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Abstract. In this paper, an implicit second order integro-differential equation governing
unsteady motion of a solid particle submerged in a fluid medium and, affected by an arbitrary
force field is solved numerically. It is assumed that the particle Reynolds number is quite small
to use the well-known Basset kernel for the history force. The implicitness and singularity
of the equation are removed by using a hybrid quadrature rule (HQR) and a generalized
quadrature rule (GQR), respectively. A recursive plan is used to reduce the required CPU
time. Two schemes along with the associated numerical solution algorithms are presented. It
is described how the accuracy of the method can be increased in a systematic way. The results
obtained by several examples show the effectiveness of the method.
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1. Introduction

Particle dynamics in a fluid medium is an important subject in different industries.
Material separation systems [17, 22], particulate fluid flows [8, 16], heat transfer
enhancement by surface bombardment [4, 18], drug delivery systems [6, 11], sepa-
ration of biological samples [9] and clean room technology [1] are some examples
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in which the particle behavior in a fluid medium should be analyzed precisely. To
this end, the governing equation for the particle dynamics, has been the subject
of many applied and theoretical researches in the past years [12, 13, 24, 25]. One
of the most challenging issues in analyzing the equation of particle motion is the
so-called Basset/history force. This term causes the equation to change its type
from a differential to an integro-differential one.
The well-known integro-differential governing the particle motion suffers from

two drawbacks [15]. Firstly, its numerical solution is very time consuming due to
the history force which requires an integration from 0 to final time, t, in every
time step. The second issue pertains to the kernel of the history force, which is
singular at t = 0. Due to these drawbacks, often, the history force is neglected
in the problem analysis. When the particle to fluid density ratio is large enough
or the particle experiences almost stable motion, the history force can be ignored
without causing a significant error [5, 10]. However, in many practical cases, these
assumptions are not held and, the history force must be taken into account to
obtain accurate results for the particle dynamics [23, 27].
Some efforts have been made to tackle the issues and give a solution for the gov-

erning equation. A method named window model was introduced by [2] to decrease
the computation time. This method is based on the physics of the problem rather
than being a mathematical approach. Also, some implicit methods for solving spe-
cial cases, often in linear form, are available in the literature [3, 14].
In this paper we derive an explicit and simple method for numerical solution of

the general form of the particle motion equation. In contrary to the most available
methods, in the present work, the particle would be under any arbitrary force
originating from various factors such as electric or magnetic fields. In other words,
the presented method is capable to solve both linear and nonlinear forms of the
particle motion equation. By using HQR and GQR, the implicitness and singularity
of the equation are removed. In order to reduce the time consuming cost, recursive
schemes are designed to compute the history force.
The paper is organized as follows: in Section 2 the integro-differential equation

governing the particle motion in a fluid medium is introduced. Section 3 is devoted
to the numerical method designed for solving the equation under-study. This sec-
tion is divided into two subsections each containing a solution algorithm. Finally,
some numerical examples are given in Section 4.

2. Problem Description

In an unsteady stokes flow, the total hydrodynamic force exerted on a moving
particle in a viscous medium can be described as [5]:

F =
9µν

2R2
V +

1

2
ρfν

dV

dt
+

9µν

2R

√
ν

π

∫ t

0

dV

dτ

dτ√
t− τ

, (1)

where µ and ν are the fluid dynamic and kinetic viscosity, respectively. ρf is the
particle mass density. R is the particle radius and V is the particle velocity. The
last term which represents the effect of particle acceleration in the past tense on
its current motion is known as the history force. In a more general condition, this
term would be expressed by [2]:

Fh =

∫ t

0
h′′(τ)K(t− τ, h′(τ))dτ (2)
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Assuming that the particle Reynolds number is sufficiently small (Creeping flow),
Basset kernel, K(t− τ, h′(τ)) = 1√

t−τ
, is used for calculation of the history force.

Based on Newton’s second low, the general form for equation of particle motion
in the creeping flow can be written as:

h′′(t) = f(t, h(t), h′(t)) + Ch

I1(t)︷ ︸︸ ︷∫ t

0

1√
t− τ

h′′(τ)dτ, 0 ⩽ t ⩽ (3)

where, f(t, h(t), h′(t)) stands for the particle acceleration produced by a general
force field (including Eq. (1) without the last term) and Ch is a numerical factor
associated with the history force. Different forms of this equation have been studied
widely from various points of view (See [20, 21]).

