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Estimation of multi-component reliability parameter in a
non-identical-component strengths system under dependency of
stress and strength components
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Abstract. Generating more realistic stress-strength model is main attempt, in this paper.
For this aim, inference on stress-strength parameter was considered in a multi-component
system with the non-identical-component strengths, based on the Kumaraswamy generalized
distribution, when the stress and strength variables are dependent. The dependency assump-
tion is studied by Copula theory, one of the most important concept in dependent variables.
The maximum likelihood estimation (MLE), bootstrap confidence interval, Bayesian approx-
imation and highest posterior density (HPD) interval are obtained, for the multi-component
stress-strength parameter. Employing Monte Carlo simulations, the performance of differ-
ent estimations are compared together. Finally, one real data set is analyzed for illustrative
purposes.
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1. Introduction

In lifetime data analysis, the generalized distributions play very important role in
considering of real data. In this paper, we use two generalized distributions. One
of them is Kumaraswamy generalized (KuG) distribution. KuG was born from the
idea compilation of [12] and [4]. This distribution is a class of beta generalized
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distributions and a distribution for double-bounded random processes. In fact, for
the flexibility of this model, in many applicable situations, KuG can be employed
to analyze real data, so that since its introduction in 2011 until now, the KuG
distribution has received a considerable amount of attention from the statistical
community, with over 926 citations. Recently, [15] show the flexibility of this model
in studying of stress-strength reliability in a non-identical-component strengths
system based on upper record values. KuG distribution, for a basic cumulative
distribution function (cdf) G(x) with probability density function (pdf) g(z), has
the pdf and cdf respectively, as follows:

f(z) = aBg(2)G* () (1 - G*(2))" ", a.B>0,
F(z)=1-(1-G%@x))”", a,B > 0.

One multi-component system is a system with more than component. Recently,
the reliability of such system has attracted enormous interest. In this system, one
common stress component and k strength components, which are independent and
identical, work together. So, as long as at least s from k strength components exceed
its stress, the system is reliable. The multi-component reliability parameter, in this
system can be derived as

R, = P(at least s of (Uy,---,Uy) >Y), (1)

where (Uy,---,Uy) are the strengths have the same pdf fy(-) and the random
variable Y known as stress has the pdf fy (-). Some authors have been considered
this model, when the strength and stress variables are independent, such as [9] and
[10].

In following, we study the system which includes two components k = (ky, k2).
Let us put fy(-) and fy(-) be the pdfs of the first and second components, respec-
tively. Also, a common stress Y with the pdf fy(-) impressions all components.
So, as long as at least s = (s1,s2) of k = (k1, k2) strength components exceed its
stress, the system is reliable. This parameter can be defind as follows:

Rsx = P(at least s1 of (Uy,---,Uy,) and at least sp of (Vi,---,Vg,) >Y). (2)

We assume that k; components’ strengths Uy, --- , Uy, are independent and ko
components’ strengths V,--- ,Vj, are independent, but the strength components
and stress are dependent variables. This model is complete general, so that if k =
(1,0) the stress-strength parameter can be obtained from it. Also, when k = (k,0),
we can derived the multi-component reliability parameter in (1). Recently, [11] have
considered this parameter when the strength and stress are independent variables.
In this paper, the researchers can be found some examples, in nature, which can
be modeled by this system.

In this paper, we obtain the estimation of Rsy in Equation (2), assuming that
the strength components are dependent random variables and they are dependent
with the stress variable. One of the most powerful tools to demonstrate the de-
pendence between two variables is copula function. Recently, copula theory has
been extended in some fields such as financial and reliability. In reliability theory,
some authors used the copula theory for describing the dependence of stress and
strength variables, for example, [5] provided a copula-based approach to account
for dependence in stress-strength models. [7] studied a dependent stress-strength
interference model based on mixed copula function. [1] considered the reliability es-
timation of multi-component stress-strength model based on copula function under



A. Kohansal/ IIM2C, 18 - 04 (2023) 1-17. 3

progressively hybrid censoring. Very recently, [16], considered the multi-component
reliability estimation, when the strength and stress component are dependent. In
fact, we obtain this parameter based on order statistics.

The rest of this paper is as follows. In Section 2, we consider some basic concepts
such as copula theory and multi-component reliability model, when the stress and
strength components are dependent. In Section 3, we obtain the classical estimation
of Rk such as MLE and Bootstrap confidence interval. Bayesian inference on Rg
is consider in Section 4. In Section 5, we derive the simulation results and study
one real data analysis. Finally, we conclude the paper in Section 6.

2. Basic concepts

2.1 Copula theory

Copulas are the most important tools to describe dependence of two or more vari-
ables and in field of reliability and finance, they have many applicable. In following,
we study some basic concepts of copula theory.

