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Abstract. A mathematical model for nutritional transport in capillary tissues exchange sys-
tem in the presence of magnetic field has been studied. In this case, the cell is deformed. Due
to concentration gradients, the dissolved nutrient in substrate diffuses into surrounding tissue.
The analytical method is based on perturbation technique while the numerical simulation is
based on finite difference scheme. Results concerning the concentration of dissolved nutrients,
diffusive flux, normal component of velocity and skin friction coefficient, indicate that the
presence of magnetic field influences the flow field considerably.
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1. Introduction

The most physiologically important function of blood circulation through capillar-
ies is to supply nutrients to every living cell of the organism and also to remove
various waste products from every cell. Nutrient, dissolved in plasma, enter the
tissue from capillary wall. The material is transported by convection and diffusion
in the capillary, whereas in the tissue the material is transported through diffusion
only as the convection velocity in the tissue is small. Blood can be regarded as a
magnetic fluid because the red blood cell(RBC) contain the hemoglobin molecule
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a form of iron oxide. So when we apply a magnetic field on the blood the only
components of blood response to these field are erythrocytes. Pauling and Coryell
are the first who reported that the erythrocytes orient with their disk plane parallel
to the magnetic field [13]. Knut Aukland was found that other cell of blood, except
the erythrocytes, like platelets, also orient with the applied magnetic field [11].
In order to investigate the flow of a biomagnetic fluid under the action of an ap-

plied magnetic field Haik [10] and Tzirtzilakis [21, 22] developed the mathematical
model of Biomagnetic fluid dynamics. Rudraiah [15] have investigated the effect
of slip and electrically conducting viscous fluid in a horizontal channel bounded on
both sides by porous substrates of finite thickness. Two, three region flow models
have also been developed Gupta [8]. Secomb [16–18] ,Tandon [19, 20] and Bali [1]
developed Mathematical models for flow in narrow capillaries with diameter less
than 8µm in which red cell travel as single file almost filling the lumen. Bali [2]
also studied the nutritional transport through the plasma, in between the cell and
capillary wall, into the tissue. Bharadwaj [5] analyzed the squeezing flow of red
blood cell through a very narrow capillary enclosed by a tissue. Deepti Seth [7]
concerned with the formulation of a simple mathematical model for the transport
of oxygen from the surrounding retinal tissue.
In this paper, our aim is to study the deformation of cell on nutrition trans-

port in capillary-tissue exchange in the presence of magnetic field. The momentum
equation is solved analytically for velocity distribution. A first order perturbation
method satisfying the slip-velocity at the porous surface is used. Knowing the aver-
age velocity field, we solve the diffusion equation numerically by employing a finite
difference scheme.

2. Mathematical Formulation

The viscous, steady, two dimensional, incompressible, axis symmetrical, laminar
biomagnetic fluid (blood) flow is considered taking place between two parallel flat
plates(channel). We assume that the length of the channel version of a idealized
krogh capillary-tissue exchange system is large compared to the width so that the
end effects are negligible. A uniform magnetic field, H0 is applied in the y-direction
and the magnetic Reynolds number is assumed to be sufficiently small so that the
perturbations to the magnetic field may be neglected.
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Figure 1. Physical configuration.
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Flow region is divided into two sub-regions:
(i)Fluid film region
(ii)Porous tissue region.
Blood is considered as a homogeneous, electrically conducting biomagnetic fluid
and Newtonian behavior is assumed. The force action on the erythrocytes when
entering the magnetic field are shown in figure 1.

2.1 Governing Equations

2.1.1 Fluid Film Region

The governing equation of motion for the flow of plasma in between the cell and
capillary tissue wall are given [6]
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but due to small leakage in to the porous wall we retain the continuity equation
as:

∂u′

∂x′
+
∂v′

∂y′
= 0 (3)

The Boundary conditions are

u′ = −
√
k

α

∂u′

∂y′
at y′ = ±h (4)

∂u′

∂y′
= 0 at y′ = 0 (5)

v′ = 0 at y′ = 0 (6)

v′ = vw at y′ = ±h (7)

where, u and v are the x and y components of the velocity, p is the pressure, σ0 is
the electrical conductivity, ρ is the density of the fluid, vw is the vertical velocity in
the porous layer, k is the permeability of the medium, α is the slip parameter, µ
is the kinematic viscosity and 2h is the width of the channel Eq. (4) is the Beavers
and Joseph(BJ)slip condition [3] at the lower and upper permeable surface.
To solve the Eqs (1)-(3), we use the following non dimensional quantities
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k
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For incompressible follows, the velocity vector V can be expressed in terms of a
vector potential ψ as

