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Orthogonal zero interpolants and applications
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Abstract. Orthogonal zero interpolants (OZI) are polynomials which interpolate the ”zero-
function” at a finite number of pre-assigned nodes and satisfy orthogonality condition. OZI’s
can be constructed by the 3-term recurrence relation. These interpolants are found useful
in the solution of constrained approximation problems and in the structure of Gauss-type
quadrature rules. We present some theoretical and computational aspects of OZIs and also
discuss their structure and significance at the multiple nodes.
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1. Introduction

Orthogonal polynomials form a constructive tool for representing general functions
or data sets. In certain cases, a representative curve is required to match certain
characteristics of a given function either in terms of its values or monotonicity
or even curvature at a finite number of points. We define a class of orthogonal
polynomials that preserve such properties. These polynomials prove useful in cer-
tain constrained least square approximation [1], [3] and optimal control problems
[11]. In addition, the proposed interpolants have some relevance with the Parseval
equality and also in the structure of Gauss-type quadrature rules.

2. Orthogonal zero interpolants

Let Sk = {x1, x2, . . . , xk} ⊂ R. We shall say that a real valued function g is an
Sk − zero interpolant if g(xi) = 0, i = 1, 2, . . . , k, i.e., g interpolates the zero-
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function at the pre-assigned points xi, i = 1, 2, . . . , k. Let πj denote the class of all
polynomials up to degree j. We set

πn(Sk) := {p ∈ πn+k : p is an Sk − zero interpolant} (1)

and describe some of its properties:

(a) πn(Sk) is an n + 1 dimensional linear subspace of πn+k. Each Sk − OZI
ψ ∈ πn(Sk) is of the form ψ = qPSk

for some q ∈ πn where

PSk
(x) := Πki=1(x− xi). (2)

(b)
∪∞
n=0 πn(Sk) is uniformly dense in C([a, b], Sk) := {g ∈ C[a, b] :

g is an Sk − zero interpolant}[1].
(c) By use of the standard 3-term recurrence relation [8], we can determine

an orthogonal basis ”ψ0, ψ1, . . . , ψn” of the space πn(Sk) for a given weight
function w on [a, b] as follows:

ψi+1(x) = (x− αi)ψi(x)− βiψi−1(x), i = 1, 2, . . . (3)

where

ψ0(x) = PSk
(x), ψ1(x) = (x− α0)ψ0(x); α0 = ⟨ψ0, ψ0⟩w. (4)

The recursion coefficients in (3) are given by

αi =
⟨xψi, ψi⟩w
⟨ψi, ψi⟩w

, βi =
⟨ψi, ψi⟩w

⟨ψi−1, ψi−1⟩w
, i = 1, 2, . . . (5)

where the inner products ⟨., .⟩w are defined as

⟨f, g⟩w :=

b∫
a

f(x)g(x)w(x)d. (6)

definition 1. With Sk = {x1, x2, . . . , xk} ⊂ R, the set of k pre-assigned nodes,
the polynomial ψi, j = 0, 1, 2, . . . , generated by the recurrence relation (3) will be
called Sk-orthogonal zero interpolant (OZI) with respect to w on [a, b].
Remark 1. Each ψn(x), n = 1, 2, 3, . . . (cf(c)) can be expressed as ψn(x) =

PSk
(x)qn(x). Here, qn ∈ πn is a monic orthogonal polynomial for the weight func-

tion P 2
Sk
(x)w(x) over the interval [a, b]. Therefore, ψn(x) has n distinct real zeros

in the open interval (a, b). These zeros are referred to as the internal zeros of ψn(x).
Sk = {x1, x2, . . . , xk} is the set of fixed zeros of ψn(x). The computation of the
internal zeros is based on the work of Wilf [12] and Golub et al [5] as described in
Theorem 1. (Internal zeros of Sk − OZI). Let ψn(x) be the Sk − OZI for the

weight function w on the interval [a, b]. Then its internal zeros are exactly the n
eigenvalues of the nth order Jacobi matrix:
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Jn(S
2
kw) :=


α0

√
β1 0 . . 0√

β1 α1
√
β2 0

0
√
β2 α2

√
β3 .