Suppose that X = (Xi,---,X,) is a continuous random vector with the joint
distribution function H(x1,--- ,x,) and marginal Fy, (z1) = F(x1, 400, - ,+00),
Fx,(x2) = F(+00, 29,400, ,+00), - -+, Fx (xp) = F(4+00,- -+ ,400,2}). In this

condition, based on Sklar’s theorem, then there exists a unique p-dimensional cop-
ula function C': [0, 1]" — [0, 1] satisfying

H(ay, - ap) = O(Fx, (21), -+, Fx, (2p))-

So, if let h(xi,---,xp) be the joint probability density function of X =
(X1,---,Xp), then we can write

p

h(xlv T 7‘Tp) = C(FXl(x1)7 U 7FXn(‘Tp)) Hsz(xl)v
i=1
where
_ aPC’(uh A 7Up)

C(ulv T 7u17)

Ouy - -~ Ouy

Many authors have considered different copulas and investigated their properties,
for more details see [14]. In following, we consider the Archimedean copula which
introduced by [8]. The general form of this copula can be written as follows:

Clur, - up) = (W~ ur) + 97 (uz) + - + 9 (up)).

Considering ¢ (z) = (1—1—’71’)_%, ~v > 0, the Archimedean copula convert to a famous
copula called Clayton copula. So, easily, we can write p-dimensional Clayton copula
(p > 2) as follows:

Clur,ug, - yup) = (w7 +uy 7 4w —p+1)77. (3)
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Also, by some calculations, the c¢(uq,ug,- - ,up) can be derived, as follows:
—1
8PC(U1,"’ 7up) _ (p )
C(Ul, 7“10) 8U1 . 8Up - JlTl(’y + j)
p 1 p
(w7 —er1) (I
j=1 j=1

2.2  Multi-component reliability model when stress and strengths are
dependent

The reliability in a multi-component stress-strength model, with two non-identical-
component strengths, is defined by (2) as

kl kz

e 22 GG L L

P1=81 p2=382
ki— p1+k2 D2 p1+p2

fU1,~~ 7Uk-17V17“' 7Vk_yy(ul, e ,ukl,vl, e ,ng,y)dul s dukldvl e dvkzdy. (4)

Let Uy,--- ,Uk,, Vi, -+, Vi, be the strength components and follow the pdfs fy(-)
and fy(-), respectively. Now, assuming that Y, stress component, is a random
variable with pdf fy(-), we can write the ki + k2 inner integrals in (4) as follows:

/ym/y /"om/"o IO (Fy(w), -+, Fulug, ), Fv(v1), -+ Fy (vk,), Fy (y))
0 0 Jy y OFy(u1) - OFy (ug, )OFy (v1) - - - OFy (vi,)OFy (y)
N— —
ki—pi+ko—p2 p1+p2

X fou(ur)--- fulug,) X fv(vi) - fv (o) fy (y)duy - - - dug, dvy - - - dog,.

By some calculations, we solve these integrals and obtain the following;:

_Z ZZ Z a1+a2

Wy, 21 Zpy

i_l,FU( ) zi=1,Fv(y)
k1—p1 ko—p2

% 80(’(01, y Wpyy 215" 5 Zpy FU(y)v aFU(y)7FV(y)>“' 7FV(y)’FY(y))
OFy (y) ’
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where a; and ag are the numbers of Fi7(y) and Fy (y), respectively, in each sentences
of the summation. So, we can obtain Rgx in equation (4) as follows:

k?l k)z

LU0 3D 3 ([ F9FAD ML B IS i

P1=81 P2=S2
—1 FU( ) Z—l Fv( )

k1—p1 ko—p2
x aC(U)l,' o 7wp177217"' 7Zp2 FU(y)v : 7FU(y)FV(y)7 : 7FV(y)7FY(y))
OFy (y)

x fy (y)dy. (5)
Corollary 2.1 When the variables v1,--- ,v, are independent, we have the fol-
lowing copula:

P
Clui, -+ ,vp) = HU""
i=1

Now, assuming the independence of strengths and stress variables, from the equa-
tion (5), we can obtain the Rgy which is considered in [11], in the following form:

= Y () [T 0= mm) @m0 - )

P1=81 p2=S2 0
ka—p2
x (Fy(y)™ " fy (y)dy. O

Now, using the p-dimensional Clayton copula, which is given in (3), we can write
the integral part of the equation (5), as follows:

/Z 3N S (e

Wpy 21 Zpa

w;=1,Fy(y) zi=1,Fv(y)

k1—p1 kao—p2
% ac(wlv s Wpy o5 215" " 7Zp2FU(y)7"' 7FU(y)FV(y)7 7FV(y)7FY(y))
6FY(y)
Wy =3 3 ) e ) Y

Wpy 21 Zp2
wzflvFU(y) Z’t*l?FV( )

Fy(u)=1—(1-G*w)”, Fy(v)=1-(1-G*@))”,
Fy(y) =1 (1-G*(v))™.
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So, Rsk in equation (5) can be obtained as follows:

- - k k aya

Rs,k: Z Z <p1>(pz>zzzz<_l)+2
P1=81P2=52 w1 Wpy 21 Zpgy
wi=1,Fy (y) zi=1,Fv(y)

1

( iwf” + i 2+ (k= p)Fy 7 (y) + (k2 — p2) Fy 7 (y) + F;V(y)) i

) /0 OFy (y)
x fy (y)dy. (6)

3. Classical estimation

In this section, we obtain some classical estimations of Rgy, such as MLE and
bootstrap confidence interval.