3. Numerical Solution

Consider Eq. (3) with the initial conditions h(0) = h0 and h′(0) = v0 as the initial
position and velocity of the particle, respectively.
By integrating both sides of (3) over [0,t], and changing the order of integration,

we have

h′(t) = v0 +

∫ t

0
f(s, h(s), h′(s))ds+ Ch

∫ t

0

∫ s

0

1√
s− τ

h′′(τ)dτds

= v0 +

∫ t

0
f(s, h(s), h′(s))ds︸ ︷︷ ︸

I2(t)

+2Ch

∫ t

0

√
t− τh′′(τ)dτ︸ ︷︷ ︸

I3(t)

(4)

and in a similar way,

h(t) = h0 + v0t+

I4(t)︷ ︸︸ ︷∫ t

0
(t− s)f(s, h(s), h′(s))ds+

4

3
Ch

I5(t)︷ ︸︸ ︷∫ t

0

√
(t− τ)3h′′(τ)dτ . (5)

We solve system (3)-(4)-(5) to obtain h, h′ and h′′. We present a quadrature
based method for numerical solution of this system. There are five integrals
I1(t), . . . , I5(t). We use HQR to compute I2(t) and I4(t) and GQR for the rest
integrals. In the following, we explain HQR and, GQR will be explained in the
subsections 3.1 and 3.3.

Notation guidance

For enhancing the readability of the paper, it is worthy to note that ϕ(tj) and ϕj

stand for the exact and approximate value of an arbitrary function ϕ in the point
tj , respectively. For example, hj , h

′
j and h′′j denote approximate value of h(tj),

h′(tj) and h′′(tj), respectively.
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Hybrid Quadrature Rule (HQR)

Let QN (f) =
∑i

j=0 ωjf(tj) be a Newton-Cotes quadrature rule to compute∫ ti
0 f(x)dx. There can be either an explicit or an implicit algebraic system for
(hi, h

′
i, h

′′
i ) depending on whether ωi = 0 or not. The first case may occur if left-side

rectangular quadrature rule is used and the second case may occur if trapezoidal
rule is used. It is evident that trapezoidal rule is more accurate than left-side rect-
angular one. However, in the case of having nonlinear f , the trapezoidal rule results
in implicit scheme. Fortunately, there is still a way to benefit from the accuracy
of trapezoidal quadrature rule with explicit scheme. It is sufficient to divide the
interval [0, ti] into the subintervals [0, ti−1] and [ti−1, ti] for i = 2, ..., n. We use the
composite trapezoidal rule for the first subinterval and the left-side rectangular for
the second one. This quadrature rule is called a hybrid quadrature rule [26] and is

denoted by H(.). By applying HQR to
∫ ti
0 g(s)ds we have

∫ ti

0
g(s)ds ≈

i−1∑
j=0

ωh
j g(tj) := H

(∫ ti

0
g(s)ds

)
,

where

ωh
j =


∆t
2 , j = 0,

∆t, j = 1, . . . , i− 2,
3∆t
2 , j = i− 1.

(6)

Theorem 3.1 (See [7] ) If g ∈ C2[0, T ], then∣∣∣∣∣
∫ ti

0
g(s)ds−H

(∫ ti

0
g(s)ds

)∣∣∣∣∣ ⩽ ( T

12
M2 +M1

)
∆t2,

where M2 = max
t∈[0,T ]

|g′′(t)| and M1 = max
t∈[0,T ]

|g′(t)|.

We use this kind of quadrature rule to compute I2(ti) and I4(ti) and denote them
by H(I2(ti)) and H(I4(ti)), respectively, i.e.

