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Abstract. The dual boundary element method is formulated for the analysis of linear elastic
cracked plates. The dual boundary integral equations of the method are the displacement
and the traction equations. When these equations are simultaneously applied along the crack
boundaries, general crack problems can be solved in a single-region formulation, with both
crack boundaries discretized with discontinuous boundary elements. The stress intensity fac-
tors evaluation is carried out by the J-integral decomposition method which is applied on a
circular path, defined around each crack tip. Examples of geometries with edge, and embed-
ded cracks are analyzed. The accuracy and efficiency of the dual boundary element method
and the J-integral make the present formulation ideal for the study of cracked plates.
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1. Introduction

The boundary element method is a well established numerical technique in the
engineering community, see Brebbia and Dominguez [2]. Its formulation in elasto-
statics is based on the displacement boundary integral equation which is rooted
in the classical work theorem, see Portela [26]. The boundary element method
has been successfully applied to linear elastic problems in domains containing no
degenerated geometries. These degeneracies, either internal or edge surfaces which
include no area or volume and across which the displacement field is discontinuous,
are defined as mathematical cracks. For symmetric crack problems only one side
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of the crack need be modelled and a single-region boundary element analysis may
be used. However, the solution of general crack problems cannot be achieved in a
single-region analysis with the direct application of the boundary element method,
because the coincidence of the crack boundaries gives rise to an ill-conditioned
problem. The equations for a point located at one of the boundaries of the crack
are identical to those equations for the point with the same coordinates but on the
opposite surface, because the same integral equation is collocated with the same
integration path, at both coincident points.
Some special techniques have been devised to overcome this difficulty. Among

these, the most important are: the crack Green’s function method, Snyder and
Cruse [32]; the displacement discontinuity method, Crouch [6]; the subregions
method, Blandford, Ingraffea and Liggett [1]; and the dual boundary element
method, Portela, Aliabadi and Rooke [28]. The crack Green’s function method
which eliminates the need for discretization of the crack, is limited to problems
with a single straight traction-free crack. In the displacement discontinuity method,
where the cracks are modelled by a single line of elements, new variables are intro-
duced into the boundary integrals, see Sladek, Sladek and Balas [31] and Cruse [7].
The subregions method introduces artificial boundaries into the body which con-
nect the cracks to the boundary in such a way that the domain is divided into
subregions without cracks. The main drawback of this method is that the intro-
duction of artificial boundaries is not unique and thus, cannot be implemented
easily into an automatic procedure.
The use of dual integral equations in crack problems was first reported by Bueck-

ner [3]. In the boundary element method, dual integral equations were first pre-
sented by Watson [34], in a formulation based on the displacement equation and
its normal derivative. The theoretical bases of the dual boundary element method
were presented by Hong and Chen [15], in a general formulation which incorpo-
rates the displacement and the traction boundary integral equations. General crack
problems can be solved with the dual boundary element method, when both the
displacement and the traction boundary integral equations are simultaneously ap-
plied along the crack boundaries. Although the integration path is still the same for
coincident points on the crack boundaries, the respective boundary integral equa-
tions are now distinct. Dual integral equations have been applied to solve problems
in three-dimensional potential theory by Gray [9], and in three-dimensional elas-
tostatics by Gray, Martha and Ingraffea [10]. An essential ingredient of both these
formulations is the analytic evaluation of the hypersingular integrals over flat ele-
ments. This feature, which limits their analysis to the use of flat elements, requires
non-standard boundary element interpolation functions for the integrations around
the collocation node. Furthermore, the extension to edge crack problems was not
dealt with in their analysis. Dual integral equations have also been applied to two-
dimensional problems. In elastostatics Watson [34] presented a formulation lim-
ited to embedded cracks. In potential theory Rudolphi, Krishnasamy, Schmerr and
Rizzo [30] presented results exhibiting unexplained oscillations. Recentelly, an al-
ternative crack modelling strategy that caters for the analysis of general embedded
and edge crack problems with the dual boundary element method, was presented
by Portela, Aliabadi and Rooke [28]. In this formulation, both crack boundaries
are discretized with discontinuous quadratic boundary elements. This results in a
practical advantage because the problem of collocation at crack tips, crack kinks
and crack-edge corners is automatically circumvented.
Within the limits of the linear elastic analysis, the stress field is unbounded at the

tip of a crack. If r denotes the distance from the crack-tip, the stress field is of the
order r−1/2 and becomes singular as r tends to zero. The stress intensity factors,
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defined at the crack-tip, are a measure of the strength of this singularity and play
a fundamental role in linear elastic fracture mechanics. The techniques used in the
dual boundary element method for the evaluation of stress intensity factors are
described by Portela [27]. The J-integral technique, used in the present work, is
based on a path-independent integral, Rice [29]. A simple procedure, based on the
decomposition of the elastic field into its respective symmetric and antisymmetric
mode components, is used to decouple the stress intensity factors of a mixed-mode
problem.
The present work is concerned with the formulation and numerical implemen-