3.1 MLE of R

Let Xy ~ KuG(a1,f1), Xo ~ KuG(asg, f2) and Y ~ KuG(as, 33) is three depen-
dent random variables. Now, we construct the likelihood function, with n systems
on the lifetime experiment. So, the samples are as follows:

Observed stress variables Observed strength variables
i Uip ... U1k1 Vi1 ... V1k2
Y = and X = , Xo =
Y, Unt ... Unp, Vit + .. Vi,

Therefore, assuming that {Usi,...,Up, }, {Vii,...,Vik,}, @ = 1,...,n, and
{Y1,...,Y,} are three samples from KuG(a1, 1), KuG(ag, f2) and KuG(as, 83),
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respectively, the likelihood function of the unknown parameters are as:

n
L(ay, ag, By, B2, as, B, yldata) = [T hluar, -+ ik, vins -+, Vi, i)
i1
n
= H (C(FX1 (win), -+ Fx, (win, ), Fx, (win), -+, Fx, ik, ), Fy (vi))
i1

X

I (win) - fx, (i, ) fx, (vin) - -+ fx, (Wkg)fY(%’))

—
P
;j
a

. )7 ,FXl(uikl)aFXQ(uil)v"' ,FXQ(Uikg)vFY(yi)))

i=1
% ﬂ ] Fx: (uij) > (ﬁ ﬁ fx2(vij) ) X (ﬁfY(yi))
i=1j=1 i=1 jo= i=1

¢(Fx, (uin), -+, Fx, (wir,), Fx, (i), - -- aFXQ(Uikg)vFY(yi)))

=

EE

(
(
=
(11 H a9 1) G ) (1 = G 1))

i=17j1=

n k’z

(H H aaBag(vij,) G2 (vig,) (1 - G”(Uz‘jz))ﬁrl)

=1 jo=

(Hasﬁsg 5) GO ) (1= 6 () ™)

k1+k2 n n k1 ko
= (T o+a) < (TTCE P i) + 32 Fi (o) + ()
Jj=1 i=1 ji=1 ja=1
) ) s (T ) < (T A5 )
i=1 i=1j1=1
n ko
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X altks gnks 5 (H H g(ugj,) ) x (ﬁ ﬁ Gal—l(u¢j1)>

i=1j,—1 i=1j,=1
(H H = G (uijy) ﬁl_l)
i=1 j1=1
x a2 Bpks % (ﬁ ﬁ g(vij2)> x (ﬁ ﬁ Garl(”m@))
i=1 jo—1 i=1 ja—1
(T - ™)
i=1 jo—1
 af (ﬁg%) <(TTem o) < (ITa-e6)™")
=1 =1

The log-likelihood function, by replacing (¢, ) = 1 — G*(t), ¢ = 1,2, 3, based
on the observed samples, can be obtained by:

ki+ko
. 1
E(a17a27517ﬂ27a376377’data) =n Z log(’y +]) - (; + kl + k? + 1)
j=1

X Zlog ( Z —R®H um,ozl T4 Z 1 — U”z, 042))_7

Ji=1 J2=1

+ (1 =R (ys,03)) " — k1 — k‘2) —(v+1) Zlog (1—9"%(y;, a3))
=1

n n
—(v+1) ZZlog 1— uwl,al —(v+1) ZZlog 1— vm,ag))

=1 j1=1 i=1 jo=1

n k‘l

+ nky log(aq) + nky log(51) + Z Z log (9(u4j,)) + (1 — 1) Z Z log (G(uij,))

i=1 j1=1 i=1 j1=1

n kl

+(B1—1) Z Z log (9%51 (uijl,al)) + nkolog(ag) + nky log(52)
i=1 ji—1

30 bt o203 3t Gl G 1)

=1 ]2:1 =1 ]2—1

X Y > log (R (vyg,, a2)) + nlog(az) +nlog(8s) + Y log (9(v:))

i=1 jo=1 i=1

+(ag = 1)) log (G(w:)) + (B3 — 1 Zlog (R% (yi, a3)).

i=1 i=1

Now, by replacing ‘Z(A, B) = APBlog(A) and Q(t, ac, Be) = 1 — RP(t, ), ¢ =
1,2,3, the values of &y, s, a3, B1, B2, f3 and 7, MLEs of a1, az, az 1, B2, B3
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and -, respectively, should be dived by solving the following equations:

ol
dor Br1(1+ (k14 k2 + 1))
k1
> (S(G(uij&)val)mﬁl_l(uzjmal)Q_Fy_l(uijmalvﬁl))
Ji=1
8 Z i(a1, az, as, f1, B2, B3,7)
= Um ), an) R ug,, 00) | nky
+617+1 ;]12—1 'U,U”al,ﬂl) +0471
3 o () — (51— 30 30 TO))
g 191 1 2. m(uijljal) )
=1 j1=1 =1 51=1
ol
Yo = Bo(1+ (k14 ka2 +1)7)
ko
> (T(G(Uz‘p),062)9{5271(%']'27042)537771(%'2,042,52))
J2=1
8 Z i(a1, az,as, f1, B2, B3,7)
n ’U@ 2 042)9{’82 (’UijQ,OéQ) nk2
+ Ba(y+1) J +—=
ﬂ2 ’y ;]; 02]27a27ﬁ2) Qo
n n Vi,
+ZZlOg Um 52_1221;30[2))7
=1 j,=1 =1 ja=1 tj2)

