International Journal of Mathematical Modelling & Computations Vol. 04, No. 01, Winter 2014, 17- 23

$(\delta, \gamma, 2)$ -Bessel Lipschitz Functions in the Space $L_{2,\alpha}(\mathbb{R}^+)$

M. El Hamma^{a,*} and R. Daher^b

^aDepartment of Mathematics, Faculty of sciences Aïn Chock, University of Hassan II, Casablanca, Morocco;

^bDepartment of Mathematics, Faculty of sciences Aïn Chock, University of Hassan II, Casablanca, Morocco.

Abstract. Using a generalized translation operator, we obtain a generalization of Theorem 5 in [4] for the Bessel transform for functions satisfying the $(\delta, \gamma, 2)$ -Bessel Lipschitz condition in L_{2,\(\alpha\)}(\(\mathbb{R}^+\)).

Received:12 August 2013, Revised:28 september 2013, Accepted:7 October 2013.

Keywords: Bessel operator, Bessel transform, Generalized translation operator.

Index to information contained in this paper

- 1 Introduction and Preliminaries
- 2 Main Results
- 3 Conclusion

1. Introduction and Preliminaries

Integral transforms and their inverses are widely used solve various in calculus, mechanics, mathematical, physics, and computational mathematics (see, e.g., [7, 9, 10]).

In [4], we proved theorem related the Bessel transform and (k, γ) -Bessel Lipschitz functions. In this paper, we prove a generalization of this theorem for this transform in the space $L_{2,\alpha}(\mathbb{R}^+)$. For this purpose, we use a generalized translation operator.

Assume that $L_{2,\alpha} = L_{2,\alpha}(\mathbb{R}^+)$, $\alpha > -\frac{1}{2}$, is the Hilbert space of measurable functions f(x) on \mathbb{R}^+ with the finite norm

$$||f||_{2,\alpha} = \left(\int_0^\infty |f(x)|^2 x^{2\alpha+1} dx\right)^{1/2}.$$

^{*}Corresponding author. Email: m_elhamma@yahoo.fr.

Let

$$B = \frac{d^2}{dt^2} + \frac{(2\alpha + 1)}{t} \frac{d}{dt},$$

be the Bessel differential operator.

For $\alpha > -\frac{1}{2}$, we introduce the Bessel normalized function of the first kind j_{α}

$$j_{\alpha}(x) = \Gamma(\alpha + 1) \sum_{n=0}^{\infty} \frac{(-1)^n (x/2)^{2n}}{n! \Gamma(n+\alpha+1)},$$

where $\Gamma(x)$ is the gamma-function (see [6]).

LEMMA 1.1 [1] The following inequalities are valid for Bessel function j_{α}

- (1) $|j_{\alpha}(x)| \leq 1$ (2) $1 j_{\alpha}(x) = O(x^2); \ 0 \leq x \leq 1.$

Lemma 1.2 The following inequality is true

$$|1 - j_{\alpha}(x)| \geqslant c$$

with $x \ge 1$, where c > 0 is a certain constant.

Proof Analog of Lemma 2.9 in [3]

The Bessel transform of a function $f \in L_{2,\alpha}$ is defined (see [5, 6, 8]) by the formula

$$\widehat{f}(\lambda) = \int_0^\infty f(t) j_\alpha(\lambda t) t^{2\alpha+1} dt; \quad \lambda \in \mathbb{R}^+.$$

The inverse Bessel transform is given by the formula

$$f(t) = (2^{\alpha}\Gamma(\alpha+1))^{-2} \int_0^{\infty} \widehat{f}(\lambda) j_{\alpha}(\lambda t) \lambda^{2\alpha+1} d\lambda.$$

From [5], we have the Parseval's identity

$$\|\widehat{f}\|_{2,\alpha} = (2^{\alpha}\Gamma(\alpha+1))\|f\|_{2,\alpha}.$$

In $L_{2,\alpha}$, consider the generalized translation operator T_h defined by

$$T_h f(t) = c_{\alpha} \int_0^{\pi} f(\sqrt{t^2 + h^2 - 2th\cos\varphi}) \sin^{2\alpha}\varphi d\varphi,$$

where

$$c_{\alpha} = \left(\int_{0}^{\pi} \sin^{2\alpha} \varphi d\varphi\right)^{-1} = \frac{\Gamma(\alpha+1)}{\Gamma(1/2)\Gamma(\alpha+\frac{1}{2})}$$