H
(
I2(ti)

)
:=

i−1∑
j=0

ωh
j f

(
tj , h(tj), h

′(tj)
)

(7)

H
(
I4(ti)

)
:=

i−1∑
j=0

ωh
j (ti − tj)f

(
tj , h(tj), h

′(tj)
)

(8)

From theorem 3.1, if f has continuous second derivative, then

|I2(ti)−H
(
I2(ti)

)
| ⩽ K1∆t2 (9)

|I4(ti)−H
(
I4(ti)

)
| ⩽ K2∆t2 (10)

where constants K1,K2 ∈ R.
Please note that, in step ith, we doesn’t have the exact value of h(tj), h

′(tj) and
h′′(tj) for j = 0, 1, . . . , i − 1. But we have approximate value of them. Therefore,
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we will used

Ĥ
(
I2(ti)

)
:=

i−1∑
j=0

ωh
j f

(
tj , hj , h

′
j

)
(11)

Ĥ
(
I4(ti)

)
:=

i−1∑
j=0

ωh
j (ti − tj)f

(
tj , hj , h

′
j

)
(12)

instead of H
(
I2(ti)

)
and H

(
I4(ti)

)
.

The problem understudy in this paper contains singularity in term I1(t) in (3).
In the literature of integral equations, there are many approaches for overcomeing
singularities. To remove the singularity appeared in I1(t), we use GQR introduced
in [19]. In this way, we approximate h′′(τ) with a constant (Scheme I) and with a
one degree interpolation (Scheme II). This quadrature rule, in addition to removing
singularity, has high accuracy.

3.1 Scheme I

Generalized Quadrature Rule (GQR)

Consider coinciding equidistant meshes on t and τ :

0 = t0 = τ0 < t1 = τ1 < . . . ⩽ tn = τn = T

where ti = i∆t and ∆t = T
n

Lemma 3.2 Let h ∈ C3[0, T ] and M3 = max
x∈[0,T ]

|h′′′(x)|. We have

∫ tj+1

tj

√
(ti − τ)3h′′(τ)dτ = h′′(tj)Aij + E1(tj) (13)

∫ tj+1

tj

√
ti − τh′′(τ)dτ = h′′(tj)Āij + E2(tj) (14)

∫ tj+1

tj

1√
ti − τ

h′′(τ)dτ = h′′(tj)
¯̄Aij + E3(tj) (15)

where

Aij =
2

5
∆t5/2

(√
(i− j)5 −

√
(i− j − 1)5

)
(16)

Āij =
2

3
∆t3/2

(√
(i− j)3 −

√
(i− j − 1)3

)
(17)

¯̄Aij = 2∆t1/2
(√

i− j −
√

i− j − 1
)

(18)∣∣E1(tj)
∣∣ ⩽ M3T

3/2∆t2,
∣∣E2(tj)

∣∣ ⩽ M3T
1/2∆t2 and

∣∣E3(tj)
∣∣ ⩽ M3T

−1/2∆t2.

Proof We prove (13). The two other inequalities are proved in similar way. Using
Taylor’s remainder theorem, we have

h′′(τ) = h′′(tj) + (τ − tj)h
′′′(ξj)
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where ξj ∈ [tj , τ ]. Thus

∫ tj+1

tj

√
(ti − τ)3h′′(τ)dτ =

2

5
h′′(tj)

(√
(ti − tj)5 −

√
(ti − tj+1)5

)
+

∫ tj+1

tj

√
(ti − τ)3(τ − tj)h

′′′(ξj)dτ

=
2

5
h′′(tj)

(√
(i∆t− j∆t)5 −

√
(i∆t− (j + 1)∆t)5

)
+ E1(tj)

= h′′(tj)Aij + E1(tj)

where

∣∣E1(tj)
∣∣ = ∣∣∣ ∫ tj+1

tj

√
(ti − τ)3(τ − tj)h

′′′(ξj)dτ
∣∣∣

⩽
∫ tj+1

tj

√
(ti − τ)3(τ − tj)|h′′′(ξj)|dτ

⩽ M3

∫ tj+1

tj

√
(ti − tj)3(tj+1 − tj)dτ

⩽ M3

√
(ti − tj)3(tj+1 − tj)

2 ⩽ M3T
3/2∆t2.