T(G(yi), a3) R (yi, a3) Q77 i, s, Bs)

ﬁzﬁs(u(lﬂwkﬁl)v)z

80&3 i=1 Q[i(a17a270537517ﬁ276377)
N T(Gyi), a3) R Hyi, o) n
+B3(y +1) 2; SR, e
- ‘I(G(yi),aa)
1 — ZATNIH )
+Z og ( — (B3 1)2; Ry 0z)
k1

> ((Z(g{(uzjlaal)vﬂl)ﬂ_w_l(uijla041761))

(% J1=1

1+ (kg + by +1
op1 ~ L Z A (o1, g, a3, B1, P2, 53, 7)

Uzyual) nkl
’y+ Z1 Z_ UZ]laoﬂaﬁl +Z Zlog U@leal )
7 J1=1 =1 j;=1
ko

y 5 (T, 02), 82) 277 (v 00 )

14 (ky + ko + 1)y 2
ag Utk Z (a1, a2, s, B, o B3, )

'y—|—]_ zn:z U1]27a2 nk2—|—zn:210g 01]27042)

U (6%
i=1 j2=1 2 Q’BQ i=1 jo=1
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ol " T(R(yi, a3), B3) Q77 Hyi, as, B3)
Bz —(L (ke 1) ); i (o, o2, a3, B1, B2, B3,7)

“T(R(ia3),03)  n '
+(7+1); TN —l-@—l-Zlog(m(yuag)),

v Rtk 1
n

1
. = 10g @1,0&2,0&3,61,52,ﬂ3, + *+k1+k‘2+1

j=1

ks Ky
n ,le(g(uijlaalaﬁl)v _/7> + ,le(g(vi]’wa%ﬁ?)’ —'7) + Z(Q(yi,()ég,ﬁzs), _’Y)
Ji= J2=
X ; mi(a17a27a37617ﬂ2753)7)

n  k n k n
- Z Z lOg (Q(uijmala ﬁl)) - Z Z lOg (Q(Uijzv a9, 52)) - Zlog (Q(ylv asg, /83))7
=1

i=1 j;=1 =1 j;=1

where

k1
Qli(ala 2, 063,,31,62, 6377) = Z Q_W(uijlaala 61)

=1

ko
+ Z Q77 (vij,, a2, B2) + Q77 (ys, a3, B3) — k1 — ko

J2=1

Using one numerical method, the above seven equations are solved together and
then utilizing the invariance property, RM LE the MLE value of R Xk, can be ob-
tained.

3.2 Bootstrap confidence interval

As the form of Rgy is so complicated, the asymptotic confidence interval cannot
be obtained, directly. Therefore, we use one parametric bootstrap method which
introduced by [6] and known as percentile bootstrap method (Boot-p) to obtain
the confidence interval. For this aim, we consider the following steps:

(1) Put {Uila'--ankl}a {‘/;1,...,‘/%2}, T = 1,-",TL and {K,,Yn}
be three bootstrap samples from KuG(a1,01), KuG(ag,p2) and
KuG(as, B3), respectively and obtain MLEs of the unknown parameters,
(ala a2> 617 627 )‘a /’}\/)

(2) Put {US, ..., Ug 1AV, Vig, b, i =1, n,and {Y7", ..., Y,'} be three
bootstrap samples from KuG(&l,Bl) KuG(&Q,Bg) and KuG(ag,Bg), re-
spectively and obtain the bootstrap estimate RM LEx

(3) Repeat NBOOT times Step 2.

(4) Put G*(z) = P(RMLE* < z) be cdf of RMLE* and put RJ(z) = G* (=),
for a given x. A 100(1 — )% Boot-p confidence interval of Rgy can be
constructed as follows:

HBp "\ D n
(R B = 2)).
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4. Bayes estimation

In this section, under the squared error loss function, assuming that independence
of prior distributions, we obtain Bayes estimation and associated credible interval
of Rs k. For this aim, gamma distribution is considered as the prior distribution of
a1, as, as, B1, B2 and Bs. Also, we assume that the copula parameter, v, follows
as a uniform distribution. So, we have

al—le—blal

mi(ag) o< af a2_16_b20‘2,

, ma(og) X af

ma(Br) o B e B s (Ba) ox B52 T e B mg(Bs) o B TNe T mp(y) o L.

m3(a3) ags_le_b3°‘3,

By this, the joint posterior density function can be derived by:

77(0517 ag, 0537517527 ﬁ3>’7|data) X L(Oél, ag, ()43)61) 627/837’7|data)7r1(051)7(2(042)7]—3(053)
x m4(B1)m5(B2) 76 (Bs) (7). (7)

Equation (7) shows that we cannot obtain the estimation of oy, ag, as, 51, B2, B3,
v and Rg ) parameters in a closed form. So, the Bayes estimation of the parameters
and Rk is approximated by MCMC method.

