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Abstract. In this paper, Kriging has been chosen as the method for surrogate construction.
The basic idea behind Kriging is to use a weighted linear combination of known function
values to predict a function value at a place where it is not known. Kriging attempts to
determine the best combination of weights in order to minimize the error in the estimated
function value. Because the actual function value is not known, the error is modeled using
probability theory and then minimized. The result is a linear system of equations that can be
solved to find a unique combination of weights for a given point at which interpolation is to
be performed.
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1. Introduction

In optimizing Problem a computationally expensive function in an engineering ap-
plication, it is advantageous to obtain predictions of the function behavior without
performing many costly function evaluations. In this paper, we present methods
that take advantage of surrogates to predict and approximate function behavior
for use in optimization. The term “surrogate” as applied to optimization is an um-
brella term referring to any instance in which the true function is replaced by a
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stand-in. A surrogate can be an approximation of the true function, a simplified
physics model, a ”yes or no” answer, or anything else that substitutes for the true
function during optimization.
Surrogate functions have been successfully used in a trust region method by

Chung & Alonso [5]. In this work, gradient information was used to construct
Cokriging approximations, Kriging approximations which incorporate derivative
information. Their work showed that the use of gradients allows for a more accu-
rate model with many fewer points compared to a standard Kriging surrogate. In
evolutionary algorithms, surrogate functions have been used to reduce the cost of
optimization by Ong et al. [14]. A nice overview of the use of surrogate methods
in engineering is given in Guinta [7].
The surrogate management framework (SMF) was developed to increase the

efficiency of pattern search methods for expensive problems that may have little
or no gradient information. The surrogate management framework falls into both
the categories of approximation modeling methods and pattern search methods.
However, the convergence analysis for the expensive problem is independent of the
accuracy of the approximate modeling approach used. The SMF method provides
a robust and efficient alternative to traditional gradient method such as gradient
methods which use an adjoint the use of surrogate functions.

2. Construction of Surrogate Models Using Kriging

One of the important features of SMF is the use of a surrogate to predict the
minimum of the cost function. This section is meant to be a tutorial in which the
construction of surrogate models using Kriging is discussed in detail. Other types
of surrogate models which we do not discuss here include polynomials (response
surfaces) and splines. Comparisons of response surface and Kriging models are
presented by Simpson et al. (1998) and Guinta & Watson [8]. Kriging originated
in the field of geostatistics, as presented in Isaaks & Srivastava [10], and is named
for South African geologist Krige. It is a statistical method based on the use of
spatial correlation functions.
In this work, Kriging has been chosen as the method for surrogate construction

for several reasons. First, it is easily extended to multiple dimensions, making it
attractive for construction of surrogates in optimization with several parameters.
As the dimension increases, polynomials and splines both become problematic and
may produce spurious oscillations.
Construction of surrogate models for computer generated data calls for different

statistical techniques than an experiment done in a lab. Unlike lab measurements,
computer simulations are deterministic, meaning that they are repeatable with
no random error. This difference has ramifications when constructing surrogate
models. One is that the adequacy of the model fitted through the observed data
is determined by systematic bias and not by random error. Another is that the
usual measures of least squares uncertainty have no obvious statistical meaning
when applied to deterministic data. The first work that looked at experimental
design specific to deterministic computer codes was McKay et al. In their paper
Latin hypercube sampling (LHS) was introduced as a method of choosing well
distributed data sets for computer experiments.
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2.1 Intuitive Construction Of A Kriging Surrogate

The basic idea behind Kriging is to use a weighted linear combination of known
function values to predict a function value at a place where it is not known. Kriging
attempts to determine the best combination of weights in order to minimize the
error in the estimated function value. Because the actual function value is not
known, the error is modeled using probability theory and then minimized. The
result is a linear system of equations that can be solved to find a unique combination
of weights for a given point at which interpolation is to be performed.
We first demonstrate this concept using a more intuitive explanation, and then

present a formal derivation. Let us assume that we wish to approximate a function
v at location x0 given a set of n known data points vi(xi), i = 1, . . . , n. To do this,
we must choose a vector of weights wi to act on the known points. The resulting
predicted value of the function v0(x0) will be a weighted sum of known values

v0(x0) =

n∑
j=1

wivi(xi) (1)