■

By using Lemma 3.2, the integrals I1(ti), I3(ti) and I5(ti) can be computed as
follows

I1(ti) =

i−1∑
j=0

∫ tj+1

tj

1√
ti − τ

h′′(τ)dτ ≈
i−1∑
j=0

¯̄Aijh
′′(tj) := G0

(
I1(ti)

)

I3(ti) =

i−1∑
j=0

∫ tj+1

tj

√
ti − τh′′(τ)dτ ≈

i−1∑
j=0

Āijh
′′(tj) := G0

(
I3(ti)

)

I5(ti) =
i−1∑
j=0

∫ tj+1

tj

√
(ti − τ)3h′′(τ)dτ ≈

i−1∑
j=0

Aijh
′′(tj) := G0

(
I5(ti)

)
These quadrature rules are called generalized quadrature rule of degree zero
(GQR0) and is denoted by G0(.). Note that the index zero in GQR0 stand for
approximation of h′′(τ) by a constant. In the case of using h′′j (as an approximate

value of h′′(tj)) instead of h′′(tj), we will have

Ĝ0

(
I1(ti)

)
:=

i−1∑
j=0

¯̄Aijh
′′
j (19)

Ĝ0

(
I3(ti)

)
:=

i−1∑
j=0

Āijh
′′
j (20)

Ĝ0

(
I5(ti)

)
:=

i−1∑
j=0

Aijh
′′
j (21)
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Finally, in scheme I, we solve following explicit system.
h′′i = f(ti, hi, h

′
i) + ChĜ0

(
I1(ti)

)
,

h′i = v0 + Ĥ
(
I2(ti)

)
+ 2ChĜ0

(
I3(ti)

)
,

hi = h0 + v0ti + Ĥ
(
I4(ti)

)
+ 4

3ChĜ0

(
I5(ti)

)
,

(22)

for i ⩾ 1.
Since in (22), in every time step, five quadrature rule should be calculated, for

high values t, this method is too time-consuming. Thus, we try to save the calcu-
lations of some previous steps to use in the current time step. Let

Vi := v0 + Ĥ
(
I2(ti)

)
Si :=

i−1∑
j=0

ωh
j tjf(tj , hj , h

′
j)

Mi := h0 + v0ti + Ĥ
(
I4(ti)

)
.

By a simple calculation we have

Mi = h0 + tiVi − Si

and consequently,

Vi+1 := Vi +
3∆t

2
f(ti, hi, h

′
i)−

∆t

2
f(ti−1, hi−1, h

′
i−1),

Si+1 := Si +
3∆t

2
tif(ti, hi, h

′
i)−

∆t

2
ti−1f(ti−1, hi−1, h

′
i−1),

Mi+1 := Mi +∆tVi −
∆t2

2
f(ti−1, hi−1, h

′
i−1).

In summary, we have the following algorithm.

3.2 Algorithm of scheme I

The algorithm for scheme I is:

1.  h0 = h0
h′0 = v0

h′′0 = f(0, h0, v0)

2. 
h1 = h0 + v0t1 +∆t2f(t0, h0, h

′
0) +

4
3ChĜ0

(
I5(t1)

)
,

h′1 = v0 +∆tf(t0, h0, h
′
0) + 2ChĜ0

(
I3(t1)

)
,

h′′1 = f(t1, h1, h
′
1) + ChĜ0

(
I1(t1)

)
.
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3.

M2 := h0 + v0t2 +∆t2f(t0, h0, h
′
0) +

3∆t2

2 f(t1, h1, h
′
1)

V2 := v0 +
∆t
2 f(t0, h0, h

′
0) +

3∆t
2 f(t1, h1, h

′
0)

4. For i = 2, 3, ...



hi := Mi +
4
3ChĜ0

(
I5(ti)

)
,

h′i := Vi + 2ChĜ0

(
I3(ti)

)
,

h′′i := f(ti, hi, h
′
i) + ChĜ0

(
I1(ti)

)
,

Vi+1 := Vi +
3∆t
2 f(ti, hi, h

′
i)− ∆t

2 f(ti−1, hi−1, h
′
i−1),

Mi+1 := Mi +∆tVi − ∆t2

2 f(ti−1, hi−1, h
′
i−1).

Note. It is worthy to note that in the second step of this algorithm, we use left
side rectangular quadrature rule to comput I2(t1) and I4(t1).

