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Abstract. In this study, we apply the basic Lie symmetry method to investigate of transient
three dimensional (3D) reaction-diffusion equation with singularities. We obtain the classical
Lie symmetries for the equation under consideration. Therefore, we respond to the question of
classification of the equation symmetries and, as a result, derived the infinitesimal symmetries
and thirteen basic combinations of vector fields which are used to reduce the order of the given
equation. We create the optimal system of Lie subalgebras and the symmetry reductions of
the considered equation.
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1. Introduction

A symmetry classification of partial differential equation modeling a transient dif-
fusive reactive three-dimensional phenomenon is introduced in this section. The
study is conducted in the ® = E® Q C R?,E C R,Q C R? domain, where E and
Q are limited and closed domains.

O 4, 0T ), 0T ) 0T
ot * 02 Y oy? 7022

¥ + BT =0. (1)

*Corresponding author Email: y.aryanejad@pnu.ac.ir

© 2025 IAUCTB
https://sanad.iau.ir/journal /ijm



2 Y. AryaNejad et al./ IJM?C, 13 - 04 (2023) 1-11.

In this equation, it is assumed that k., ky, k. are constants and not equal to zero,
and involves the functions T' = T'(x,y, 2,t), B = B(z,y,2), and ¥ = ¢(z,y, 2),
where x,y, z,t € R. The equation also includes bounded conditions of the first and
second type, as well as an initial condition. Partial differential equations givern or
represent the vast majority of physical problems. Mathematical methods, such as
those used for heat transfer, can produce analytical solutions for a limited range of
problems [2, 11], these methods are insufficient for solving most real-world prob-
lems. It is essential to keep the symmetry for solving the equations, as it is the key
for solving non-linear differntial equations. The classical and non-classical meth-
ods generate some exact arbitrary function and thus exhibit various solutions. The
symmetry group of equations is known as the most fundamental transformation
local group, acting on the dependent and independent variables in the system
[3, 6, 7, 10, 19]. Indeed, studies in nonlinear equations are growing exponentially
because such equations depict the modes and characteristics of nonlinear phenom-
ena. These equations expand the view of scientists in terms of physical aspects,
and in this regard, they find more usages in engineering and other sciences. The
establishment of a completely integrable model, which describes the true charac-
teristics of the scientific and engineering fields, is in progress, and a wide range of
useful findings are being obtained. Several properties of the integrable equations
include the presence of a Lax pair, which can be solved by the IST technique,
satisfying the Painlev criterion, having infinite symmetry and Hamiltonian and
Bi-Hamiltonian formulas, and other criteria [8, 16]. Through the Lie symmetry
group process, the problem of symmetry categorization is extensively taken into
account for various equations in different spaces [1, 4, 8]. Indeed, the Lie approach
(symmetry group approach), as a computational, algorithmic technique to obtain
constant group solutions, is widely utilized to solve differential equations. During
the mentioned process, suitable solutions are obtained through known solutions.
Also, its other applications are checking fixed solutions and reducing the order of
ODEs [9, 12, 17]. Studies in this area are in progress since such equations depict the
states and properties of nonlinear phenomena, broaden vision in terms of physical
aspects, and then become more practical in engineering and other sciences. So, the
search for accurate solutions is important in non-linear equations in several ways,
like plasma laser radiation [5, 13].

The paper is presented in several chapters as follows. The infinitesimal generators
of the symmetry algebra of Equation (1) are specified along with some other results
obtained in Section 2. In Section 3, we make the optimal ideal subalgebras of Eq.(1).
Following the third section, we discover the similarity solutions, Lie invariants, and
similarity reduction based on the infinitesimal symmetries of Eq.(1). In Section 4,
we show reductions for differential equations as well as for definite solutions.

2. Symmetry classification of Equation (1)

The symmetry group of a set of differential equations is defined as the largest local
group of transformations that acts on the independent and dependent variables of
the system, such that solutions of the system are transformed into other solutions.
More formally, let G be a local group of transformations acting on a manifold M,
and let LCm be a subset of M. If £LCm is invariant under G then G G is said to be a
symmetrizing group of LCm. For a system of differential equations R, a symmetry
group of the system L is a local group of transformations G that acts on an open
subsety of the space of independent and dependent variables, such that solutions
of the system are invariant under G. To ensure the integrability of the system,
we aim to use the Painlev analysis to check the compatibility of each equation’s
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coefficients. Consider a system of PDEs of order p: A, (n, u(p)) =0,aa=1,...,N.
, where z = (acl,...,xm) and T = (Tl,...,T”) are the m independent and n
dependent variables, Respectively and T is the i-order derivative of T with Z
respect to x , 0 < ¢ < 4. Infinitesimal transformations of a Lie group act on both
x,y as follows:

i'=a2' 42, T)+0(e?) 1<
TV =T +ep;(x,T)+0(?) 1<j<n,

N

m,

here &', ¢; represent the infinitesimal transformations for {xl,...,mp} and
{T L ,Tq}. An arbitrary infinitesimal generator corresponding to the groups
of transformation is:

q
&, TV, + > ¢ (2, T)05,

=1

I
N
I M*@
I

2

We apply x, 3,2z and t instead of !, 22, 3 and 2* respectively, and for simplicity