To find the values of the weights, we model the covariance Cij , which depends
on the distribution of the known data points. The covariance describes, in terms
of probability, the degree to which a function value at a given point is similar to
values nearby. An example of Gaussian covariance is

Cij = exp(−((xi − xj)/a)
2) (2)

Where a is a constant to be chosen. We note that the dimension of the problem
only appears when taking the Euclidean norm in the above expression. For this
reason, the method is easily extended to high dimensional problems with no change
in complexity. Using the covariance, we construct the following linear system


C11 C12 . . . C1n 1
C21 C22 . . . C2n 1
...

...
...

...
...

Cn1 Cn2 . . . Cnn 1
1 1 . . . 1 0




w1

w2
...
wn

λ

 =


C10

C20
...

Cn0

1

 (3)

Row n + 1 in the above matrix ensures that the weights sum to one, and λ is a
Lagrange multiplier introduced in the Kriging error minimization. The entries in
the correlation matrix on the left hand side of Equation (3) represent how well
correlated a given known point is with another known point. The entries in the
vector on the right hand side gives the correlation between the unknown data point
x0 and each of the known data points xi. The system of equations in (3) can be
inverted to find the weights wi, and then substituted into Equation (1) to give the
interpolated function value v0 at the location x0. The following section formalizes
these concepts.



38 B. Azarkhalili et al./ IJM2C, 02 - 01 (2012) 35 -44.

2.2 Formal Derivation of Kriging Surrogates

Following Sacks et al. [16] and Lophaven et al. we derive an expression for a general
Kriging approximation. Kriging is also developed in detail by Koehler & Owen .
We wish to approximate the function value at an unknown location x ∈ Rn based
on a set of known data points. We start with m known data points {si} ∈ Rn

and define ys ∈ Rm to be the column vector whose elements are the corresponding
function values, i.e. [ys]i = {y(si)}, i = 1, 2, . . . ,m.
If the number of dimensions is n, each si is a vector of n elements and each y(si)

is a scalar function value. We wish to predict the value of the function based on
the values of known points, so we consider the linear predictor

y(x) = cT (x)ys (4)

Where c(x) ∈ Rm (hereafter referred to as c for simplicity) is a vector of weights
applied to the known functions values ys. By determining a set of weights c, we
will be able to find an approximation of the function at any location x given a
set of known data points. We may assume that the deterministic function y(x)
can be modeled as the realization of a stochastic process Y (x), which is the sum
of a regression model having basis functions fj : R → R and coefficients βj ,
j = 1, 2, . . . , k, and a random function Z : Rn → R, giving

Y (x) =
n∑

j=1

βifj(x) + Z(x) or

Y (x) = βT f(x) + Z(x) (5)

Where β = (β1, β2, . . . , βk)
T and f(x) = (f1(x), f2(x), . . . , fk(x))

T . For any point
x ∈ Rn, the random process Z(x) is assumed to have zero mean, variance σ2, and
correlation R(w, x) between x and any other point w. The covariance of Z is then

E [z1(w)z1(x)] = σ2R(w, x) (6)

Choice of regression model f(x) and correlation functionR(w, x) will be discussed
at the end of this section. Because we are modeling ys as a random process, the
predictor becomes

y(x) = cT (x)Ys (7)

We can now compute the mean square error (MSE) of the predictor averaged
over the random process. The best choice of Kriging weights will be determined
by minimizing the MSE of the predictor, which is the error between the predicted
value and the actual value at location x,

MSE[y(x)] = E
[
cT (x)Y s− Y (x)

]2
(8)

Where Y s ∈ Rm is the vector defined by [Ys]i = Y (si), i = 1, 2, . . . ,m. Letting
F = [f(s1), . . . , f(sm)] ∈ Rk×m and Z = [z1, . . . , zm] we have