3.3 scheme II

The difference between scheme I and scheme II is in computing the integrals I1(ti),
I3(ti) and I5(ti).

Lemma 3.3 Let h ∈ C3[0, T ] and M3 = max
τ∈[tj ,tj+1]

|h′′′(τ)|. We have

∫ tj+1

tj

√
(ti − τ)3h′′(τ)dτ = ∆t5/2

[
h′′(tj+1)Bij + h′′(tj)Cij

]
+ E1(ti),∫ tj+1

tj

√
ti − τh′′(τ)dτ = ∆t3/2

[
h′′(tj+1)B̄ij + h′′(tj)C̄ij

]
+ E2(ti)∫ tj+1

tj

1√
ti − τ

h′′(τ)dτ = ∆t1/2
[
h′′(tj+1)

¯̄Bij + h′′(tj)
¯̄Cij

]
+ E3(ti)
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for j = 0, . . . , i− 2, where

Bij :=
1

35

[
4(i− j)7/2 + 10(i− j − 1)7/2 − 14(i− j)(i− j − 1)5/2

]
Cij :=

1

35

[
4(i− j − 1)7/2 + 10(i− j)7/2 − 14(i− j − 1)(i− j)5/2

]
B̄ij :=

1

15

[
4(i− j)5/2 + 6(i− j − 1)5/2 − 10(i− j)(i− j − 1)3/2

]
C̄ij :=

1

15

[
4(i− j − 1)5/2 + 6(i− j)5/2 − 10(i− j − 1)(i− j)3/2

]
¯̄Bij :=

1

3

[
4(i− j)3/2 + 2(i− j − 1)3/2 − 6(i− j)(i− j − 1)1/2

]
¯̄Cij :=

1

3

[
4(i− j − 1)3/2 + 2(i− j)3/2 − 6(i− j − 1)(i− j)1/2

]
and

|E1(ti)| ⩽
∆t3

8
M3T

3/2, (23)

|E2(ti)| ⩽
∆t3

8
M3T

1/2, (24)

|E3(ti)| ⩽
∆t5/2

8
M3. (25)

Proof Let

Ph(t) =
t− tj
∆t

h′′(tj+1) +
tj+1 − t

∆t
h′′(tj)

be linear interpolation of h′′ for the interpolation points {(tj , h′′j ), (tj+1, h
′′
j+1)}.

Then

h′′(τ) = Ph(τ) +
(τ − tj)(τ − tj+1)

2
h′′′(ξ).

Assuming M3 = max
τ∈[tj ,tj+1]

|h′′′(τ)|, then since max
τ∈[tj ,tj+1]

| (τ−tj)(τ−tj+1)
2 | = ∆t2

8 , we have

|h′′(τ)− Ph(τ)| ⩽
∆t2

8
M3, ∀τ ∈ [tj , tj+1]. (26)

Thus, h′′(τ) ≈ Ph(τ) for τ ∈ [tj , tj+1]. Therefore∫ tj+1

tj

√
(ti − τ)3h′′(τ)dτ =

∫ tj+1

tj

√
(ti − τ)3

(τ − tj
∆t

h′′(tj+1) +
tj+1 − τ

∆t
h′′(tj)

)
dτ + E1(ti)

(27)∫ tj+1

tj

√
ti − τh′′(τ)dτ =

∫ tj+1

tj

√
ti − τ

(τ − tj
∆t

h′′(tj+1) +
tj+1 − τ

∆t
h′′(tj)

)
dτ + E2(ti)∫ tj+1

tj

1√
ti − τ

h′′(τ)dτ =

∫ tj+1

tj

1√
ti − τ

(τ − tj
∆t

h′′(tj+1) +
tj+1 − τ

∆t
h′′(tj)

)
dτ + E3(ti).