From [2], we have

$$\widehat{(\mathbf{T}_h f)}(\lambda) = j_{\alpha}(\lambda h)\widehat{f}(\lambda) \tag{1}$$

We note the important property of the Bessel transform: If $f \in L_{2,\alpha}$ then

$$\widehat{\mathbf{B}f}(\lambda) = (-\lambda^2)\widehat{f}(\lambda). \tag{2}$$

The finite differences of the first and higher orders are defined as follows

$$\Delta_h f(x) = T_h f(x) - f(x) = (T_h - \mathcal{E}_{2,\alpha}) f(x),$$

$$\Delta_h^k f(x) = \Delta_h(\Delta_h^{k-1} f(x)) = (\mathbf{T}_h - \mathbf{E}_{2,\alpha})^k f(x) = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} \mathbf{T}_h^i f(x), \quad (3)$$

where $T_h^0 f(x) = f(x), T_h^i f(x) = T_h(T_h^{i-1} f(x)); i = 1, 2, ..., k.; k = 1, 2,$ and $E_{2,\alpha}$ is a unit operator in $L_{2,\alpha}$.

Let $\mathbf{W}^k_{2,\alpha}$ be the Sobolev space constructed by the Bessel operator B, i.e.,

$$W_{2,\alpha}^k = \{ f \in L_{2,\alpha}, B^j f \in L_{2,\alpha}; j = 1, 2, ..., k \}.$$

In [4], we have the following result

Theorem 1.3 Let $f \in L_{2,\alpha}$. Then the following are equivalents

- (1) $f \in Lip(k, \gamma, 2), \ 0 < k < 1, \ \gamma \geqslant 0,$ (2) $\int_r^{\infty} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = O(r^{-2k} (\log r)^{2\gamma}) \ as \ r \longrightarrow +\infty,$

where

$$Lip(k,\gamma,2) = \{ f \in \mathcal{L}_{2,\alpha}, \|\mathcal{T}_h f(t) - f(t)\|_{2,\alpha} = O\left(\frac{h^k}{(\log \frac{1}{h})^{\gamma}}\right) \text{ as } h \longrightarrow 0 \}.$$

The main aim of this paper is to establish a generalization of Theorem 1.3

Main Results

In this section we present the main result of this paper. We first need to define the $(\delta, \gamma, 2)$ -Bessel Lipschitz class.

Definition 2.1 Let $0 < \delta < 1$, $\gamma \geqslant 0$ and r = 0, 1, ..., k. A function $f \in W_{2,\alpha}^k$ is said to be in the $(\delta, \gamma, 2)$ -Bessel Lipschitz class, denoted by $Lip(\delta, \gamma, 2)$; if

$$\|\Delta_h^k \mathbf{B}^r f(x)\|_{2,\alpha} = O\left(\frac{h^\delta}{(\log \frac{1}{h})^\gamma}\right) \text{ as } h \longrightarrow 0.$$

LEMMA 2.2 Let $f \in W_{2,\alpha}^k$. Then

$$\|\Delta_h^k \mathbf{B}^r f(x)\|_{2,\alpha}^2 = \frac{1}{(2^{\alpha} \Gamma(\alpha+1))^2} \int_0^{\infty} \lambda^{4r} |1 - j_{\alpha}(\lambda h)|^{2k} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda,$$

where r = 0, 1, ..., k

Proof From formula (2), we have

$$\widehat{\mathbf{B}^r f}(\lambda) = (-1)^r \lambda^{2r} \widehat{f}(\lambda) \tag{4}$$

By formulas (1) and (4), we conclude that

$$\widehat{\mathbf{T}_{h}^{i}}\widehat{\mathbf{B}^{r}}f(\lambda) = (-1)^{r}t^{2r}j_{\alpha}^{i}(th)\widehat{f}(\lambda), 1 \leqslant i \leqslant k.$$
(5)

From formulas (3) and (5) follows that the Bessel transform of $\Delta_h^k B^r f(x)$ is $(-1)^r \lambda^{2r} (j_{\alpha}(\lambda h) - 1)^k \widehat{f}(\lambda).$