tation of the two-dimensional dual boundary element method, for the solution of
general linear elastic crack problems. The dual boundary integral equations are
presented in Section 2, and the crack modelling is discussed in Section 3. It is
shown that the discretization of the crack boundaries is best done with discontinu-
ous quadratic boundary elements. The effective treatment of the improper integrals
of the dual equations, a matter of crucial importance in the dual boundary element
method, is dealt with in Section 4. For curved boundary elements, the natural def-
inition of ordinary finite-part integrals can be applied to regularize the improper
integrals. For straight boundary elements, analytic integration is carried out. In
Section 5 the J-integral is presented. The decoupling of the stress intensity factors
into mode I and mode II components is implemented in the dual boundary element
method in a straightforward manner; around each crack tip, a circular contour path
is defined through a set of internal points located symmetrically with respect to
the crack plane. Section 6 presents numerical results obtained for several edge and
internal cracked geometries. The accuracy of the J-integral is shown with the edge
and centre crack problems, as well as with a kinked crack problem. Finally, Section
7 presents the discussion and conclusions of the present work.
Throughout this work the Cartesian tensor notation is used and Einstein’s sum-

mation convention is assumed.

2. The Dual Boundary Integral Equations

The dual boundary element method allows the analysis of general crack problems to
be performed in a single-region analysis. The dual equations, on which the method
is based, are the displacement and the traction boundary integral equations. In the
absence of body forces, the boundary integral representation of the displacement
components ui, at an internal source point x

′
, is given by

ui(x
′
) +

∫
Γ
Tij(x

′
,x) uj(x) dΓ(x) =

∫
Γ
Uij(x

′
,x) tj(x) dΓ(x), (1)

where Tij(x
′
,x) and Uij(x

′
,x) represent the Kelvin traction and displacement fun-

damental solutions, respectively, at a field point x on the boundary Γ. The distance
between the source point and the current field point is denoted by r and given by
|x − x

′ |. Since for an internal source point r ̸= 0, the integrals in equation (1)
contain regular integrands. Consider now the limit transition of equation (1) when
the source point tends to the boundary, such that r → 0. This operation can be
implemented by taking the source point to the boundary and augmenting the prob-
lem domain by a semicircular region, with boundary Γ∗

ε and radius ε, centered at
the source point, as shown in Figure 1.
With this configuration, the whole boundary is divided into two parts, Γ =

(Γ− Γε) + Γ∗
ε, and the limit transition of equation (1) is now carried out with the
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Figure 1. Source point located on the boundary, surrounded by a semicircular region.

parameter ε, in the form

ui(x
′
) + lim

ε→0

∫
Γ−Γε+Γ∗

ε

Tij(x
′
,x) uj(x) dΓ(x) = lim

ε→0

∫
Γ−Γε+Γ∗

ε

Uij(x
′
,x) tj(x) dΓ(x). (2)

In equation (2), the right hand side integral contains a weakly singular integrand
of order ln 1

r and is integrable as an improper integral when the limit and the
integration order are interchanged. The left hand side integral contains a strongly
singular integrand of order 1

r and can be regularized with the first term of a Taylor’s
expansion of the displacements, about the source point, to give:

lim
ε→0

∫
Γ−Γε+Γ∗

ε

Tij(x
′
,x) uj(x) dΓ(x) = lim

ε→0

∫
Γ∗

ε

Tij(x
′
,x) [uj(x)− uj(x

′
)] dΓ(x)+

+ uj(x
′
) lim
ε→0

∫
Γ∗

ε

Tij(x
′
,x) dΓ(x)+ (3)

+ lim
ε→0

∫
Γ−Γε

Tij(x
′
,x) uj(x) dΓ(x).

Assuming that the displacements are Hölder continuous, that is there are constants
|C| < ∞ and 0 < α ⩽ 1, such that the inequality

|uj(x)− uj(x
′
)| ⩽ Crα

holds, the first term of the right hand side of equation (3) is integrable and van-
ishes in the limiting process. The second limit expression of the right hand side of
equation (3) leads to a jump on displacements, Aij(x

′
)uj(x

′
), in which Aij(x

′
) is

a constant that depends on the local geometry and elastic constants. Finally, the
third limit expression results in an improper integral that is taken in a Cauchy
principal-value sense. Therefore, as ε → 0 the source point tends to the boundary
and, in the limit, equation (2) can be written in the form

cij(x
′)uj(x

′
) +

∫
Γ
− Tij(x

′
,x) uj(x) dΓ(x) =

∫
Γ
Uij(x

′
,x) tj(x) dΓ(x), (4)

where
∫
− stands for the Cauchy principal-value integral and the coefficient cij(x

′
)

is given by δij +Aij(x
′
), in which δij is the Kronecker delta.
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At an internal source point x
′
, the stress components σij are obtained by differ-

entiation of equation (1) followed by the application of Hooke’s law; they are given
by

σij(x
′
) +

∫
Γ
Sijk(x

′
,x) uk(x) dΓ(x) =

∫
Γ
Dijk(x

′
,x) tk(x) dΓ(x). (5)

In this equation, Sijk(x
′
,x) and Dijk(x

′
,x) contain derivatives of Tij(x

′
,x) and

Uij(x
′
,x), respectively. Since for an internal source point r ̸= 0, the integrals

in equation (5) contain regular integrands. Consider now the limit transition of
equation (5) when the source point tends to the boundary, such that r → 0.
This operation can be performed exactly in the same way as for the displacement
equation. Again, the whole boundary is divided into two parts, Γ = (Γ− Γε) + Γ∗

