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Abstract. In this paper we consider multivariate Lagrange mean-value interpolation problem,
where interpolation parameters are integrals over spheres. We have concentric spheres. Indeed,
we consider the problem in three variables when it is not correct.
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1. Introduction

The interpolation schemes considered so far have one important property in com-
mon: the dimension of the interpolation spaces coincides with the number of in-
terpolation conditions. A different approach has been taken by Kergin [3]. He
gives a linear projection from the space Cn(Rk) (continuous differentiable functions
on Rk) onto the space of polynomials of degree not exceeding n. He constructed, for
given nodes x0, . . . , xn ∈ Rk, an interpolation polynomial of degree not exceeding
n. This interpolant becomes unique because of additional interpolation constraints.
Mean Value Multivariate Lagrange Interpolation Problem MVLIP: Let

D =
{
∆i ⊆ Rk : i = 1, . . . , N

}
be a collection of N measurable subsets of Rk with finite nonzero

mesures. The existence and uniqueness of a polynomial p ∈ Πk
n such that∫

∆ p(x)dx = ci, i = 1, . . . , N, where ci’s are arbitrary given numbers is called
MVLIP.
We denote this mean-value interpolation problem by (Πk

n,D)
m.v.

.

∗Corresponding author. Email: rahseparfard@gmail.com

c⃝ 2013 IAUCTB
http://www.ijm2c.com



36 Kh. Rahsepar Fard/ IJM2C, 03 - 01 (2013) 35-41.

The problem (Πk
n,D)

m.v.
is called correct if for any numbers ci, i = 1, . . . , N

there exists a unique polynomial p ∈ Πk
n satisfying the above conditions. Now let

us explain the general example of mean-value interpolation in arbitrary dimension.
More precisely, we have the following result,

Theorem 1.1 (Kergin)For any set of n + 1 points x0, . . . , xn ∈ Rk there is a
unique mapping

p : Cn(Rk) 7→ Πk
n

with the property that for any f ∈ Cn(Rk), any constant coefficient homogeneous
differential operator q(D), q ∈ Πk

n, and any subset J ⊆ {0, . . . , k} , with #J =
degq + 1, there exists a point x in the convex hull [x(j) : j ∈ J ] such that
(q (D)Pf ) (x) = (q (D) f) (x) .

Due to the complexity of this condition it is not surprising that the main part
of [3] consists of showing the existence of the above interpolation operator which
was done in a nonconstructive way. He gives a proof by mean value theorem and
the above formula for exsintence and uniqueness of interpolation polynomials. This
issue was resolved constructively by Micchelli [8]. It turns out that Kergin interpo-
lation can actually be considered as an extension of the intersection points of hyper
planes. Also, Micchelli and Milman [7] give a proof of the existence of projection
analogous to Newton form of Hermite interpolation. Indeed, substitution of the
univariate Hermite-Genocchi formula

f [x0, . . . , xk] =

∫
[x0,...,xk]

f (k), f ∈ Ck(R),

which expresses the divided difference as a B-spline integral, into the Newton
formula allows us to represent the interpolation polynomial Lkf as

Lkf(x) =

k∑
j=0

∫
[x0,...,xk]

f (j)
j−1∏
n=0

(x− xn), x ∈ R

which can be rewritten in a way as

Lkf (x) =

k∑
j=0

∫
[x0,...,xk]

Dx−x0
. . . Dx−xj−1

f, x ∈ R.

Now, the above formula already gives the Kergin interpolant p with the above
properties by simply replacing the qualifier x ∈ R by x ∈ Rk.

Theorem 1.2 (Micchelli [8])The Kergin interpolation polynomial p is given as

pf (x) =

k∑
j=0

∫
[x0,...,xk]

Dx−x0
. . . Dx−xj−1

f, x ∈ Rk,

and the error of interpolation takes the form

(f − pf ) (x) =

∫
[x0,...,xk]

Dx−x0
. . . Dx−xj−1

f, x ∈ Rk.
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Another approach in this field was considered by Hakop Hakopian. On that case
he introduses the mean-value interpolation problem on lines [1].

2. Materials and Methods

Denote by
∏3

n =
∏

n(R3) the space of interpolation polynomials in three variables
of total degree not exceeding n:

3∏
n

=

p (x, y, z) =
∑

i+j+k≤n

aijkx
iyjzk : i, j, k ∈ Z+

 .

Set N = dim
∏3

n =

(
n+ 3
3

)
.

Let us fix the set of distinct points

χs = {(x1, y1, z1) , . . . , (xs, ys, zs)} ⊂ R3

as the set of nodes of interpolation.
The classic Lagrange pointwise interpolation problem(

∏3
n, χs) is to find a unique

polynomial p ∈
∏3

n such that

(xl, yl, zl) = cl, l = 1, 2, . . . , s, (1)

where cl, l = 1, 2, . . . , s are real numbers.

Definition 2.1 The Lagrange pointwise interpolation problem (
∏3

n, χs) is called
correct, if for any real values cl, l = 1, 2, . . . , s there exists a unique polynomial
p ∈

∏3
n satisfying the conditions (1).