V = ∇× ψ

This solution technique was first formulated by Berman [4].
By introducing the dimensionless stream function ψ = ψ(x, y) defined by the ex-
pressions

u =
∂ψ

∂y′
= −1

h

∂ψ

∂y
(8)

v = − ∂ψ

∂x′
(9)

Now, we choose an appropriate form for the stream function as

ψ = [hu0 − vwx
′]f(y) (10)

Substituting Eq.(10) into Eqs.(8)and(9), the velocity components are

u = [u0 − vw
x′

h
]f ′(y) (11)

v = vwf(y) (12)

By eliminating the pressure p from the first two and substituting (11)and (12)
in (1)and (2), we obtained

∂

∂y
[Rew(f

′2 − ff ′′) + f ′′′(y)−M2f ′] = 0 (13)

Integrating (13) once,we get

[Rew(f
′2 − ff ′′) + f ′′′(y)−M2f ′] = K (14)

where, K is the constant of integration, Rew = vwh
γ is the Reynolds number,

M = µH0h
√

σ0

ργ is the Hartmann number.

The boundary conditions (4)-(7) in non-dimensional form are:

f ′(y) = −ϕf ′′(y) at y = 1 (15)

f ′′(y) = 0 at y = 0 (16)

f(y) = 0 at y = 0 (17)
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f(y) = 1 at y = 1 (18)

2.2 Nutritional Transport

2.2.1 Porous Tissue Region

Under the admissible assumptions, the approximate diffusion equation in porous
matrix is given [14]

u′n
∂C ′

∂x′
+ v′n

∂C ′

∂y′
= D′

(
∂2C ′

∂x′2
+
∂2C ′

∂y′2

)
+m′ (19)

where, C ′ the concentration of dissolved nutrients in the tissue region, D′ is
the diffusion coefficient,u′n and v′n is the average velocity and m′ is the rate of
production of the nutrient within the tissue.
we assume that the longitudinal diffusion is much less than the transverse, that

is ∂2C′

∂x′2 << ∂2C′

∂y′2 . Thus (19) can be rewritten as

u′n
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The boundary conditions are:

C ′ = c0 at x′ = 0 (21)

C ′ = ηc0 at y′ = h (22)

∂C ′

∂y′
= 0 at y′ = h+H ′ (23)

Now we introduce the following non-dimensional quantities:
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where, H is the thickness of Porous matrix, v0 is the fluid velocity, c0 is the
uniform concentration of the nutrient in the capillary, η is the partition coefficient
[11]. Using the non-dimensional scheme, the Eq.(20) is transformed as given below,

Un
∂C

∂x
+ V n

∂C

∂y
= α0

∂2C

∂y2
+N (24)

and the Boundary conditions are
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C = 1 at x = 0 (25)

C = η at y = 1 (26)

∂C

∂y
= 0 at y = 1 +H (27)

3. Method of Solution

3.1 Velocity distribution in capillary region

Solving the Eq.(14) using perturbation technique. we let

f(y) = f0(y) +Rewf1(y) +O(Re2w), (28)

and

K = K0 +RewK1 +O(Re2w) (29)

where, fn’s and Kn’s are independent of Rew and Rew is the perturbation pa-
rameter.
Substituting Eqs.(28)and (29) in Eq.(14) and collecting of like powers of Rew,

we have the following sets of equations.

Zeroth order equations

f ′′′0 −M2f ′0 = K0 (30)

The corresponding boundary conditions:

f0(y) = f ′′0 (y) = 0 at y = 0 (31)

f ′0(y) + ϕf ′′0 (y) = 0, f0(y) = 0 at y = 1 (32)

The Solution is

f0 = A1 +A2e
−My +A3e

My − yK0

M2
(33)

Using the boundary conditions (31)and (32), we obtained

f0 = β1 sinhMy + β2y (34)

and

K0 = −M2β2 (35)
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First order equations:

f ′′′1 −M2f ′1 = K1 − f ′20 + f0f
′′
0 (36)

The corresponding boundary conditions are:

f1(y) = f ′′1 (y) = 0 at y = 0 (37)

f ′1(y) + ϕf ′′1 (y) = 0, f1(y) = 0 at y = 1 (38)

The Solution is

f1 = B1 +B2e
−My +B3e

My − y(K1 − b22 − b21M
2)