ε,
and the limit transition of equation (5) is now carried out with the parameter ε in
the form

σij(x
′
) + lim

ε→0

∫
Γ−Γε+Γ∗

ε

Sijk(x
′
,x) uk(x) dΓ(x) = lim

ε→0

∫
Γ−Γε+Γ∗

ε

Dijk(x
′
,x) tk(x) dΓ(x). (6)

In this equation, the right hand side integral contains a strongly singular integrand
of order 1

r and can be regularized with the first term of a Taylor’s expansion of the
tractions, about the source point, to give:

lim
ε→0

∫
Γ−Γε+Γ∗

ε

Dijk(x
′
,x) tk(x) dΓ(x) = lim

ε→0

∫
Γ∗

ε

Dijk(x
′
,x) [tk(x)− tk(x

′
)] dΓ(x)+

+ tk(x
′
) lim
ε→0

∫
Γ∗

ε

Dijk(x
′
,x) dΓ(x)+ (7)

+ lim
ε→0

∫
Γ−Γε

Dijk(x
′
,x)tk(x) dΓ(x).

Assuming Hölder-continuous tractions, the first term of the right hand side of
equation (7) is integrable and vanishes in the limiting process. The second limit
expression of the right hand side of equation (7) leads to a jump on tractions, given
by Aijk(x

′
)tk(x

′
), in which Aijk(x

′
) is a constant that depends on elastic constants

and coordinate transformations. The third limit expression in the right hand side
of equation (7) results in an improper integral that is taken in a Cauchy principal-
value sense. Consider now the left hand side integral of equation (6). It contains
a hypersingular integrand of order 1

r2 that can be regularized with the first two
terms of a Taylor’s expansion of the displacements, about the source point, to give:
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lim
ε→0

∫
Γ−Γε+Γ∗

ε

Sijk(x
′
,x) uk(x) dΓ(x) = = lim

ε→0

∫
Γ∗

ε

Sijk(x
′
,x) [uk(x)− uk(x

′
)

− uk,m(x
′
)(xm − x

′

m)] dΓ(x)+

+ uk(x
′
) lim
ε→0

∫
Γ∗

ε

Sijk(x
′
,x) dΓ(x)+ (8)

+ uk,m(x
′
) lim
ε→0

∫
Γ∗

ε

Sijk(x
′
,x)(xm − x

′

m) dΓ(x)+

+ lim
ε→0

∫
Γ−Γε

Sijk(x
′
,x)uk(x) dΓ(x),

where the comma between two indices denotes differentiation. Assuming that the
displacement derivatives are Hölder continuous, that is there are constants |C| < ∞
and 0 < α ⩽ 1, such that the inequality

|uk(x)− uk(x
′
)− uk,m(x

′
)(xm − x

′

m)| ⩽ C|xm − x
′

m|α+1

holds, the first term of the right hand side of equation (8) is integrable and vanishes
in the limiting process. The second limit expression in the right hand side of the
same equation is unbounded and will be considered later. The third limit expression
leads to a jump on displacement derivatives, given by Bijkm(x

′
)uk,m(x

′
), in which

Bijkm(x
′
) is a constant that depends on elastic constants and coordinate trans-

formations. Finally, the fourth limit expression of the right hand side of equation
(8) results in an improper integral. It can be shown that when this expression is
taken together with the second limit expression, the result is always bounded [11].
Therefore, the fourth limit expression is considered alone, in a Hadamard [13]
principal-value sense. Collecting the results of equations (7) and (8), it can be
shown that for a source point in a smooth boundary the jump terms are equivalent
to boundary stresses, that is

Aijk(x
′
)tk(x

′
)−Bijkm(x

′
)uk,m(x

′
) =

1

2
σij(x

′
). (9)

Therefore, as ϵ → 0, the source point tends to the boundary and, in the limit, on
a smooth boundary, equation (6) can be written in the form

1

2
σij(x

′
) +

∫
Γ
= Sijk(x

′
,x) uk(x) dΓ(x) =

∫
Γ
− Dijk(x

′
,x) tk(x) dΓ(x), (10)

where
∫
= stands for the Hadamard principal value integral. Notice that equation

(10) could be obtained by direct differentiation of equation (4), followed by the
application of Hooke’s law, when the relationship between Cauchy and Hadamard
principal-value integrals is applied.
The traction components tj are given by

1

2
tj(x

′
) + ni(x

′
)

∫
Γ
= Sijk(x

′
,x)uk(x)dΓ(x) = ni(x

′
)

∫
Γ
− Dijk(x

′
,x)tk(x)dΓ(x), (11)

where ni denotes the i component of the unit outward normal to the boundary, at
the source point. Equations (4) and (11) constitute the basis of the dual bound-
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ary element method. A more complete description of the dual boundary element
method is given by Portela [27].