4.1 MCMC method

From (7), we obtain the posterior pdfs of the ay, ag, a3, 81, f2, B3 and y parameters
by the following;:

n
S N A
m(a1|az, as, B, B2, 33,7, data) o H (As(ou, az, as, B1, Pa, B3,7))

=1
n kl n kl
—y—1 a;—1
< [T TT 97 s, ) < JTTT 6% 7" (i)
i=171=1 i=1j,=1
n k}l
-1 nki+a;—1 —bia
><1_[1_[9‘{51 (wij,,00) X @y T x e
i=1j=1

n
m(az|at, as, B, B2, 83,7, data) o H (As(on, g, as, B1, Pa, B3,7))

i=1
n kz n k2
—~—1 —1
X H H Q77 (Uij27a27/62) X H H G* (Uijz)
i=1j=1 1=1j2=1

n k)g
X H H 9‘{52_1(vij2,a2) X agk2+“2_1 x e b2z
i=1 jo=1

m(az|ar, az, B, B2, 3,7, data) o H (As(ar, a2, a3, B1, 52,53,7))7;%1%271
=1
< [TQ 7 (i, s, 8s) x [T G* (i)

i=1 =1
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n
X H%'Brl(yi,ag) X a§+a3_1 X e_b3"‘3,

i=1
n 1
(Bilar, oz, a3, Ba, B3, 7, data) oc [ [ (Ai(ar, a2, a3, B, Ba, B3,7)) > TR
i=1
n  ky n  kp
X H H Q_Fy_l(uijl,al,ﬂl) X H H %ﬁl_l(uijl,Oq) X ﬂ?kﬁ_cl_l X €_d1’81,
=1 ji=1 =1 ji=1
n
m(Be2|au1, a2, a3, B1, 3,7, data) o H (%(041,&2,&3,51,ﬁz,ﬁ&’Y)) TRkt
i1
n ko
X H H Q77 Hwyj,, o, B2) X H H RO (v),, ag) x Buketeal 5 gmdabs
=1 jo=1 i=1 jo—1
n 1
(B3|, a2, a3, B1, P2, 7, data) o H (A (ar, a2, a3, b1, 52,53,7))_;_k1_k2_1
i—1
n n
< [TQ 7 (i s, Bs) x [T R (i, as) x pgHe™" x em®Ps,
i—1 =1
n 1
m(y|ar, a2, as, B, B2, B3, data) o H (As(ar, a2, a3, B, 52753,7))_;%1_}%_1
i=1
ey + ko
X H y+5)" XH HQ 7wy, a1, Br)

i=171=1

X H H Q_'Y_l(vijz,ag,ﬁg) X HQ_"/_I(yhOZSvBS)'

i=1j=1 i=1

It is notable that as these posterior pdfs have not well-known distributions, generat-
ing random numbers from them is not possible. So, we use the Metropolis-Hastings
method and implement the Gibbs sampling algorithm as follows:

(1) Begin with initial values (Ctl(o), a2(0), 043(0), 51(0)7 52(0), ,33(0), ’)/(0)).

(2) Sett=1.

(3) Generate ay(y) from m(a1|ag—1y, az(—1), Bi(t—1)s B2(t—1)> B3(t—1)» V(t—1), data)
using Metropolis-Hastings method, with N (al(t_l), 1) proposal distribution
as follows:

a) Generate w; from W (:|ay—1), 1) = N(a—1),1) and u from U(0, 1).
b) If u < min{1, £}, let ay) = wy, where

m(wilag—1y, @3-1), Bi(t—1)s B2(t—1)> B3(t—1)» V(t—1), data)
m(aq—1y|aa@—1), a3p—1); Bi—1)s Bat—1) B3¢—1)> V(t—1)> data)
W(al(t71)|wta 1)
W(wt|a1(t—1)7 1)’

else, go to Step (a).

(4) Generate gy from m(az|ay—1), @3—1), Bit—1)> Bat—1)s B3(t—1)s V(t—1), data)
by a similar algorithm in Step 3.
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(5) Generate az(y) from m(as|ay -1y, Qoe—1)s Bi(e—1), Ba(i—1) B3(t—1)s V(t—1), data)
by a similar algorithm in Step 3.
(6) Generate 3y from 7(B1|ov1—1), Qa(t—1)> @3(1—1)5 Ba(t—1)» B3(t—1), V(¢—1), data)
by a similar algorithm in Step 3.
(7) Generate By from m(B2|ov(1—1), Qa(1—1)> ¥3(1—1)» B1(t—1)> B3(t—1)> V(—1), data)
by a similar algorithm in Step 3.
(8) Generate B3y from m(B3|v(1—1), Qa(1—1)> ¥3(1—1)» B1(t—1)s B2(t—1)> V(—1), data)
by a similar algorithm in Step 3.
(9) Generate v from 7(vy|ey 1), Q2(t—1), @3(1—1)s Br(t—1)» Ba(t—1)» Ba(t—1), data)
by a similar algorithm in Step 3.
(10) Evaluate Rysx with ), aaw), asi—1), Biw)s Ba)s Ba—1) and -
(11) Set t = ¢+ 1.
(12) Repeat T times in Steps 3-11.