5‘7 ::é.j(xvyauT% jzlv"'>3>
¢ = ¢(x7y7t7 T)

Here, an infinitesimal transformations one-parameter Lie group is taken to apply
the process for Eq.(1) as

F=x+et(x,y,2,t,T)+ 0(52),
§=y+et*(x,y,2,t,T) + 0(52),
0(52),

t=t+et(z,y,2,t,T)+0(?),
T:T+€¢,(n7y7zat7T)+O(€2)’

7 =z+et(x,j,2,t,T)

The corresponding symmetry generator is:

v = gl(x, Y, 2,6, T)0y + 52(33, y,2,t,T)0y, + fg(x,y, z,t,T)0,
+§t(may7zat7T)8t + ¢1($7y727t7T)8T-

The condition of being invariance corresponds to equations:

oT o*T o*T 9°T
@y |72 + & k k BT| =0
pr UTat+$8x2+yay2+ zazz—i-

whenever 79 + k, 9L 4 k, &L 4 | 9T 4 BT = 0 since ¢',€2,€%,¢%, ¢, only
dependent on x,y,z,t and T é/ettlng the coefficients equal to zero, the number of
generated equations is 52 . We express the answer to the above set of equations in

the form of the following theorem:
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Theorem 2.1 The point symmetries Lie group of equation (1) contain Lie alge-
bra generated by Equation. The obtained coefficients are the infinetesimals in the
following forms:

1 1
—2013) P +tB (Clt + 262) ks — 2z (4012 + Cll) ¢2> ko — 1

tkgcs
P

1
VP hsy (cry + 4es)) by — Zq/)%; (c1 + 4ep)haks) eVorte
thoco 2 2
e v+ 8, k1kaks <019 + (6*/52) 018) ((6\/?23;) ci6 + 017>

2 tcpky tkgcg ti13  tkzeg
(015+ (e\/mﬁ) C14)>/<k1k2k36 v e v ev e v

VC3Z ,\/C2Y ,A/C1T
evV™rev™ie 1),

1 1
& = 3 (c1x +2¢7)t+ 52 + 59502 + ¢4y + c,

1 kocax
& = 5(01t+C2)y— 2k4 + c10z + cgt + cg,
1
1 kscsx  ksc
3= - |t +cz — 3557 _ 310y+c11t+c12 )
2 k1 )

1
&= §C1t2 + cot + ¢,

where ¢; € Ryi=1,...,T and a(T) is a function satisfying Eq. (1).

Corollary 2.2 All one parameter Lie groups of point symmetrices for Equation
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have the following infinitesimal generators:

1 1 1 1,

1 1
r 2,12
_gm (T (6k1k2k3t1/1 + 4dk1kokst" B — k1kaz"v
1R2R3
27,2 2,2
—k19ksy® — P atkoksOr)
1 1 1 Tt130T
Vo = ~a8y + ~ydy + =20, +tdr — ———,
2 2 2 P
V11 = O,
k‘Q.%'a
]
Vo = YOz — ;
k1
kgl‘az
199 = Zax - y
k1
198 = 61‘7
1 T¢raT
7 = 10, + 5 — ",
2 Kk
9 = 19, + L L u0r
6 = POT—
Y2 ky
U5 = 8ya
ks3y0.
194 == z&y —_
ko
1T 4 20740
Oy = 10, + — L Tw:0r
2 ks
192 = Uz
Y =T0r.
Table 1. Lie algebra for Eq. (1).