3. Crack Modelling

The necessary conditions for the existence of the principal-value integrals obtained
in the derivation of the dual boundary integral equations impose special restric-
tions on the crack modelling. Consider that both the geometry and boundary field
variables are described by a piece-wise continuously differentiable approximation.
Consider, further that collocation is always performed with the source point at the
boundary element nodes. Under these considerations, the continuity requirements
of Cauchy principal-value integral in the displacement equation can be satisfied
by any Lagrangian continuous or discontinuous boundary element, since the shape
functions imply a continuous displacement approximation at the nodes. However,
in the traction equation the continuity requirements of the Hadamard principal-
value integral are satisfied only by discontinuous elements, since all the nodes are
internal points of the element where a continuously differentiable approximation
is defined. Moreover, the requirement of the smoothness of the geometry at a col-
location point in the traction equation is implicitly satisfied by the discontinuous
element. Furthermore, discontinuous traction fields can be implicitly modelled by
discontinuous elements, since the tractions must satisfy Hölder continuity only at
the nodes. It is important to realize that if the element approximation does not
satisfy these necessary continuity requirements then the principal value integrals
do not exist.
For the sake of efficiency and to keep the simplicity of the standard boundary

elements, the present formulation uses discontinuous quadratic elements for the
crack modelling, as shown in Figure 2.

Figure 2. Crack modelling with discontinuous quadratic boundary elements.

The general modelling strategy, developed by Portela, Aliabadi and Rooke [28],
can be summarized as follows:

• The traction equation (11) is applied for collocation on one of the crack bound-
aries.
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• The displacement equation (4) is applied for collocation on the opposite crack
boundary and remaining boundaries.

• The crack boundaries are discretized with discontinuous quadratic elements, as
shown in Figure 2.

• Continuous quadratic boundary elements are used for discretization along the
remaining boundaries of the problem domain, except at the intersection between
a crack and an edge, where discontinuous or semi-discontinuous elements are
required, in order to avoid nodes at the intersection.

This simple strategy is robust and allows the dual boundary element method to
effectively model general edge or embedded crack problems; crack tips, crack-edge
corners and crack kinks do not require special treatment, since they are not located
at nodal points where the collocation is carried out. Other alternatives to discon-
tinuous elements can be used to model the crack, but they are not as efficient. For
instance, Hermitian boundary elements, Watson [34], and Overhouser boundary
elements, Walters, Ortiz, Gibson and Bewer [33], also suit the continuity require-
ments. However, they are computationally expensive and are not readily suitable
to deal with edge crack problems.

4. Computation of Principal-Value Integrals

The numerical implementation of the principal-value integrals that arise in the
dual integral equations is easily carried out by the classical method of singularity
subtraction, which leads to the natural definition of ordinary finite-part integrals.
In the vicinity of a collocation node, the regular part of the integrand is expressed
as a Taylor’s expansion. If a sufficient number of terms of the expansion are sub-
tracted from the regular part of the integrand and then separately added back,
the singularity can be isolated. The original improper integral is thus transformed
into the sum of a regular integral and an integral of the singular function. This
latter integral is then evaluated analytically, while standard Gaussian quadrature
is used for numerical integration of the regular integral. The procedure is general
and applicable to any type of boundary element.

4.1 General-Shape Discontinuous Elements

On a traction-free crack, consider a discontinuous quadratic boundary element
of general shape Γe that contains the collocation node. On this element, equations
(4) and (11) become

cij(x
′
)uj(x

′
) +

∫
Γe

− Tij(x
′
,x) uj(x) dΓ(x) = 0 (12)

and

ni(x
′
)

∫
Γe

= Sijk(x
′
,x)uk(x)dΓ(x) = 0, (13)

respectively. Coincident with this element, consider also a continuous quadratic
boundary element which will be used for approximation of the local geometry. For
both elements the local parametric coordinate ξ is defined, as usual, in the range
−1 ⩽ ξ ⩽ +1. The collocation node ξ

′
is mapped onto x

′
, via the continuous ele-

ment shape functions, while the displacement components uj are approximated in
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the local coordinate system by means of the nodal values unj and the discontinuous
element shape functions. The Cauchy principal value integral of equation (12) can
be expressed in the local coordinate as∫

Γe

− Tij(x
′
,x) uj(x) dΓ(x) = unj

∫ +1

−1
−

fn
ij(ξ)

ξ − ξ′ dξ, (14)

where fn
ij(ξ) is a regular function, given by the product of the fundamental solution,

a shape function and the Jacobian of the coordinate transformation, multiplied
by the term ξ − ξ

′
. The integral of the right hand side of equation (14) can be

transformed with the aid of the first term of a Taylor’s expansion of the function
fn
ij , around the collocation node, to give

∫ +1

−1
−

fn
ij(ξ)

ξ − ξ′ dξ =

∫ +1

−1

fn
ij(ξ)− fn

ij(ξ
′
)

ξ − ξ′ dξ + fn
ij(ξ

′
)

∫ +1

−1
− dξ

ξ − ξ′ . (15)

Now, the first integral of the right hand side is regular and the second one can be
integrated analytically to give∫ +1

−1
− dξ

ξ − ξ′ = ln

∣∣∣∣1− ξ
′

1 + ξ′

∣∣∣∣ . (16)

In equation (15), the existence of the first-order finite-part integral requires the
continuity of the first derivative of fn

ij , or at least, the Hölder continuity of fn
ij at

the collocation node. For the discontinuous element, this requirement is automat-
ically satisfied, because the nodes are internal points of the element, where fn

ij is
continuously differentiable.
The Hadamard principal value integral of equation (13) can be expressed in the

local parametric coordinate as∫
Γe

= Sijk(x
′
,x) uk(x) dΓ(x) = unk

∫ +1

−1
=

gnijk(ξ)