Now, we obtain the Bayes estimation of Rsy by

T
~ 1
ngc =7 Z R(4)s k- (8)
t=1
Also, we construct the 100(1 — 7)% HPD credible intervals of Rgx, using the idea
of [2], as follows. For this aim, we order R(1)sx, ", R(7)sk as RSIZ << Rg()

and construct all the 100(1 — 7)% confidence intervals of R, as

1 T(1— T T
(R;l){v ng( 77)]))7 T (ngn])a R;k))v
where [T'] symbolizes the largest integer less than or equal to T'. The HPD credible
interval of Rk is the shortest length interval.

5. Numerical simulation and data analysis

In this section, the performance of different methods are compared with together,
using the Monte Carlo simulations. Also, one real data set is analyzed to illustrative
purposes.

5.1 Numerical experiments and simulations

In this section, we compare different estimations utilizing the Monte Carlo simula-
tions. The point estimates are compared together with mean square errors (MSEs)
and interval estimates are compared together with average lengths (AL) and cover-
age percentages (CP). We derive the simulation results based on 2000 repetitions,
the re-sampling numbers in bootstrap method is NBOOT = 350 and the number
of repetitions in Gibbs sampling algorithm is 7" = 3000. To derive the value of Ry,
from the observed data, we should generate dependent samples (P, Q, S). For this
aim, considering conditional situations in [3], first, let

_ 9%C(p,q.5)/(9pd4q)
9%C(p,q,1)/(0pdq)’

Cpq(s) = C(slp,q) Cy(q) = C(qlp) = 9C(p,q,1)/0p.

So, we can employ the following algorithm:
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1. Generate n-dimensional independent uniform (0,1) vectors
P,Wi1, -, Wg,, 1, , Tk,

2. Compute q;, = C’p_l(wjl), ji=1,--- ki and s, = C;;(rjz,), jo=1,--+ ko.

3. Calculate

8-

ujlzG_l(]'_(]-_qh)ﬁ) ; jlzlv"' 7k17

1

Vj2:G71(1_(1_Sj2)é)027 j2:17"'7k27
y=G (1 (1—p)%)=.

Now, based on the generated samples, we obtain the simulation results from the
family of KuG and EPf distributions, in two cases.

Case I: We use the exponential distribution with rate parameter equal 2
as the baseline G(-). The results are obtained based on parameter values as
(a1, 0,3, 81, P2, P3,7) = (2,1,2,3,2,2,2). We also assume three priors to study
the Bayesian inference by

Prior1:a; =0, =¢; =d; =0, 1=1,2,3,
Prior 2:a; =¢;=0.2, by =d; =0.3, 1 =1,2,3,
Prior3:ai:ci:2, blzdlzll, i:1,2,3.

In this case, the results are given in Table 1.

Case II: We use the Weibull distribution with scale and shape parameters equal 2
and 3, respectively, as the baseline G(-). The results are obtained based on param-
eter values as (aq, g, as, 1, B2, 83,7) = (3,2,2,2,1,1.5,2). We also assume three
priors to study the Bayesian inference by

Prior4:a;, =0, =c¢; =d; =0, 1=1,2,3,
Prior 5:a; =¢; =0.1, b =d; =0.3, 1 =1,2,3,
Prior 6 : a; =¢; =2, b; = d; = 3, 1=1,2,3.

In this case, the results are given in Table 2.
The simulation results in Tables 1 and 2 show the following procedures:

e In point estimates, Bayes estimations perform better than classical ones and in
the Bayes estimates, informative priors are better than non-informative ones,
based on MSEs.

e In classical estimates, HPD intervals perform better than bootstrap intervals
and in the Bayesian inference, informative priors are better than non-informative
ones, based on ALs and CPs.

e For fixed s and k, with increasing n, MSEs and ALs decrease and CP increase.

e For fixed s and n, with increasing k, MSEs and ALs decrease and CP increase.

5.2 Data analysis

In this section, the monthly water capacity of the Shasta reservoir in
California, USA, which are avaliable in link http://cdec.water.ca.gov/cgi-
progs/queryMonthly?SHA, is analyzed, for illustrative aims. This data by some
authors have been analyzed such as [9], [10] and [16]. The inference of this authors
is related to the drought occurrence concept. In following, we assumed that there
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Table 1. Simulation results in estimation of Rs x in Case I.
Point Estimates Interval Estimates
Bayes Bayes