Y1 LP) U3 Yy U5 g U7 s g V10 Y11 Y12 Y13
|0 0 0 0 0 0 0 0 0 0 0 0 0
¥a | 0 ey 0 0 0 0 s 0 0 19, 19,
O3 | 0 -4 0 9 0 0 0 0 7 0 —s 193 0
Py | 0 =05 —d 0 B iy 0 0 -flo oy 0 0 0
9|0 0 0 &g l¥ho 0 0 s 0 105 10
9% |0 0 0 o B 0 0 Iy 5 L0 0
7|0 0 0 0 0 0 0 SYh ks kb —s S 0
¥s | 0 0 0 0 0 0 1k 0 **,i—’ *‘;—9 0 19s 197
g | 0 by —dp ke o o B kg kg 0 0
Y11 | 0 0 v 0 0 U5 s 0 0 0 0 —Bh b o —B 4o
Y19 | O %llb %195 0 %1§5 %19() %197 771198 0 0 BJ;“ — 1 0 Y13
V3| 0 F¥s 0 0 Fs 0 0 For 0 0 3 —vp —d13 0
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Table 2. Adjoint representation of the Lie algebra.
2l 2 g 3 Wy U5
o Y1+ %192 + %1913 2+ F12 92 + Fh3 U4
I3 Y1 — 505 + Z%ﬁu Yo — 83011 U3 — G2 Uy U5
Uy U1 ay + axds — azds a1 + axdz — azvs Uy a1 + ax¥s — azvy
5 I a1 + az¥s — az¥s a1 + azxds — a3 Uy ay + agVs — azvs
I 1 — ;‘}Jfﬁs + Z%ﬁn ) U3 — %194 4 5 — se11
97 U1 — %ﬁs + %1911 o 3 — %ﬂg on 5
g Y1+ 3‘7?797 + ;‘%’1912 o — %199 U3 Yy U5 — 52?31910
) 1 ayg + az¥2 — agls  aq + az¥s — ag¥7 a4 + asy + agdio U5
Y10 U1 _ ) U3 ar +ag¥y — agly  ar + ags — agls
Y11 | Y1 — % - M%Z%zlwﬂlg Vg + 51193 U3 Uy J5 + 51106
Y12 Y1 — Wﬁn e~ 0, ey on e Y5
Y13 U+ 252y Uy U3 — $3 U4 U5
Y1 e 7 g g Y10
o 5904 + U5 g 7 g + s2009 g
3 s394 + Y 97 + 8309 s g Y10
Yy | a1 + az¥e — azvs 97 s aj + agdg — azdio a1 + ax¥y — azvio
d5 | a1 + az¥ — azvs 7 s ay + agdg — azdip a1 + ax¥y — azvio
g J6 — %‘;1912 97 + s6v10 s g Y10
97 U6 — 2010 U7 — F12 ds — s7011 g Y10
) Jg U7+ 5013 Js + F 12 g Y10
Yy e a4 + asV7 + agl¥s  ayq + azs + ags Yy ay + asd1g — ags
Y10 | a7 + ag¥7 + ag¥¢ a7 + agl¥s + ag¥s a7 + agy + agly Yy Y10
J11 Vs U7 Us + 51107 g Y10
1912 € ;2 796 6%197 e ;2 ’198 199 ’1910
Y13 Jg — 5205 U7 — 23248 g g Y10
U1 v11 V12 V13
U2 11 V12 V13
U3 V11 V12 V13
Uy 11 V12 V13
U5 11 V12 V13
e 11 12 V13
U7 V11 V12 V13
g V11 V12 V13
Uy V11 V12 V13
Y10 V11 V12 V13
82
Y11 | Y11+ suvi2 + 33 Yo + s11dis V13
12 e 1201, V12 e*12913
82
V13 V11 VY12 — s13011 V13 — s13012 + 52
where
\/—kokgsa _ \/—kakssa & (67\/*’;2:3547 \/*k2k354)
a; = ie as = e [ az = =2 ©
2 ) 2 ) 2/ —koks
1 /—k1k3sg 1 _ V/—k1k3so k3(67 \/*lzllkssg _e\/fkﬂcssg)
— = k = k J—
ag =gz€ " ,0a5 = 3¢ boosae = 2V —Fiks
vV —Fk1k2s10 vV —k1k2s10 7\/7k1k2510 \/7k1,k2510
ar=1Le M Lag=1e a9 =Rl B e B
77— 3 U8 — 35 , W9 — o/ —F1ka

G; groups containing one parameter produced by 1J; are described in the following
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expressions:

exp(ed;)(z,t,u) = (T,t,4)
G1 = (x,y,2,t,Te),
Go = (v,y,e + 2,t,T),

1
G3 = <x,y, t5+z,t,Te/ Wdzw) ,
0o 2 ks

\/@s
. —zv/kacos( kz) .
“ ZWESW(%) + (\/Ea) Vks(— Vks Vi )‘f‘yS’LTL(\/\/%
=\ YT gD Tyeos —
Gs = (z,e +y,2,t,T),
€1 (ts,
Ge = (ﬁ;ts-i—y;%t,T@/ (+y)¢d219> 7
0 2 k’g
e 1 ¥(219+Y)
G7 = (tS—FSU,y,z,t’Tefo E%dag) |
Gs = (e+x,y,2,t,T),
k1COS<\/EE)
vk | =2 iz + x sin(
2k sin \/E&_ . e
Gg: <m>+xcos<\/§>7y7_
" Vi Vi
k
Qe),@T)’
Vi
\/ECOS( k'QE)
vk |~y L + xsin
ymsm(y%g) S it (