Ys = Fβ + Z (9)
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and

Y (x) = fT (x)β + z (10)

Then,

cTYs − Y (x) = cT (Fβ + Z)− (fT (x)β + z) = cTZ − z + F T c− f(x)β (11)

Where z is a realization of Z(x), and z1, . . . , zm are realizations of Z(si), i =
1, 2, . . . ,m. We impose an unbiasedness constraint, ensuring the weights c must
sum to one,

F T c(x)− f(x) = 0 (12)

so that (15) becomes

cTYs − Y (x) = cTZ − z (13)

Now, the MSE is

MSE[y(x)] = E[(cTZ − z)2] = E[z2 + cTZZT c− 2cTZz] (14)

From the covariance of Z, we have E[z2] = σ2, E[Zz] = σ2r and E[ZZT ] = σ2R,
where r ∈ Rm is a vector of correlations between the known points and an untried
point x,and R ∈ Rm×m is the matrix of correlations between the known points.
With this, the MSE becomes

MSE[y(x)] = σ2(1 + cTRc− 2cr) (15)

We wish to find the weights c that minimizes the MSE subject to the constraint
(16). To do this, we use the method of Lagrange multipliers with the Lagrangian
function

L(c, λ) = σ2(1 + cTRc− 2cr)− λT (F T c− f) (16)

The gradient of the Lagrangian (20) with respect to c is

L′
c(c, λ) = 2σ2(Rc− r)− Fλ (17)

Setting the gradient to zero to find the minimum, we obtain the set of equations

Rc+ Fλ∗ = r

F T c = f (18)

where λ∗ = −λ/2σ2. Or, in matrix form,(
R F
F T 0

)(
c
λ∗

)
=

(
r
f

)
(19)
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Solving this system of equations yields

λ∗ = (F TR−1F )−1(F TR−1r − f)

c = R−1(r − Fλ∗) (20)

The correlation matrix R and also R−1 are symmetric. So, substituting the solution
(24) Into the predictor (12), we have

Figure 1. Examples of a Kriging Fit Using Values of θ = 1 (top), θ = 5 (Middle) and θ = 20 (Lower) for
the Same data set. Function y(x) is Known at Five Data Points (Dots) and Approximated with a Kriging
Function (Solid Line).

y(x) = (r − Fλ∗)TR−1Ys = rTR−1Ys − λ∗TF TR−1Ys

= rTR−1Ys − (F TR−1r − f)T (F TR−1F )−1F TR−1Ys (21)

Defining

β∗ = (F TR−1F )−1F TR−1Ys

γ∗ = R−1(Y − Fβ∗) (22)
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We have

y(x) = f(x)Tβ∗ + r(x)TR−1(Ys − Fβ∗) (23)

and

y(x) = f(x)Tβ∗ + r(x)Tγ∗ (24)

For a given set of data and choice of regression and correlation functions, β∗ and
γ∗ are fixed and need not be recomputed for each new point x.
To check that the Kriging predictor exactly interpolates the known data, we let

x = si, one of the known data points. Then R−1r(x) = ei the unit vector and
(2.26) gives

y(si) = f(si)
Tβ∗ + eTi (Ys − Fβ∗) = f(si)β

∗ + yi − Fi, β∗ = yi (25)

2.3 Choosing Kriging Correlation Function

To complete our description of Kriging surrogate models we must choose a re-
gression model and a correlation function. The most common choice of regression
model is simply f(x) = 1 so that Equation (2.14) becomes

Y = β + Z (26)

With this regression function, the Kriging predictor (2.26) becomes

y(x) = β∗ + r(x)TR−1(Ys − 1.β∗)

β∗ = (
∑
j

Ys(j)
∑
j

R−1
ij )(

∑
i,j

R−1
ij )−1 (27)

Other common choices for the regression model are first or second order polynomi-
als. The correlation function is chosen to be the product of stationary one dimen-
sional correlation. This makes the model easily extendable to multiple dimensions.
The correlation between two points x and w is then