(ξ − ξ′)2
dξ, (17)

where gnijk(ξ) is a regular function, given by the product of the fundamental solu-
tion, a shape function and the Jacobian of the coordinate transformation, multi-
plied by the term (ξ− ξ

′
)2. The integral of the right hand side of equation (17) can

be transformed with the aid of the first and second terms of a Taylor’s expansion
of the function gnijk, in the neighbourhood of the collocation node, to give

∫ +1

−1
=

gnijk(ξ)

(ξ − ξ′)2
dξ =

∫ +1

−1

gnijk(ξ)− gnijk(ξ
′
)− g

n(1)
ijk (ξ

′
) (ξ − ξ

′
)

(ξ − ξ′)2
dξ+

+ gnijk(ξ
′)

∫ +1

−1
=

dξ

(ξ − ξ′)2
+ (18)

+ g
n(1)
ijk (ξ

′
)

∫ +1

−1
− dξ

ξ − ξ′ ,

where g
n(1)
ijk denotes the first derivative. At the collocation node, the function gnijk is

required to have continuity of its second derivative or, at least, a Hölder-continuous
first derivative, for the finite-part integrals to exist. This requirement is automati-
cally satisfied by the discontinuous element, since the nodes are internal points of
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the element. Now, in equation (18), the first integral of the right hand side is regular
and the third integral is identical with the one given in equation (16). The second
integral of the right hand side of equation (18) can be integrated analytically to
give

∫ +1

−1
=

dξ

(ξ − ξ′)2
= − 1

1 + ξ′ −
1

1− ξ′ . (19)

Equations (15) and (18) are just the ordinary double-sided first and second order
finite-part integrals, respectively, as defined by Kutt [19].
Numerical integration of singular integrands is also possible; quadrature rules for

finite-part integrals were published by Ossicini [25], Kutt [20], Ioakimidis [16] and
Ladopoulos [21].

4.2 Straight Discontinuous Elements

In many practical problems the cracks are straight; but cracks do grow along
curved paths which are usually modelled as piece-wise straight. For piece-wise
straight cracks, the integrals in equations (14) and (17) are carried out most effec-
tively by direct analytic integration which is presented in the following. Consider
a straight discontinuous quadratic boundary element, with the nodes positioned
arbitrarily at the points ξ = −2

3 , ξ = 0 and ξ = +2
3 . The shape functions of this

element are given by:

N1 = ξ

(
9

8
ξ − 3

4

)
,

N2 =

(
1− 3

2
ξ

)(
1 +

3

2
ξ

)
,

N3 = ξ

(
9

8
ξ +

3

4

)
.

For this element, the integral of equation (14) is represented by:

∫
Γe

− Tij(x
′
,x) uj(x) dΓ(x) = unj

∫ +1

−1
− Tij(ξ

′
,x(ξ)) Nn(ξ) J(ξ) dξ = hn

i u
n, (20)

where un denotes the nodal displacement components and J(ξ) is the Jacobian of
the coordinate transformation. Because of the assumed straightness of the element,
J = l

2 , where l represents the element length and the matrix hn is given by

hn =
1− 2ν

4π (1− ν)

[
0 −1
+1 0

] ∫ +1

−1
− Nn

ξ − ξ′ dξ. (21)

The first order finite-part integrals are integrated analytically to give:

∫ +1

−1
− N1

ξ − ξ′ dξ =
3

4

(
ξ

′ (
3ξ

′ − 2
)

2
ln

∣∣∣∣1− ξ
′

1 + ξ′

∣∣∣∣+ 3ξ
′ − 2

)
, (22)
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−1
− N2

ξ − ξ′ dξ =
1

2

((
3ξ

′ − 2
) (

3ξ
′
+ 2
)

2
ln

∣∣∣∣1 + ξ
′

1− ξ′

∣∣∣∣− 9ξ
′

)
(23)

and ∫ +1

−1
− N3

ξ − ξ′ dξ =
3

4

(
ξ

′ (
3ξ

′
+ 2
)

2
ln

∣∣∣∣1− ξ
′

1 + ξ′

∣∣∣∣+ 3ξ
′
+ 2

)
. (24)

The integral of equation (17) is represented by∫
Γe

= Sijk(x
′
,x)uk(x) dΓ(x) = unk

∫ +1

−1
= Sijk(ξ

′
,x(ξ))Nn(ξ) J(ξ) dξ = h

n
iju

n, (25)

where the matrix h
n
is given by:

h
n
=

E

4π (1− ν2)

2

l
S

′
∫ +1

−1
=

Nn

(ξ − ξ′)2
dξ. (26)

The matrix S
′
is given by

S
′
=

+n1(2n
2
2 + 1) −n2(−2n2

2 + 1)
+n1(2n

2
1 − 1) −n2(−2n2

1 − 1)
−n2(2n

2
1 − 1) +n1(−2n2

2 + 1)

 , (27)

where n1 and n2 are the components of the unit outward normal to the element.
The second-order finite-part integrals of equation (26) are integrated analytically
to give: ∫ +1

−1
=

N1

(ξ − ξ′)2
dξ =

3

4

(
(3ξ

′ − 1) ln

∣∣∣∣1− ξ
′

1 + ξ′

∣∣∣∣+ 6ξ
′2 − 2ξ

′ − 3

ξ′2 − 1

)
, (28)∫ +1

−1
=

N2

(ξ − ξ′)2
dξ =

1

2

(
9ξ

′
ln

∣∣∣∣1 + ξ
′

1− ξ′

∣∣∣∣− 18ξ
′2 − 13

ξ′2 − 1

)
(29)

and ∫ +1

−1
=

N3

(ξ − ξ′)2
dξ =

3

4

(
(3ξ

′
+ 1) ln

∣∣∣∣1− ξ
′

1 + ξ′

∣∣∣∣+ 6ξ
′2 + 2ξ

′ − 3

ξ′2 − 1

)
. (30)

Equation (26) shows that the terms of the matrix h
n
are inversely proportional to

the element length l. Notice that this property does not occur with the matrix hn

of equation (21).