10 Gh. Eslami et al./ IJM2C, 13 - 03 (2023) 1-14.

It is a matter of simple algebraic manipulations to show that

∫ tj+1

tj

√
(ti − τ)3h′′(τ)dτ ≈ h′′(tj+1)∆t5/2

35
(4(i− j)7/2 + 10(i− j − 1)7/2 − 14(i− j)(i− j − 1)5/2)

+
h′′(tj)∆t5/2

35
(4(i− j − 1)7/2 + 10(i− j)7/2 − 14(i− j − 1)(i− j)5/2)

= h′′(tj+1)Bij + h′′(tj)Cij

∫ tj+1

tj

√
ti − τh′′(τ)dτ ≈

h′′j+1∆t3/2

15
(4(i− j)5/2 + 6(i− j − 1)5/2 − 10(i− j)(i− j − 1)3/2)

+
h′′(tj)∆t3/2

15
(4(i− j − 1)5/2 + 6(i− j)5/2 − 10(i− j − 1)(i− j)3/2)

= h′′(tj+1)B̄ij + h′′(tj)C̄ij

∫ tj+1

tj

1√
ti − τ

h′′(τ)dτ ≈
h′′j+1∆t1/2

3
(4(i− j)3/2 + 2(i− j − 1)3/2 − 6(i− j)(i− j − 1)1/2)

+
h′′(tj)∆t1/2

3
(4(i− j − 1)3/2 + 2(i− j)3/2 − 6(i− j − 1)(i− j)1/2)

= h′′(tj+1)
¯̄Bij + h′′(tj)

¯̄Cij

From (26) and (27), we have

|E1(ti)| =
∣∣∣ ∫ tj+1

tj

√
(ti − τ)3

(
h′′(τ)− Ph(τ)

)
dτ

⩽
∫ tj+1

tj

√
(ti − τ)3

∣∣h′′(τ)− Ph(τ)
∣∣dτ

⩽ ∆t2

8
M3T

3/2

∫ tj+1

tj

dτ =
∆t3

8
M3T

3/2.

which proves (23). In a similar way, (24) can be proven and

|E3(ti)| =
∣∣∣ ∫ tj+1

tj

1√
(ti − τ)

(
h′′(τ)− Ph(τ)

)
dτ

⩽
∫ tj+1

tj

1√
(ti − τ)

∣∣h′′(τ)− Ph(τ)
∣∣dτ

⩽ ∆t2

8
M3

1√
∆t

∫ tj+1

tj

dτ =
∆t5/2

8
M3.

■

By using this Lemma, we can define new type of generalized quadrature rules of
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degree one (GQR1) to compute I1(ti), I3(ti) and I5(ti):

I1(ti) =

i−2∑
j=0

∫ tj+1

tj

1√
ti − τ

h′′(τ)dτ +

∫ ti

ti−1

1√
ti − τ

h′′(τ)dτ

≈ ∆t1/2
i−2∑
j=0

(
h′′(tj+1)

¯̄Bij + h′′(tj)
¯̄Cij

)
+

∫ ti

ti−1

1√
ti − τ

h′′(ti−1)dτ

= ∆t1/2

[
i−2∑
j=0

(
h′′(tj+1)

¯̄Bij + h′′(tj)
¯̄Cij

)
+ 2h′′(ti−1)

]
= Qh

1

(
I1(ti)

)
(28)

I3(ti) =
i−2∑
j=0

∫ tj+1

tj

√
ti − τh′′(τ)dτ +

∫ ti

ti−1

√
ti − τh′′(τ)dτ

≈ ∆t3/2
i−2∑
j=0

(
h′′(tj+1)B̄ij + h′′(tj)C̄ij

)
+

∫ ti

ti−1

√
ti − τh′′(ti−1)dτ

= ∆t3/2

[
i−2∑
j=0

(
h′′(tj+1)B̄ij + h′′(tj)C̄ij

)
+

2

3
h′′(ti−1)

]
= Qh

1

(
I3(ti)

)
(29)

and

I5(ti) =

i−2∑
j=0

∫ tj+1

tj

√
(ti − τ)3h′′(τ)dτ +

∫ ti

ti−1

√
(ti − τ)3h′′(τ)dτ

≈ ∆t5/2

[
i−2∑
j=0

(
h′′(tj+1)Bij + h′′(tj)Cij

)
+

2

5
h′′(ti−1)

]
= Qh

1

(
I5(ti)

)
. (30)

Since in application, we have h′′j instead of h′′(tj), similar to the (19), (20) and

(21), we can define Q̂h
1

(
I1(ti)

)
, Q̂h

1

(
I3(ti)

)
and Q̂h

1

(
I5(ti)

)
.