. 0
√
β3 . . 0

. . . .
√
βn−1

0 0
√
βn−1 αn−1

 (7)

where αi, i = 0, 1, 2, . . . , n− 1; βj , j = 1, 2, . . . , n− 1, are defined in (4) and (5).
Proof. As noted above, ψn = qnPSk

where qn ∈ πn is a monic orthogonal poly-
nomial for the weight function ”P 2

Sk
w” on [a, b]. Thus, qk ∈ πk, k = 0, 1, 2, . . . can

be defined by the 3-term recurrence relation qk+1(x) = (x− αk)qk(x)− βkqk−1(x)

where q0(x) = 1 and q1(x) = (x−α0)q0(x). Note that ⟨ψi, ψi⟩w =
∫ b
a ψ

2
i (x)w(x)dx =∫ b

a q
2
i (x)P

2
Sk
w(x)dx = ⟨qi, qi⟩p2Sk

w. Therefore, the recursion coefficients αk and βk
are the same as those stated in (4)-(5). Thus, n eigenvalues of the tri-diagonal
matrix (7) are the n internal zeros of qn ∈ πn [5] and by Remark 1 these are the n
internal zeros of the Sk −OZIψn.

3. Zeros of Sk − OZI and Gauss-type quadrature rules

In this section we shall illustrate that the nodes of Gauss-type quadrature rules
directly arise from the zeros of the OZI. We set S1 = x − b in (2) and consider
the fixed zero b and the internal n − 1 zeros ”t1, t2, . . . , tk−1” of the resultant
S1 −OZIψn−1 for the weight function w(x) on [a, b]. Then with a modified weight
function w1(x) := S1(x)w(x), we have
Theorem 2. The nodes of the right end w1-weighted n-point Gauss-Radau for-

mula [5], [10]

∫ b

a
f(t)w1(t)d ≈

n−1∑
i=1

f(ti)ω
b
i + f(b)ωbn. (8)

are exactly the n zeros of S1 −OZIψn−1.
Proof. We note that the nodes of quadrature rule (8) are computed by the tri-

diagonal matrix [5]

Jbn,R =

[
Jn−1(w1)

√
βn−1en−1√

βn−1e
t
n−1 αbn

]
with αbn = b− pn−2(b)

pn−1(b)
(9)

where (i) Jn−1(w1) is a tri-diagonal matrix of order n− 1 obtained from (7) by
setting PSk

(x) ≡ 1 and w = wi, (ii) e
T
n−1 = [1, 0, 0, . . . , 0] ∈ Rn−1, (iii) pk is the kth

degree monic orthogonal polynomial for the weight function w1 on [a, b].
In fact, the eigenvalues of the tridiagonal matrix Jbn,R are b and the internal

zeros of monic orthogonal polynomial pn−1 ∈ πn−1 for the weight function w1 on
[a, b]. The resultant zeros are indeed the zeros of the S1 −OZIψn−1 for the weight
function w(x) on [a, b].
Remark 2. The weights ωbi in formula (8) are given by ωbi = β0ui,1, i = 1, 2, . . . , n

where
∫ b
a (b− t)w(t)dt and each ui,1 is the first component of the normalized eigen-

vector of the matrix Jbn,R corresponding to its ith eigenvalue. ,
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Remark 3. Note that formula (8) is based on the weight function w1(x) :=

(b−x)w(x). If g is differentiable at b, then the integral
∫ b
a g(x)dx can be approximate

by (8) as follows. Define

f(x) :=

{
−g(b)−g(x)

x−b , ifa 6 x < b

g′(b), ifx = b
. (10)

Then
∫ b
a g(x)dx = (b−a)g(b)−

∫ b
a f(x)(b−x)dx = (b−a)g(b)−

∑n−1
i=1

g(b)−g(a)
b−ti ωbi+

g′(b)ωbn. Note that the quadrature rule in this special case involves the derivative
of the integrand at b [4].
Remark 4. If we set PS1

(x) = x − a and PS2
(x) = (x − a)(b − x), then the

similar observation (cf Theorem 2) holds for the left hand Gauss-Radau and the
Gauss-Lobatto quadrature rules [9], [10].