4.3 The Rigid Body Condition

When collocation is performed at a crack node there are always two elements,
on opposite faces, that contain the collocation point, because both crack bound-
aries are discretized. This means that, along the crack, the finite-part integrals in
equations (12) and (13) are required twice: once on the element that contains the
collocation node, that is the self-point element and again, on the opposite element,
which is also a self-point element, since it contains the node which is coincident
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with the collocation node. This peculiar feature of the dual boundary element
method puts restrictions on the use of the rigid body condition at crack nodes,
as explained in the following. Consider a constant displacement field, with compo-
nents ui(x) = C, defined throughout the body. In this circumstance the traction
components are zero and equation (4) gives

cij(x
′
) +

∫
Γ
− Tij(x

′
,x) dΓ(x) = 0, (31)

while equation (11) gives:

ni(x
′
)

∫
Γ
= Sijk(x

′
,x) dΓ(x) = 0. (32)

Equations (31) and (32) express the usual rigid body condition that must be satis-
fied by the dual boundary integral equations at every collocation point. According
to equation (31), the coefficient cij(x

′
) need not be dealt with directly. When the

equation is discretized, this coefficient, together with the finite-part integral, is de-
termined by the row sum technique. However, for collocation at a crack node, the
row sum technique can no longer be used if the integration along opposite self-
point elements has any symmetric terms, since a pair of symmetric values always
cancel each other in the sum. It can be shown, through equations (20) to (24),
that the off-diagonal terms of the first and last nodes of the elements used here
are symmetric, with the finite-part integrals given by (ln 5 − 3) and (− ln 5 + 3),
respectively. Bearing in mind that opposite self-point elements have their first and
last nodes interchanged, it is evident that two symmetric off-diagonal terms are
obtained from the collocation at either one of these nodes and integration along
opposite self-point elements. According to equation (32), it appears that the row
sum technique can be used to evaluate indirectly the diagonal terms of the dis-
cretized form of the traction equation. Again, it can be shown, through equations
(25) to (30), that the diagonal terms of any crack node are symmetric with respect
to its opposite node. These features invalidate the use of the standard rigid body
condition, to evaluate indirectly the diagonal terms at crack nodes.

5. The J–Integral Method

Consider a cartesian reference system, defined at the tip of a traction-free crack,
as shown in Figure 3.
The J-integral is defined as

J =

∫
S
(W n1 − tj uj,1 ) dS, (33)

where S is an arbitrary contour surrounding the crack tip; W is the strain energy
density; tj are traction components and n1 is the x-component of the unit outward
normal to the contour path. The relationship between the J-integral and the stress
intensity factors is given by

J =
K2

I +K2
II

E′ , (34)

where E
′
is the elasticity modulus E for plane stress conditions and E

′
= E/(1−ν2)
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Figure 3. Coordinate reference system and contour path for J-integral.

for plane strain conditions.
In order to decouple the stress intensity factors in equation (34), the integral J

is represented by the sum of two integrals as follows:

J = JI + JII , (35)

where the superscripts indicate the deformation mode. For this representation to
be possible, it is sufficient to decompose the displacement and stress fields into
their symmetric and antisymmetric components, as described below. Consider two
points, P (x1, x2) and P

′
(x1,−x2), that are symmetric relative to the crack axis,

as shown in Figure 3. At these points the displacement field can be expressed as a
combination of symmetric and antisymmetric components in the form:{

u1
u2

}
=

{
+uI1 + uII1
+uI2 + uII2

}
,

{
u

′

1

u
′

2

}
=

{
+uI1 − uII1
−uI2 + uII2

}
. (36)

From equations (36), the symmetric and antisymmetric displacement components
are given by: {

uI1
uI2

}
=

1

2

{
u1 + u

′

1

u2 − u
′

2

}
,

{
uII1
uII2

}
=

1

2

{
u1 − u

′

1

u2 + u
′

2

}
. (37)

At the same points P (x1, x2) and P
′
(x1,−x2), the stress field can be expressed

as a combination of symmetric and antisymmetric components in the form:σ11
σ22
σ12

 =

+σI
11 + σII

11

+σI
22 + σII

22

+σI
12 + σII

12

 ,


σ

′

11

σ
′

22

σ
′

12

 =

+σI
11 − σII

11

+σI
22 − σII

22

−σI
12 + σII

12

 . (38)

From equations (38), the symmetric and antisymmetric stress components are given
by: σI

11

σI
22

σI
12

 =
1

2


σ11 + σ

′

11

σ22 + σ
′

22

σ12 − σ
′

12

 ,

σII
11

σII
22

σII
12

 =
1

2


σ11 − σ

′

11

σ22 − σ
′

22

σ12 + σ
′

12

 . (39)
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When equations (36) and (38) are introduced in equation (33), equation (35) is
obtained, with the J-integral components given by

Jm =

∫
S

(
Wm n1 − tmj umj,1

)
dS, (40)

for m = I or m = II. Finally, the following relationships hold:

JI =
K2

I

E′ , JII =
K2

II

E′ . (41)

The implementation of this procedure into the boundary element method is
straightforward. A circular contour path, around the crack tip, is defined with
a set of internal points, located at symmetrical positions, relative to the crack axis,
as shown in Figure 3.