In other words, the Lagrange interpolation problem is to find a unique polynomial

p (x, y, z) =
∑

i+j+k≤n

aijkx
iyjzk ∈

3∏
n

which the conditions (1) reduce to the following linear system

p (xl, yl, zl) =
∑

i+j+k≤n

aijk xily
j
l z

k
l = cl , l = 1, 2, . . . , s. (2)

The correctness of interpolation means that the linear system (2) has a unique
solution for arbitrary right hand side values. A necessary condition for this is s=N.
Note that in this case the linear system (2) has a unique solution for arbitrary
values c,ls, l = 1, 2, . . . , s, if and only if the corresponding homogeneous system
has only trivial solution. In other words we have

Proposition 2.2 The interpolation problem (
∏3

n, χN ) is correct if and only if

p ∈
3∏
n

, p (xl, yl, zl) = 0, l = 1, 2, . . . , N ⇒ p = 0.
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Equivalently: The interpolation problem (
∏3

n, χN ) is not correct if and only if

∃p ∈
3∏
n

, p ̸= 0 such that p (xl, yl, zl) = 0, l = 1, 2, . . . , N (3)

In this paper a mean-value interpolation problem is considered where interpo-
lation parameters are integrals over spheres. Here we are going to find a unique
polynomial p ∈

∏3
n such that

1

µ3(Sl)

∫∫∫
Sl

p(x, y, z) dxdy dz = cl, l = 1, 2, · · · , N, (4)

where cl’s are arbitrary given numbers and Sl’s are spheres and also µ3(Sl) is the

area of Sl. We denote this mean-value interpolation problem by(
∏3

n,S)
m.v.

, where
S is the set of above spheres: S = {Sl : l = 1, 2, . . . , N} .
Same as Definition 1.1 we call the problem (

∏3
n,S)

m.v.
correct if, for any number

cl, l = 1, 2, . . . ,N, there exists a unique polynomial p ∈
∏3

n satisfying (4).
Note that for a Lebesgue integrable function f it is convenient to use this interpo-
lation. (See, [1, p. 203])
An example of correct interpolation problem in dimension two is presented in

[4, 5]. To extend this problem in dimension three consider the following definition.

Definition 2.3 The centroid of the region S is called the point with the coordi-
nates:

x∗ =

∫∫∫
S x dxdy dz

µ3(S)
, y∗ =

∫∫∫
S y dx dy dz

µ3(S)
, z∗ =

∫∫∫
S z dx dy dz

µ3(S)
,

where µ3(S) is an area of the region S.

Statement The problem in Rd with d+1 arbitrary regions and n=1 is correct
if and only if the centroids of the regions are not laying on a hyperplane.

Lemma 2.4 The problem in R3 with four arbitrary regions and n=1 is correct if
and only if the centroids of the regions are not laying on a hyperplane.

Proof Let us show this problem. Let p ∈
∏3

n and
∫∫∫

Sl
pdx dy dz = 0, l = 1, · · · , 4.

Let also the centroids are not collinear. Then∫∫∫
Sl

pdx dy dz = 0 ⇒ p(x∗, y∗, z∗) = 0, l = 1, · · · , 4 ⇒ p = 0

Thus the problem is correct. This result follows from the statement: if Sis bounded
region with non-zero area and p ∈

∏3
1, p (x, y, z) = Ax + By + Cz + D then∫∫∫

Sl
p dxdy dz = µ3 (S) . (Ax⋆ +By⋆ + Cz⋆ +D) if and only if there is

a hyperplane with equation p = 0 passes through the centroid of S. ■

Another special case is considered in [6]. To introduce it let us get a set ∆ be a
measurable set in Rd with finite non-zero measure. The following set we call λ−
shift of ∆

∆λ =
{
y + λ : y ∈ Rd

}
.
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Let us fix a set of Nd = dim
∏d

n =

(
n+ d
d

)
distinct nodes

Λ = {λl : l = 1, . . . , Nd} ⊂ Rd. The following set we call the set of Λ− shifts
of ∆

Λ(∆) := {∆λ : λ ∈ Λ}

Theorem 2.5 Suppose that µd() ̸= 0. Then the mean-value interpo-

lation (
∏d

n,Λ ())
m.v.

is correct if and only if the Lagrange pointwise

interpolation problem (
∏d

n,Λ)is correct.

Consider an arbitrary set of N distinct balls of same
radiusr : B := {Bal,r : l = 1, . . . , Nd} . Let A = {al : l = 1, . . . , Nd} be the
set of centers of the balls.

Theorem 2.6 The mean-value interpolation (
∏d

n,B) is correct if and only if the

Lagrange pointwise interpolation (
∏d

n, A) is correct.

In the next section we consider the multivariate mean-value interpolation for
polynomials of arbitrary degree with regions which are concentric spheres. We
conclude that in this case the problem is not correct.

3. Results and Discussion

Let us consider a mean-value interpolation with polynomials of arbitrary de-
gree and the regions are the above spheres, i.e, the mean-value interpolation
problem(

∏3
n,S)

m.v.
. Denote by [x] the greatest integer less than or equal to x.