4. Constrained L2-approximation problem

Application of OZI is found useful in the solution of certain constrained ap-
proximation problems. More precisely, for an f ∈ L2

w[a, b] and the finite set
Sk = {x1, x2, . . . , xn} ⊂ [a, b] consider
Theorem 3. Let N = n + k − 1 with n > 0. Then ψk, k = 0, 1, 2, . . . , the

w-weighted Sk-OZI’s, determine the optimal solution of the problem [1]

min
p∈πN

p(xi)=f(xi)
i=1,...,k

∥ f − p ∥w . (11)

In addition, similar to Parseval equality [8]

∞∑
i=0

⟨fL, ψi⟩2w
⟨ψi, ψi⟩2w

= ⟨fL, fL⟩w, ∀f ∈ C[a, b] (12)

holds for fL = f − L(., Sk, f) with L(., Sk, f) as the Lagrange interpolant to f
at the points of Sk.
Proof. In case of n = 0, L(., Sk, f) will be the optimal solution of the problem.

Else, we transform (10) to an equivalent unconstrained problem

min
ϕ∈πn(Sk)

∥ fL − ϕ ∥w (13)

with n = N − k+1. To solve (13), we follow a standard technique [8] and fix an

orthonormal basis {ϕ0, ϕ1, . . . , ϕn} for πn(Sk) where ϕk = ψk

||ψk||w , k = 0, 1, . . . , n,

(cf (3)). Writing ϕ ∈ πn(Sk) as ϕ(x) =
∑n

i=0 biϕi(x) we obtain

∥ fL − ϕ ∥2w=
∫ b

a
[fL(x)− ϕ(x)]2w(x)dx = ⟨fL, fL⟩w +

n∑
i=0

(bi − ci)
2 −

n∑
i=0

c2i (14)
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where ci = ⟨ϕi, fL⟩w. Then, of all linear combinations of the form ϕ(x) =∑n
i=0 biϕi(x), the minimum in (14) is attained when bi = ci, i = 0, 1, . . . , n. Thus,

p∗n = L(., Sk, f) + ϕ∗n, with ϕ∗n(x) =
∑n

i=0 ciϕi(x) gives the optimal solution of
constrained minimization problem (11).
Next note that 0 6∥ fL−ϕ∗n ∥2w= ⟨fL, fL⟩w −

∑n
i=0 c

2
i (cf (14)). It is known that

lim
n→∞

∥ fL−ϕ∗n ∥2w= 0 when f ∈ C[a, b] [1]. This leads to the Parseval type equality∑n
i=0⟨ϕi, fL⟩2w = ⟨fL, fL⟩w over the Sk-orthogonal zero interpolants.
Remark 5. From the details provided above, we have like the Bessels inequality

[8]

n∑
i=0

⟨ψi, fL⟩2

⟨ψi, ψi⟩2w
6 ⟨fL, fL⟩w, ∀f ∈ L2

w[a, b]. (15)

5. Interpolants subject to multiple nodes

So far we have discussed OZIs related to a finite simple pre-assigned nodes (cf (3)).
In certain approximation problems, the use of data that includes some derivative(s)
information provides an improvement in the approximation. To implement this, we
construct OZIs with multiple pre-assigned nodes: if each ith node xi is required to
be of multiplicity ni, i = 0, 1, . . . , k, we replace PSk

in (2) by

PSk
(ni) := Πki=1(x− xi)

ni . (16)

With ψ0(x) = PSk
(ni)(x), we generate S

(ni)
k -OZIs via recurrence relation (3).

These OZIs can be used to solve a derivative related constrained minimization
problem given by [2]

min
p∈πN

p(j)(xi)=f (i)(xi)
j=0,1,...,ni

i=1,...,k

∥ f − p ∥w . (17)

Here, we can also generalize the result on Parsevel equality (cf (11)). In addition,
one can notice that the nodes of the generalized Gauss-type quadrature rules [6],

[7] arise from the multiple zeros of certain S
(ni)
k -OZI, k = 1, 2, in a similar manner

as discussed in Theorem 2 and Remark 4.
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