Figure 4. Circular path numbering system for J-integral contours.

The two contour points on the crack faces are the first and the last points of
the path respectively. In a circular path, at these points it is always verified that
n1 = −1 and n2 = 0 and thus, for a traction-free crack, t2 = 0. The integration
along the contour path can be accomplished with the trapezoidal or Simpson’s
rule or by Gaussian quadrature. For the sake of simplicity only circular paths,
centered at the tip and containing a pair of crack nodes, were considered; each
path is referred to by a path number which increases as the radius of the contour
increases, see Figure 4.

6. Numerical Results

6.1 The Edge Crack Problem

Consider a square plate with a single edge crack, as represented in Figure 5. The
crack length is denoted by a and the width of the plate is denoted by w. The plate
is subjected to the action of a uniform traction t̄, applied symmetrically at the
ends in the direction perpendicular to the crack.
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Results have been obtained and compared with those published by Civelek and
Erdogan [4]. Five cases were considered, a/w = 0.2, 0.3, 0.4, 0.5 and 0.6. A conver-
gence study was carried out with three different meshes of 32, 40, and 64 quadratic
boundary elements, in which the crack was discretized with 4, 5 and 8 quadratic
discontinuous elements on each surface.

Figure 5. Square plate with a single edge crack.

The results, obtained with the mesh of 32 elements, in which the crack discretiza-
tion was graded towards the tip with the ratios 0.4, 0.3, 0.2 and 0.1, are presented
in Table 1.

Table 1. Stress intensity factors for a single edge crack in a

square plate.

KI/
(
t̄
√
πa

)
a/w J-Integral Contour Path Reference

2 3 4 5 8 [4]

0.2 1.496 1.495 1.495 1.494 1.495 1.488
0.3 1.860 1.859 1.858 1.857 1.858 1.848
0.4 2.340 2.338 2.338 2.336 2.335 2.324
0.5 3.032 3.029 3.028 3.025 3.021 3.010
0.6 4.188 4.185 4.184 4.179 4.168 4.152

They show a high level of accuracy when compared with those of reference [4].
For the J-integral computations, 10 internal points and the trapezoidal rule were

considered. The stability of the J-integral results, for any contour path, is notice-
able.

6.2 The Centre Crack Problem

Consider, now, the analysis of a central slant crack in a rectangular plate, repre-
sented in Figure 6.
The ratio between the height and the width of the plate is given by h/w = 2.

The crack has a length 2a and makes an angle of φ = 45◦ with the direction
perpendicular to the applied traction. The plate is loaded with a uniform traction
t̄, applied symmetrically at the ends.
To solve this problem, a mesh of 36 quadratic boundary elements was set up, in

which 6 discontinuous elements were used on each face of the crack, graded from
the centre towards the tips, with the ratios 0.25, 0.15 and 0.1. Accurate results for
this problem were published by Murakami [24]. The results obtained, presented in
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Figure 6. Rectangular plate with a central slant crack ( h/w = 2, φ = 45◦ ).

Table 2. Mode I stress intensity factors for a central slant crack

in a rectangular plate (h/w = 2, φ = 45◦).

KI/
(
t̄
√
πa

)
a/w J-Integral Contour Path Reference

2 3 4 5 8 [24]

0.2 0.521 0.519 0.521 0.521 0.521 0.518
0.3 0.544 0.542 0.544 0.544 0.544 0.541
0.4 0.575 0.574 0.576 0.576 0.576 0.572
0.5 0.616 0.614 0.617 0.617 0.616 0.612
0.6 0.666 0.665 0.667 0.667 0.666 0.661

Table 3. Mode II stress intensity factors for a central slant crack

in a rectangular plate (h/w = 2, φ = 45◦).

KII/
(
t̄
√
πa

)
a/w J-Integral Contour Path Reference

2 3 4 5 8 [24]

0.2 0.499 0.499 0.501 0.503 0.508 0.507
0.3 0.508 0.508 0.511 0.512 0.517 0.516
0.4 0.521 0.521 0.523 0.525 0.529 0.529
0.5 0.538 0.538 0.541 0.542 0.547 0.546
0.6 0.560 0.560 0.562 0.564 0.569 0.567

Tables 2 and 3, show an excellent accuracy when compared with the results of the
reference [24].
The J-integral computations were carried out with 30 internal points and the

trapezoidal integration rule. With such a coarse mesh, the results obtained are
remarkably accurate. For mode II, the stability of the J-integral results is slightly
lower than for mode I. This means that, in the deformation mode II, the variation
of the elastic field along the contour paths is not properly approximated with the
trapezoidal integration rule. Improved stability could be obtained by considering
either more internal points along each path or a higher order integration rule.