M2
(39)

Using the boundary conditions (37) and (38), we obtained

f1 = α1y + α2 sinhMy + α3y coshMy + α4y
2 sinhMy (40)

and

K1 = α5 (41)

Substituting Eqs.(34)and (40) in Eq.(28), Eqs.(35) and (41) in Eq.(29), are ob-
tained a first-order perturbation solution as

f(y) = (β1 sinhMy + β2y)+Rew
(
α1y + α2 sinhMy + α3y coshMy + α4y

2 sinhMy
)

(42)
and

K = −M2β2 + α5Rew (43)

where, α′s
n and β′sn are functions of ϕ and A1, A2, A3, B1, B2, B3 are the constants,

given in the Appendix A.
Using the non-dimensional quantities and substituting (42) in (11) and (12), we

obtain the velocity profile as

U =

(
1− 4Rew

Re

x′

h

)
[(β2 +Mβ1 coshMy) +Rew {α1 + (α2M + α3) coshMy

+ (α3M + 2α4)y sinhMy + α4My2 coshMy}]
(44)

and

V = (β2y + β1 sinhMy) +Rew
(
α1y + α2 sinhMy + α3y coshMy + α4y

2 sinhMy
)

(45)
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The normalized axial component of velocity obtained from (44) is

U

U
= (β2 +Mβ1 coshMy) +Rew {α1 + (α2M + α3) coshMy

+ (α3M + 2α4) y sinhMy + α4My2 coshMy}
(46)

where,

U =
1

2

∫ 1

−1
u(y)dy = 1− x (47)

3.2 skin friction

In non-dimensional form, the coefficient of skin friction Cf is defined as

Cf =
τw

1
2ρv

2
0

=
2

Re

∂U

∂y

=
2

Re

(
1− 4Rew

Re

x′

h

)
[M2β1 sinhMy +Rew((α2M + α3)M sinhMy

+ (α3M + 2α4)(yM coshMy + sinhMy) + α4M(y2M sinhMy + 2y coshMy))]

The coefficient of skin friction Cf at y = 1 is defined as

Cf =
2

Re

(
1− 4Rew

Re

x′

h

)
[M2β1 sinhM +Rew((α2M + α3)M sinhM

+ (α3M + 2α4)(M coshM + sinhM) + α4M(M sinhM + 2 coshM))]

(48)

3.3 Concentration distribution in tissue region

Solving Equation (24) using finite difference implicit scheme in y with the average
velocity field obtained from (44) and (45).First choose the grid, i = 1 at y = 1, i = 2
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Figure 2. Axial velocity profiles for different values of magnetic field.
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at y = 1+∆y, i = 2 at y = 1+2∆y and so on to i = NI at y = 1.25. Similarly, j = 1
at x = 0, where ∆y and ∆x are increments in the y and x-direction, respectively.
To find the unknown function of Equation (24) we use central difference for

discretizing the second order and first order derivative and backward difference for
the first order derivatives. Thus, with respect to (i,j) point the discretization is

∂2C

∂y2
=
Ci+1,j − 2Ci,j + Ci−1,j

∆y2
, (49)

∂C

∂y
=
Ci+1,j − Ci−1,j

2∆y
, (50)

∂C

∂x
=
Ci,j − Ci,j−1

∆x
, (51)

Substituting Equations (49)-(51) in Equation (20) we get

AiCi−1,j +BiCi,j + EiCi+1,j = Fi, (52)

where,

Ai = − V

2∆y
− α0

∆y2
, (53)
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Figure 3. Axial velocity profiles for different values of ϕ.
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Bi =
U

∆x
+ 2

α0

∆y2
, (54)

Ei =
V

2∆y
− α0

∆y2
, (55)

Fi =
U

∆x
Ci,j−1, (56)

Using the Taylor series expansion for i = 1 and i = NI, the boundary conditions
(26) and (27) become

Ci,1 = η, i = 1, 2, ......NI. (57)

(
U

∆x
+

2α0

∆y2

)
CNI,j −

2α0

∆y2
CNI−1,j =

U

∆x
CNI,j−1. (58)

Solving the above Equations (52)-(56), can be written in a way that constitutes
a scalar tridiagonal system along each x grid line(j constant) and which are solved
using the Thomas Algorithm [12]. It can be seen that this scheme is implicit,
considering each j line constant, and therefore is called line by line implicit method
(L.L.I.M.). The solution of the equation is achieved iteratively by solving, for all
j lines, the arising tridiagonal systems until the unknown function at all the grid
points of the computational domain has been evaluated up to an accuracy. It was
found that convergence of the numerical of the solution is satisfactory for grid size
0.025 for y and 0.1 for x, solving methods are given in the Appendix B.