Theorem 2.3 Let $f \in W_{2,\alpha}^k$. Then the followings are equivalents

(1)
$$f \in Lip(\delta, \gamma, 2)$$
,
(2) $\int_s^\infty \lambda^{4r} |\hat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = O\left(\frac{s^{-2\delta}}{(\log s)^{2\gamma}}\right) \text{ as } s \longrightarrow +\infty.$

Proof 1) \Longrightarrow 2) Assume that $f \in Lip(\delta, \gamma, 2)$. Then we have from Lemma 2.2

$$\|\Delta_h^k B^r f(x)\|_{2,\alpha}^2 = \frac{1}{(2^{\alpha} \Gamma(\alpha+1))^2} \int_0^{\infty} \lambda^{4r} |1 - j_{\alpha}(\lambda h)|^{2k} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda,$$

If $\lambda \in [\frac{1}{h}, \frac{2}{h}]$ then $\lambda h \geqslant 1$ and Lemma 1.2 implies that

$$1 \leqslant \frac{1}{c^{4k}} |1 - j_{\alpha}(\lambda h)|^{2k}.$$

Then

$$\begin{split} \int_{1/h}^{2/h} \lambda^{4r} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda &\leqslant \frac{1}{c^{4k}} \int_{1/h}^{2/h} \lambda^{4r} |1 - j_{\alpha}(\lambda h)|^{2k} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda \\ &\leqslant \frac{1}{c^{4k}} \int_0^{\infty} \lambda^{4r} |1 - j_{\alpha}(\lambda h)|^{2k} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda \\ &= O\left(\frac{h^{2\delta}}{(\log \frac{1}{h})^{2\gamma}}\right). \end{split}$$

We have

$$\int_{s}^{2s} \lambda^{4r} |\widehat{f}(\lambda)|^{2} \lambda^{2\alpha+1} d\lambda \leqslant C \frac{s^{-2\delta}}{(\log s)^{2\gamma}},$$

where C is a positive constant.

So that

$$\begin{split} \int_{s}^{\infty} \lambda^{4r} |\widehat{f}(\lambda)|^{2} \lambda^{2\alpha+1} d\lambda &= \left[\int_{s}^{2s} + \int_{2s}^{4s} + \int_{4s}^{8s} + \right] |\widehat{f}(\lambda)|^{2} \lambda^{2\alpha+1} d\lambda \\ &\leqslant C \frac{s^{-2\delta}}{(\log s)^{2\gamma}} + C \frac{(2s)^{-2\delta}}{(\log 2s)^{2\gamma}} + C \frac{(4s)^{-2\delta}}{(\log 4s)^{2\gamma}} + \\ &\leqslant C \frac{s^{-2\delta}}{(\log s)^{2\gamma}} \left(1 + 2^{-2\delta} + (2^{-2\delta})^{2} + (2^{-2\delta})^{3} + \right) \\ &\leqslant C C_{\delta} \frac{s^{-2\delta}}{(\log s)^{2\gamma}}, \end{split}$$

where $C_{\delta} = (1 - 2^{-2\delta})^{-1}$ since $2^{-2\delta} < 1$.

This proves that

$$\int_{s}^{\infty} \lambda^{4r} |\widehat{f}(\lambda)|^{2} \lambda^{2\alpha+1} d\lambda = O\left(\frac{s^{-2\delta}}{(\log s)^{2\gamma}}\right) \ as \ s \longrightarrow +\infty$$

 $2) \Longrightarrow 1$) Suppose now that

$$\int_{s}^{\infty} \lambda^{4r} |\widehat{f}(\lambda)|^{2} \lambda^{2\alpha+1} d\lambda = O\left(\frac{s^{-2\delta}}{(\log s)^{2\gamma}}\right) \ as \ s \longrightarrow +\infty$$

We write

$$\int_0^\infty \lambda^{4r} |1 - j_\alpha(\lambda h)|^{2k} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha + 1} d\lambda = I_1 + I_2$$

where

$$I_1 = \int_0^{1/h} \lambda^{4r} |1 - j_\alpha(\lambda h)|^{2k} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha + 1} d\lambda,$$

and

$$I_2 = \int_{1/h}^{\infty} \lambda^{4r} |1 - j_{\alpha}(\lambda h)|^{2k} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha + 1} d\lambda.$$