6.3 The General Crack Problem

As a final test consider the analysis of a rectangular plate with an internal
kinked crack, represented in Figure 8.
The ratio between the height and the width of the plate is given by h/w = 2.

The segment of the crack of length a makes an angle of 90◦ with the direction of
the applied traction, while the other segment makes an angle of 45◦ with the same
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Figure 7. Rectangular plate with an internal kinked crack (h/w = 2, a/w = 0.1).

Table 4. Mode I stress intensity factors for tip A; rectangular

plate with an internal kinked crack (h/w = 2, a/w = 0.1).

KI/
(
t̄
√
πc

)
b/a J-Integral Contour Path Reference

2 3 4 5 8 [24]

0.2 0.998 0.995 0.997 0.996 0.993 0.995
0.4 0.993 0.990 0.992 0.991 0.989 0.990
0.6 0.990 0.987 0.989 0.988 0.987 0.986

Table 5. Mode II stress intensity factors for tip A; rectangular

plate with an internal kinked crack (h/w = 2, a/w = 0.1).

KII/
(
t̄
√
πc

)
b/a J-Integral Contour Path Reference

2 3 4 5 8 [24]

0.2 0.029 0.029 0.030 0.030 0.030 0.028
0.4 0.034 0.035 0.035 0.035 0.036 0.033
0.6 0.031 0.032 0.032 0.032 0.032 0.030

Table 6. Mode I stress intensity factors for tip B; rectangular

plate with an internal kinked crack (h/w = 2, a/w = 0.1).

KI/
(
t̄
√
πc

)
b/a J-Integral Contour Path Reference

2 3 4 5 8 [24]

0.2 0.605 0.603 0.603 0.604 0.604 0.598
0.4 0.578 0.576 0.576 0.576 0.576 0.574
0.6 0.572 0.570 0.570 0.570 0.570 0.568

direction and has a length b. The projection of the total crack in the direction per-
pendicular to the traction is given by 2c = a+b/

√
2. The kink of the crack is at the

center of the plate which is loaded with a uniform traction t̄, symmetrically applied
at the ends of the plate. Three cases were considered, b/a = 0.2, 0.4 and 0.6, with
a/w = 0.1. The stress intensity factors were obtained for both tips A and B with
a boundary element mesh of 48 quadratic elements. The crack segment of length a
was discretized with 5 discontinuous quadratic elements, on each crack face, while
the other crack segment was discretized with 4 discontinuous quadratic elements on
each crack face. Accurate results for comparison are published by Murakami [24].
The results of the stress intensity factors obtained for this problem, presented in
Tables 4 to 7, are in excellent agreement with those of the reference [24]; even with
the present relatively coarse mesh, the difference in the results is always less than
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Table 7. Mode II stress intensity factors for tip B; rectangular

plate with an internal kinked crack (h/w = 2, a/w = 0.1).

KII/
(
t̄
√
πc

)
b/a J-Integral Contour Path Reference

2 3 4 5 8 [24]

0.2 0.556 0.556 0.555 0.555 0.556 0.557
0.4 0.602 0.602 0.601 0.602 0.603 0.607
0.6 0.623 0.623 0.623 0.623 0.624 0.627

0.5%.

7. Discussion and Conclusions

The dual boundary element method incorporates two independent equations; one
is the displacement boundary integral equation and the other one is the traction
boundary integral equation. When the displacement equation is applied for col-
location on one of the crack boundaries and the traction equation is applied for
collocation on the other, general crack problems can be solved in a single-region
formulation. Because of the continuity requirements imposed by the principal value
integrals of the traction equation, both crack boundaries are discretized with dis-
continuous quadratic boundary elements. In addition, the discontinuous elements
circumvent the problem of collocation at crack tips, crack kinks and crack-edge
corners. The effective treatment of the hypersingular integrals that appear in the
traction equation is of fundamental importance. For curved boundary elements, the
natural definition of ordinary finite-part integrals is proposed in the present work.
For straight boundary elements, the direct analytic integration is the most effec-
tive method to deal with such integrations. At a crack node, singular integrations
occur twice, once on the self-point element and again on the opposite one. This
feature prevents the use of the standard rigid body condition to evaluate indirectly
the diagonal terms at crack nodes. Several cracked geometries were analyzed with
the dual boundary element method. It was demonstrated that the dual boundary
element method can be used for solving general crack problems efficiently.
A procedure based on the decomposition of the elastic field into its respective

symmetric and antisymmetric components was used to decouple the stress intensity
factors of mixed-mode problems. This procedure is implemented efficiently in the
boundary element method because the integration path is defined with internal
points, where the elastic field is accurately determined. This facility is not shared
by the domain methods, like the finite element method, where the field variation
is pre-assumed.
The reliability of the present modelling strategy, for the solution of general mixed-

mode crack problems, was assessed with the analysis of standard benchmark prob-
lems. The accuracy of the J-integral was shown with the edge and centre cracked
plates. As a final test the J-integral was applied in the analysis of a kinked-crack
plate. The accuracy as well as the stability of the results, for any contour path,
was excellent. In general, the J-integral was found to be an accurate tool for the
stress intensity factor evaluation, in the analysis of crack problems with the dual
boundary element method.
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