3.4 Diffusive flux

In non-dimensional form, Diffusive flux on the wall is given

Df = −D∂C
∂y

= −D
{
Ci+1,j − Ci,j

∆y

}
(59)

4. Results and Discussions

Velocity profiles, skin friction coefficient, concentration distribution and diffusive
flux of the flow field have been computed using MATHEMATICA 8.0. Figure 2
represent the variation of the velocity U with axial distance y for the fixed wall
Reynolds number Rew = 0.1. The curves are plotted for different values of the M
with ϕ = 0. Clearly when Hartmann number increases, the axial velocity decreases
and profiles get flatter and approach those of plug flow.
Figure 3 shows that as slip coefficient ϕ increases, the wall shear decreases and

velocity profiles flatten for M = 1. Figures 4 and 5 shows the normalized axial
components of velocity profiles which are plotted against y for different valves of
Hartmann number and slip coefficient respectively.It is similar to figure 2 and 3
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which is independent of entrance Reynolds number and longitudinal position. Fig-
ure 6 depicts the coefficient skin friction Cf at y = 1 increases as Hartmann number
increase.
Figures 7 and 8 shows the concentration distribution in tissue region with longitu-

dinal position x and transverse position y for different values of Hartmann number.
In this region as Hartmann number increases, the concentration also increases. In
this case, the cells of the tissue of the deeper region gets proper nutrition. Due
to increase in Hartmann number, more fluids are enters into tissue so that more
dissolved nutrients enter into the tissue along with fluid. Figure 9 represent the
diffusive flux on the wall in tissue region at y = 1 with x. Diffusive flux on the
wall increases for M value increases. Therefore in deeper region also get proper
nutrition.

5. Conclusion

The biomagnetic (blood) fluid flow in a channel with axi-symmetric is studied.The
present analysis deals with the deformation of the cell are useful for continuous
blood flow through a capillary in the presence of magnetic field. When the blood
flow is increased nutrients are distributed to the tissues much more effectively and
quickly, so that the tissue gets more nutrients.
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6. Appendices

6.1 Appendix 1

Constant defined in Eqs.(33), (39) and (42) are

A1 = 0, B1 = 0 (60)

A1 =
K0

M2(2M coshM + 2ϕM2 sinhM)
, (61)

A4 = − K0

M2(2M coshM + 2ϕM2 sinhM)
, (62)

B2 =
1

2M coshM + 2m2ϕ sinhM
[
b12b2b3
4M

+
7b1b2 coshM

4M
+

5b1b2 sinhM

4

− b1b2M coshM

4
+ 3b1b2ϕ sinhM +

3b1b2Mϕ coshM

4
− b1b2M

2ϕ sinhM

4
]

(63)

B3 = − 1

2M coshM + 2m2ϕ sinhM
[
b12b2b3
4M

+
7b1b2 coshM

4M
+

5b1b2 sinhM

4

− b1b2M coshM

4
+ 3b1b2ϕ sinhM +

3b1b2Mϕ coshM

4
− b1b2M

2ϕ sinhM

4
]

(64)

α1 = −β
2
1β2β3
4M

, (65)

α2 =
β21β2β4

4
, (66)

α3 = −7β1β2
4M

, (67)

α4 =
β1β2
4

, (68)

α5 =
β22 +M2β21 + β21β2β3M

4
, (69)
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β1 = − 1

M coshM − sinhM + ϕM2 sinhM
, (70)

β2 = −β1
(
M coshM + ϕM2 sinhM

)
(71)

β3 = 7M cosh2M − 5M sinh2M + 2ϕM2 sinh 2M − 7 sinhM coshM

− 12ϕM sinh2M
(72)

β4 =
(
ϕM2 − 12ϕ− 6

)
sinhM + (M − 3ϕM) coshM (73)

6.2 Appendix 2

Solving the Eqs. (52)-(58) using Thomas algorithm for tridiagonal matrix

bi =
Bi −AiEi−1

bi−1
with b1 = B1 (74)

ti =
Fi −Aiti−1

bi
with ti =

F1

B1
(75)

Compute the backward from CNI,j to C1,j as follows:

CNI,j = tNICi,j = ti −
EiCi+1

bi
(76)
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