(k1, ko, s1,s2,n) MLE Prior 1 Prior 2 Prior 3 Bootstrap Prior 1 Prior 2 Prior 3
(5,5,2,2,5) |Bias| 0.0158 0.0163 0.0110 0.0154 AL 0.5028 0.4682 0.4025 0.3764
MSE 0.0925 0.0900 0.0815 0.0789 CP 0.905 0.914 0.923 0.930
(5,5,3,3,5) |Bias| 0.0152 0.0097 0.0093 0.0134 AL 0.5039 0.4528 0.4083 0.3774
MSE 0.0933 0.0907 0.0810 0.0779 CP 0.907 0.915 0.924 0.931
(5,5,4,4,5) |Bias| 0.0185 0.0117 0.0144 0.0104 AL 0.5087 0.4609 0.4037 0.3709
MSE 0.0918 0.0904 0.0819 0.0780 (@) 4 0.906 0.914 0.925 0.930
(5,5,2,2,10) |Bias| 0.0162 0.0108 0.0135 0.0156 AL 0.4885 0.4133 0.3819 0.3528
MSE 0.0846 0.0795 0.0729 0.0701 CP 0.912 0.919 0.929 0.935
(5,5,3,310) |Bias| 0.0177 0.0185 0.0140 0.0095 AL 0.4839 0.4158 0.3859 0.3592
MSE 0.0859 0.0780 0.0730 0.0700 CP 0.914 0.920 0.931 0.936
(5,5,4,4,10) |Bias| 0.0096 0.0108 0.0172 0.0107 AL 0.4812 0.4100 0.3838 0.3574
MSE 0.0830 0.0799 0.0719 0.0681 CpP 0.913 0.921 0.930 0.935
(10,10,2,2,5) |Bias| 0.0169 0.0106 0.0182 0.0118 AL 0.4585 0.3956 0.3358 0.2957
MSE 0.0812 0.0723 0.0689 0.0649 CP 0.915 0.924 0.931 0.946
(10,10,3,3,5) |Bias| 0.0101 0.0107 0.0147 0.0132 AL 0.4595 0.3915 0.3315 0.2966
MSE 0.0809 0.0730 0.0680 0.0638 CP 0.916 0.925 0.933 0.947
(10,10,4,4,5) |Bias| 0.0118 0.0171 0.0144 0.0140 AL 0.4577 0.3977 0.3399 0.2907
MSE 0.0815 0.0729 0.0693 0.0630 CP 0.915 0.926 0.931 0.946
(10,10,2,2,10) |Bias| | 0.0180  0.0111  0.0163  0.0162 | AL 0.4305 0.3484  0.3118  0.2654
MSE 0.0652 0.0600 0.0559 0.0515 CP 0.921 0.937 0.944 0.950
(10,10,3,310) |Bias| 0.0121 0.0142 0.0088 0.0085 AL 0.4338 0.3415 0.3108 0.2626
MSE 0.0630 0.0598 0.0568 0.0519 CpP 0.923 0.938 0.945 0.951
(10,10,4,4,10) |Bias| 0.0138 0.0165 0.0182 0.0094 AL 0.4381 0.3477 0.3183 0.2693
MSE 0.0681 0.0604 0.0549 0.0508 CP 0.921 0.937 0.946 0.950

Table 2.  Simulation results in estimation of Rg ) in Case II.

Point Estimates Interval Estimates
Bayes Bayes

(k1,ka,s1,s2,n) MLE Prior 4 Prior 5 Prior 6 Bootstrap Prior 4 Prior 5 Prior 6
(5,5,2,2,5) |Bias| 0.0169 0.0179 0.0093 0.0180 AL 0.6325 0.5942 0.5732 0.5528
MSE 0.1254 0.1047 0.0985 0.0920 CP 0.900 0.911 0.917 0.923
(5,5,3,3,5) |Bias| 0.0149 0.0090 0.0110 0.0140 AL 0.6345 0.5927 0.5781 0.5567
MSE 0.1220 0.1034 0.0973 0.0910 CP 0.902 0.910 0.919 0.925
(5,5,4,4,5) |Bias| 0.0185 0.0186 0.0097 0.0170 AL 0.6381 0.5982 0.5754 0.5519
MSE 0.1295 0.1046 0.0980 0.0917 (@) 4 0.900 0.912 0.918 0.923
(5,5,2,2,10) |Bias| 0.0185 0.0133 0.0168 0.0095 AL 0.6075 0.5528 0.5217 0.4957
MSE 0.1023 0.0935 0.0867 0.0810 CP 0.907 0.916 0.922 0.931
(5,5,3,310) |Bias| 0.0126 0.0180 0.0167 0.0185 AL 0.6027 0.5541 0.5247 0.4967
MSE 0.1010 0.0942 0.0846 0.0800 CpP 0.908 0.919 0.925 0.932
(5,5,4,4,10) |Bias| 0.0152 0.0083 0.0173 0.0182 AL 0.6074 0.5564 0.5294 0.4918
MSE 0.1054 0.0937 0.0833 0.0815 CpP 0.907 0.915 0.920 0.931
(10,10,2,2,5) |Bias| 0.0154 0.0163 0.0161 0.0123 AL 0.5748 0.5488 0.5027 0.4544
MSE 0.1007 0.0820 0.0800 0.0782 CP 0.912 0.922 0.927 0.936
(10,10,3,3,5) |Bias| 0.0152 0.0098 0.0157 0.0083 AL 0.5727 0.5466 0.5084 0.4567
MSE 0.1023 0.0815 0.0795 0.0775 CP 0.915 0.925 0.930 0.938
(10,10,4,4,5) |Bias| 0.0110 0.0085 0.0090 0.0170 AL 0.5757 0.5428 0.5037 0.4564
MSE 0.1009 0.0827 0.0790 0.0765 (@) 4 0.915 0.923 0.929 0.937
(10,10,2,2,10) |Bias| | 0.0156  0.0114  0.0184  0.0083 | AL 0.5328 0.4978  0.4332  0.3854
MSE 0.0985 0.0795 0.0776 0.0746 CP 0.918 0.935 0.945 0.950
(10,10,3,310) |Bias| 0.0128 0.0121 0.0164 0.0167 AL 0.5374 0.4967 0.4370 0.3819
MSE 0.0979 0.0789 0.0768 0.0735 CpP 0.920 0.937 0.946 0.949
(10,10,4,4,10) |Bias| 0.0100 0.0133 0.0129 0.0151 AL 0.5394 0.4917 0.4399 0.3837
MSE 0.0992 0.0790 0.0770 0.0730 CP 0.920 0.935 0.946 0.950
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Table 3. Goodness of fit test results.