Estimate the summands I_1 and I_2 from above. It follows from the formula $|j_{\alpha}(\lambda h)| \leq 1$ that

$$I_{2} = \int_{1/h}^{\infty} \lambda^{4r} |1 - j_{\alpha}(\lambda h)|^{2k} |\widehat{f}(\lambda)|^{2} \lambda^{2\alpha + 1} d\lambda$$

$$\leq 4^{k} \int_{1/h}^{\infty} \lambda^{4r} |\widehat{f}(\lambda)|^{2} \lambda^{2\alpha + 1} d\lambda$$

$$= O\left(\frac{h^{2\delta}}{(\log \frac{1}{h})^{2\gamma}}\right)$$

To estimate I_1 , we use the inequality (2) of Lemma 1.1 Set

$$\psi(x) = \int_{r}^{\infty} \lambda^{4r} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda.$$

Using integration by parts, we obtain

$$I_{1} \leqslant -C_{1}h^{4k} \int_{0}^{1/h} t^{4k} \psi'(t) dt$$

$$\leqslant C_{1}\psi(\frac{1}{h}) + 4C_{1}kh^{4k} \int_{0}^{1/h} t^{4k-1}\psi(t) dt$$

$$\leqslant C_{2}h^{4k} \int_{0}^{1/h} t^{4k-1}t^{-2\delta} (\log t)^{-2\gamma} dt$$

$$\leqslant C_{3}h^{-2\delta} (\log \frac{1}{h})^{-2\gamma},$$

where C_1, C_2 and C_3 are positive constants and this ends the proof.

COROLLARY 2.4 Let $f \in W_{2,\alpha}^k$, and let

$$f\in Lip(\delta,\gamma,2)$$

Then

$$\int_{s}^{\infty} |\widehat{f}(\lambda)|^{2} \lambda^{2\alpha+1} d\lambda = O\left(\frac{s^{-2\delta-4r}}{(\log s)^{2\gamma}}\right) \ as \ s \longrightarrow +\infty$$

3. Conclusion

In this work we have succeded to generalise the theorem 5 in [4] for the Bessel transform in the Sobolev space $W_{2,\alpha}^k$ constructed by the Bessel operator B. We proved that $f \in Lip(\delta, \gamma, 2)$ if and only if $\int_s^{+\infty} \lambda^{4r} |\widehat{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = O\left(\frac{s^{-2\delta}}{(\log s)^{2\gamma}}\right)$ as $s \longrightarrow +\infty$.

References

- Abilov. V. A and Abilova. F. V, Approximation of Functions by Fourier-Bessel Sums, Izv. Vyssh. Uchebn. Zaved., Mat., 8 (2001) 3-9.
- [2] Abilov. V. A, Abilova. F. V and Kerimov. M. K, On Estimates for the Fourier-Bessel Integral Transform in the $L_2(\mathbb{R}_+)$, Comp. Math. Math. Phys, **49** (7) (2009) 1103-1110.
- [3] Belkina. E. S and Platonov. S. S, Equivalence of K-Functionals and Modulus of Smoothness Contracted by Generalized Dunkl Translations, Izv. Vyss. Ucheb. Zaved. Math, 8 (2008) 3-15.
- [4] Daher. R and El Hamma. M, Bessel Transform of (k, γ) -Bessel Lipschitz Functions, Journal of Mathematics, Article ID 418546. (2013).
- [5] Kipriyanov I. A, Singular Elliptic Boundary Value Problems, [in Russian], Nauka, Moscow (1997).
- [6] Levitan. B. M, Expansion in Fourier series and integrals over Bessel functions, Uspekhi Mat. Nauk,6 (2) (1951) 102-143.
- [7] Titchmarsh. E. C, Introduction to the theory of Fourier Integrals, Claredon, Oxford (1948).
- [8] Trim. Kèche, Transmutation operators and mean-periodic functions associated with differential operators, Math. Rep., 4 (1) (1988) 1-282.
- Watson. G. N, Treatise on the Theory of Bessel Functions, Inostrannaya Literatura, Moscow, (1949), Cambridge Univ. Press, Cambridge (1952).
- [10] Zayed. A. L, Handbook of Function and Generalized Function Transformations, CRC. Boca Raton (1996).