Theorem 3.1 Suppose that among regions of interpolation problem (
∏3

n,S)
m.v.

there are [n2 ] + 2 concentric spheres, where n ≥ 1. Then the mean-value interpo-

lation problem (
∏3

n,S)
m.v.

is not correct.

For proof of this theorem we need the following

Lemma 3.2 Assume that Theorem 3.1 is valid for n = 2t then it is valid for
n = 2t+ 1, too.

Proof We assume that the parameters related to the concentric spheres are linearly
dependent in the case n = 2t, i.e.,

t+2∑
l=1

cl

∫∫∫
sl

p dxdy dz = 0, ∀p ∈
3∏
2t

,

Where not all Sl’s are zero. Without loss of generality, assume that the center of
concentric spheres is the origin. Now for any p ∈

∏3
2k+1we have

t+2∑
l=1

cl

∫∫∫
sl

p(x, y, z) dxdy dz =

t+2∑
l=1

cl

∫∫∫
sl

a2t+1,0,0x
2t+1 dxdy dz + · · ·

+

t+2∑
l=1

cl

∫∫∫
sl

a0,0,2t+1z
2t+1 dxdy dz +

t+2∑
l=1

cl

∫∫∫
sl

q(x, y, z) dxdy dz
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where q ∈
∏3

2t . Hence

t+2∑
l=1

cl

∫∫∫
sl

p(x, y, z) dxdy dz = 0 + · · ·+ 0 +

t+2∑
l=1

cl

∫∫∫
sl

q(x, y, z) dx dy dz

Therefore we have same linear dependence for
∏3

2k+1 :

t+2∑
l=1

cl

∫∫∫
sl

p(x, y, z) dxdy dz =

t+2∑
l=1

cl

∫∫∫
sl

q(x, y, z) dx dy dz = 0

■

Proof [of Theorem 3.1] First consider the case n = 1. This case follows from
Lemma 2.4, since the center of two concentric spheres and the centers of other
spheres are on a hyperplane.
In view of Lemma 3.2 it is sufficient to assume that n = 2t, where n > 1.
To prove the mean-value interpolation is not correct, according to proposition

1.1 it is enough to show

∃p ∈
3∏
n

\{0}, such that

∫∫∫
sl

p(x, y, z) dxdy dz = 0, l = 1, · · · , N (5)

where Sl’s, l = 1, . . . , t + 2 are the concentric spheres with center (0, 0, 0)
and radius rl and N − (t + 2) other regions are arbitrary given. If the degree of
monomials x or y or z are odd the integral of monomials on concentric spheres
will equal to zero. Thus we can consider only the even monomials.
One can compute the integral over concentric spheres∫∫∫

sl

p(x, y, z) dx dy dz = r3l

∫∫∫
s:x2+y2+z2⩽1

p(rlx, rly, rlz) dxdy dz

= r3l

∫∫∫
s

∑
i+j+k⩽n

aijkx
iyjzk dxdy dz

= r3l

∫∫∫
s

∑
i+j+k⩽n

aijkr
i+j+k
l

∫∫∫
xiyjzk dx dy dz

Hence,∫∫∫
sl

p(x, y, z) dx dy dz = r3l
4

3
π[a0,0,0r

0
l + r2l

1

5
(a2,0,0 + a0,2,0 + a0,0,2)] + · · ·

+ r2t+2
l [a2t,0,0

∫∫∫
sl

x2t(x, y, z) dxdy dz

+ a2t−2,2,0

∫∫∫
sl

x2t−2y2(x, y, z) dx dy dz + · · ·

a0,0,2t

∫∫∫
sl

z2t(x, y, z) dxdy dz]

(6)

Thus in view of the relation∫∫∫
sl
p(x, y, z) dxdy dz =

∑
i+j+k⩽n aijk

∫∫∫
xiyjzk dx dy dz = 0, l = 1, · · · , N and
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formula (6) we have the following homogeneous linear system:

a0,0,0 = 0,

a2,0,0 + a0,2,0 + a0,0,2 = 0,

.,

.,

a2t−2,0,0

∫∫∫
sl

x2t−2 dxdy dz + · · ·+ a0,0,2t−2

∫∫∫
sl

z2t−2 dxdy dz = 0,

a2t,0,0

∫∫∫
sl

x2t dxdy dz + a2t−2,0,0

∫∫∫
sl

x2t−2y2 dxdy dz + · · ·

+ a0,0,2t

∫∫∫
sl

z2t dxdy dz]

Next we add to this system the homogeneous conditions over the remaining we
add to this system the homogeneous conditions from (5) over the other arbitrary
regions: ∫∫∫

sl

p(x, y, z) dxdy dz = 0, l = t+ 3, . . . , N.

Now the resulting system has N − 1 equations and N unknowns which are the
coefficients of p. Therefore it has a non-trivial solution. It is easily seen that the
polynomial with these coefficients satisfy (5). Hence the problem is not correct. ■

4. Conclusion

In this research one can conclude that the corresponding interpolation polynomials
are not unique. Namely, if some the regions are concentric spheres on the space
then the interpolation problem is not poised.
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