Dist. data set KS P-value AIC BIC HQIC
Ku-Weibull U 0.1180 0.8372 -14.6894 -9.8139 -13.3372
Vv 0.1618 0.5295 -17.4871 -12.6116 -16.1348

Y 0.2076 0.9488 -0.3702 -1.9325 -4.5632

Ku-Lomax 19) 0.1281 0.7592 -10.5733 -5.6978 -9.2210
A% 0.1634 0.5159 -12.8984 -8.0229 -11.5462

Y 0.2042 0.9548 0.5254 -1.0367 -3.6674

Ku-Frechet U 0.1302 0.7422 -10.0478 -5.1723 -8.6956
Y 0.1667 0.4902 -12.8227 -7.9472 -11.4705

Y 0.2054 0.9527 0.6449 -0.9172 -3.5479

Ku-LogNormal U 0.1316 0.7310 -10.4566 -5.5811 -9.1043
\4 0.1656 0.4988 -13.05773 -8.1822 -11.7054

Y 0.2120 0.9407 0.2539 -1.3082 -3.9386
Ku-Rayleigh U 0.1282 0.7587 -12.9440 -9.2874 -11.9298
v 0.1654 0.5002 -15.3339 -11.6772 -14.3197

Y 0.1968 0.9672 -1.5264 -2.6981 -4.6711
Ku-Exp 19) 0.1294 0.7490 -12.6060 -8.9494 -11.5918
A% 0.1653 0.5012 -15.0245 -11.3678 -14.0103

Y 0.1976 0.9659 -1.4848 -2.6565 -4.6295

is no drought if the water capacity of a reservoir in a region on August and July in
at least 2 years out of next 5 years is more than the amount of water achieved on
December in the previous year such that, Ra 5 can be interpreted as the probability
of non-occurrence of drought. So, we put Ui, ...,Urs and Vi1, ..., Vi5 as capacities
of July and August from 1987 to 1991, Usy, ..., Uss and Vs, ..., Va5 as capacities of
July and August from 1993 to 1997, and so on Usy,...,Uss and Vs, ..., Vs5 as ca-
pacities of July and August from 2011 to 2015. Also, Y7, Y5, ..., Y5 are capacity of
December in 1986 and 1992 up to 2010. For simplifying the calculations, we divide
all data points by 4552000 acre-foot, total capacity of reservoir. It is notable that
by this work, the statistical inference has not changed.

To check dependency of his data, because the number of stress and strength
components data are different, we employ the randomness test. Using this method,
the statistic is —2.7206 and the corresponding p-value is 0.0060, so the randomness
is rejected and samples from U, V and Y can be considered to be dependent.

Now, we fit separately some of the possible KuG models to the data sets. So,
Ku-Lomax, Ku-Weibull, Ku-Frechet, Ku-LogNormal, Ku-Rayleigh and Ku-Exp are
fitted and the results are given in Table 3. We obtained this results with R soft-
ware, using the new package “Newdistns” which introduced by [13]. Form Table
3, it is observed that all the models provided good fits for the data sets, which
highlights the flexibility of KuG model. The Kolmogorov-Smirnov statistic and
corresponding p-values in this table show that Ku-Weibull is the best fit for U
and V, and Ku-Rayleigh is the best fit for Y data set. Also, the values of AIC,
BIC and HQIC confirm this results. So, in this six models, we prefer to work
with the Ku-Weibull for U and V' and Ku-Rayleigh for Y data. So, assuming that

s = (2,2) and k = (5,5) and under the non-informative priors, we obtain ﬁé\/[kLE,

Eykc and the corresponding 95% HPD credible interval are equal to 0.2985, 0.2907
and (0.1274,0.4981), respectively.

6. Conclusion

In this study, the statistical inference for the multi-component stress-strength relia-
bility, with two non-identical-component strengths has been considered. The most
important highlights in this paper is dependency assuming with the stress and
strength components. Copula theory was described this as well. Also, KuG distri-
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bution, which contains many flexible distributions, was employed for explanation
of the stress and strength components distributions. The classical and Bayesian
inference of Rk is considered. So, MLE, bootstrap confidence interval, Bayes esti-
mation and HPD credible interval are obtained. The simulation study is compared
this methods and the applicability of this proposed method has implemented on
the real data.
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