e.g. [1]), will be pursued in future works.
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