3.4 Algorithm

1.  h0 := h0
h′0 := v0
h′′0 := f(0, h0, v0)

2. 
h1 = h0 + v0t1 +∆t2f(t0, h0, h

′
0) +

8
15Chh

′′
0

√
∆t5,

h′1 := v0 +∆tf(t0, h0, h
′
0) +

4
3Chh

′′
0

√
∆t3,

h′′1 := f(t1, h1, v1) + 2Chh
′′
0

√
∆t.
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3. M2 := h0 + v0t2 +∆t2f(t0, h0, h
′
0) +

3∆t2

2 f(t1, h1, h
′
1)

V2 := v0 +
∆t
2 f(t0, h0, h

′
0) +

3∆t
2 f(t1, h1, h

′
0)

4. For i = 2, 3, ...

hi := Mi +
4
3ChQ̂

h
1

(
I5(ti)

)
,

h′i := Vi + 2ChQ̂
h
1

(
I3(ti)

)
,

h′′i := f(ti, hi, h
′
i) + ChQ̂

h
1

(
I1(ti)

)
.

Vi+1 := Vi +
3∆t
2 f(ti, hi, h

′
i)− ∆t

2 f(ti−1, hi−1, h
′
i−1),

Mi+1 := Mi +∆tVi − ∆t2

2 f(ti−1, hi−1, h
′
i−1).

4. Examples

In this section, we have given two examples to confirm the theoretical results. The
numerical results are given in Table ?? in which absolute errors are reported. As
seen, the second scheme results in more accurate solution.

Example 4.1 Consider the nonlinear second order implicit integro-differential
equation

h′′(t) = t− 4

3

√
6h(t)− 6 +

∫ t

0

h′′(τ)√
t− τ

dτ

with initial condition h(0) = 1 and h′(0) = 0 and exact solution h(t) = 1
6 t

3 + 1.

Example 4.2 Consider the nonlinear second order implicit integro-differential
equation

h′′(t) = 6h(t)− 3

10
t5 + t− 32

35
t7/2 − 4

3
t3/2 +

∫ t

0

h′′(τ)√
t− τ

dτ

with initial condition h(0) = 0 and h′(0) = 0 and exact solution h(t) = 1
20 t

5 + 1
6 t

3.

5. Conclusion

An implicit second order integro-differential equation governing a particle dynamics
in a fluid medium was solved numerically. It was shown that by using hybrid and
generalized quadrature rules, it is possible to tackle the drawbacks pertaining to the
numerical solution of this equation. Two schemes were proposed while the second
scheme is more accurate than the first one. Even more accuracy can be reached by
using the same procedure that was used to derive the scheme II from I. In order
to reduce the calculation cost including the demanded time, a recursive plan was
implemented. Numerical examples show the effectiveness of the method for both
linear and nonlinear forms of the equation understudy.
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Table 1. Comparison of the numerical results obtained for Examples 4.1 and 4.2.

Errors for ∆ t=0.1
Examle 4.1 Examle 4.2

t Scheme1 Scheme2 Scheme1 Scheme2
t=1 9.31e−2 1.11e−2 4.65e−2 8.83e−3

t=3 2.54e−1 1.01e−1 4.91e−2 1.11e−2

t=5 4.43e−1 1.12e−1 6.51e−2 5.13e−2

t=7 5.51e−1 1.87e−1 8.81e−2 6.89e−2

t=9 7.06e−1 2.21e−1 1.61e−1 9.45e−2

Errors for ∆ t=0.01
Examle 4.1 Examle 4.2

t Scheme1 Scheme2 Scheme1 Scheme2
t=1 1.22e−2 2.89e−2 4.51e−3 1.89e−4

t=3 1.53e−2 2.91e−2 5.16e−3 5.53e−4

t=5 1.68e−2 3.11e−2 6.34e−3 7.88e−4

t=7 2.02e−2 3.29e−2 7.78e−3 1.23e−3

t=9 2.19e−2 4.01e−2 8.21e−3 2.76e−3
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