R(θ, w, x) =

n∏
j=1

Rj(θ, wj − xj) (28)

A common choice of correlation function is to express the correlation between two
points x and w in terms of a Gaussian process

R(θ, w, x) =
n∏

j=1

exp(−θj(wj − xj)
2) (29)

The Kriging surrogate in (29) is completed with the matrix of correlations be-
tween the values of z at any two known design sites, which is defined by

Rij = R(θ, si, sj), i, j = 1, 2, . . . ,m (30)
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And the vector of correlations between the value of z at a known design site and
any point x.

r(x) = [R(θ, s1, x), . . . , R(θ, sm, x)] (31)

Other commonly used correlation functions include exponential, spline, cubic,
spherical and linear. These are discussed in greater detail in Lophaven et al.
Assuming a Gaussian correlation function, the only remaining piece left to define

is the choice of the parameter θ. The optimal value θ∗ of θ is found using maximum
likelihood estimation in each dimension, so that θ∗ solves

min
θ

{
ψ(θ) ≡ |R|

1

mσ∗2
}

(32)

Where |R| is the determinant of R, and

σ∗2 =
1

m
(ys − Fβ∗)TR−1(ys − Fβ∗) (33)

In practice, the value of the parameter θ determines the smoothness of the Krig-
ing approximation. The value of θ can be viewed as a knob that is dialed up or
down to change the radius of influence of a data point on the surrounding ap-
proximation. Smaller values of theta will result in a smoother surface, in which
the radius of influence is large, whereas larger values of theta makes the surface
approximation less smooth and the radius of influence smaller. Examples of one di-
mensional Kriging function fits using progressively increasing values of θ are shown
in Figure 1. In the top plot, we see that a low value of θ = 1 gives the smoothest
fit, but may also result in large overshoots of the data. In the lower plot, we see
that using a high value of θ = 20 results in a function fit that only deviates from
the mean value in the immediate neighborhood of the data points. In general, it is
best to choose a moderate value of θ, as shown in them iddleplot.

3. Well-Conditioned Kriging

Another modification to Kriging models offers a solution to the well-known problem
of “pileup” of points. It has been observed that the similarity of Kriging surrogates
to the true function tends to deteriorate as points become clustered close together,
especially nearing convergence. In addition, the problem of determining param-
eters for Kriging models often becomes ill-conditioned as points pile up due to
the very small distances between points. Improvement to surrogate models in the
presence of clustering is important for maintaining the usefulness of surrogates as
the optimization proceeds. An elegant solution to this problem has been proposed
and tested by Booker [4] and discussed further in Audet et al. Booker proposes to
model the output as the sum of two stochastically independent Gaussian processes.
The first uses the original correlation parameters, estimated from the first set of
known points. The second uses a finer correlation structure. The Kriging model is
thus constructed by the following sum

Y (x) = β + Z1(x) + Z2(x), (34)
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Where Z1 and Z2 are independent of each other. The resulting correlation function
for Y is then

R(x,w) = λR1(x,w) + (1− λ)R2(x,w) (35)

where

λ = σ21(σ
2
1 + σ22)

−1 (36)

and Ri and σi correspond to Zi. This method potentially offers increased accuracy
and cost savings and should be studied further in future engineering optimization
problems.

4. Conclusion

There are several variations of the surrogate management framework that can
offer savings in computational cost, and improvements in cost function reduction.
In problems with full or even partial gradient information, large gains in efficiency
and cost function reduction are often possible. Automatic differentiation (Bischof
et al.) and adjoint solvers (Jameson, [11] b,a; Jameson et al. [12]) are promising
methods for obtaining gradient information, even for complex problems. The SMF
method is general enough to incorporate gradient information in a number of ways.
Another use of gradient information is in the construction of Kriging models.

Gradients can be incorporated into Kriging models using a method called Cokrig-
ing. Use of models constructed with Cokriging has been demonstrated by Chung
& Alonso [5]. In their work, it was demonstrated that a highly accurate surro-
gate can be constructed using very few points with their corresponding gradient
information.
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