\/E5
VE1
G = (v,y,2,e +t,T),

)7 Z? t’ T)’

le le le , ¢ B _teB
Gio = (xez ,yez® zez® te® Teve @ ),

Cia — 2x 2y 2z 2
B t(—e+2)t(—e+2)t(-e+2) —e+2’
Te s —42 l_v w(f%) - %kz(ﬁ;)tz +51n(552)

k‘l(E*%)tQ 2k3(57%t2
1 Y222koky—ky k2z2t2+41c1k2k3t237k1w2k3y2761n(%2)klewklt
e 4 thy kg ko
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3. Classification of 1D subalgebras

Using the developed symmetry group, we can now determine the optimal system
with one parameter group of equations. It is important to obtain the subgroups of
the system since they offer various types of solutions for the equation. Therefore,
finding solutions that remain unaffected is essential. To achieve this, our proposed
approach provides an expression for an optimal group of subalgebras. The classi-
fication procedure of subalgebras is similar to the classification for representation
orbits that are adjointed. By assigning one representation from every subalgebra
group within the system, we can obtain a solution for a problem with an optimal
group of subalgebras. Assuming g to be the Lie algebra determined by Corollary
2.2, we can obtain the adjoint action for the equation in table 2. We can then set
up an optimal system of the subalgebras for the equation.

2
Ad (exp (s 0) - 0y) = Oy — 5+ [0, 0] + % e, [96, 0], ]

In this equation, s is a variable and [, ;] is defined in Table 1 for ¢, =1,...,13,
where s is a variable in this representation. Assuming g to be the Lie algebra as
determined by Corollary 2.2, we can derive the adjoint action for the equation,
as shown in Table 2. Using this information, we can establish an optimal system
of subalgebras for the Equation. Specifically, a one-dimensional optimal system of
Equation is provided below:

Theorem 3.1 An example of a one-dimensional optimal system of the equation
s given by:

1) Y13 + 191 + c2¥2 + c3V4 + ca¥s + 596 + c6Us + c7¥9 + cg¥10 + coPi1,
2) Y12 + 191 + U4 + 395 + c4¥9 + c5010 + c6V11,

3) Y11 + 13 + calla + 396 + ca¥l7 + 59 + V10,

4) 910 + c191 + c2¥2 + 393 + 44 + c505 + ceVs + c709,

5) ¥9 + c191 + ¥4 + c3U5 + ¢4V + c5Vs,

6) Ug + 191 + co¥s + c393 + c4¥4 + 595 + U,

7) U7 + 11 + ca¥2 + 393 + ey + c5Us,

8) Y6 + c191 + cate + ¢33 + 4y,

9) 95 + 101 + c2U2 + 393 + 404,

10) 94 + 191 + c2¥2 + 393,

11) 93,

12) Y9 + 194,

13) 1.

Proof Looking at Table 1, it is enough to determine the subalgebras of
<191a 1923 1937 194, 1957 Q96a 2977 1987 199, 19107 1911, 19127 7913>

function Ff : g — ¢ defined by ¥ — Ad(Exzp(sd;)9) is a linear map, for i =
1,...,13. For example, two matrices A10 and A12 of F?,4 =1,...,13, with respect
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to basis, are the following:

(1000 0 0 0 0 0 00007
0100 0 0 0 0 0 0000
0010 0 0 0 0 0 0000
000ay+ag0 0 0 0 —ag 0000
0000 ar +ag 0 0 —ag 0 0000
0000 0 ar + ag —f2ag 0 0 0000
A10= 10000 0 —%ag ar +ag 0 0 0000
0000 ~Bag 00 a7 + ag 0 0000
000 —f*ag 0 0 0 0 ar+ag 0000
0000 0 0 0 0 0 1000
0000 0 0 0 0 0 0100
0000 0 0 0 0 0 0010
0000 0 0 0 0 0 0001
(10 000 0 0 0 002D ¢ ]
0e2* 00 0 0 0 0 00 0 00
00 e*0 0 0 0 0 00 0 00
00 010 0O 000 0 00
00 00e=*0 0 0 00 0 00
00 000 e*0 0 00 0 00
Al2:= 15 9 00 0 0e* 0 00 0 0 0
00 000 0 0e=°00 0 00
00 000 0O O 10 0 00
00 000 0O O 0 O1 0 00
00 000 0O O O 00 e s 00
00 000 0O O O 00 0 10
(00 000 0 0 0 00 0 0e*” |

13
Alternatively by acting these matrices on z = ) ¢;¢;. x is a vector field, z can by
i=1
simplified as follows:
By taking c¢13 # 0, the coefficient of 3, ¥7 and 12 can be disappeard by setting
() —267 C12
S9g = —2— sg = — andsiy = ——
€13 €13 €13
respectively. Scalling z, we assume c;3 = 1, thus, x can be to the case (1). For
c13 = 0 and c12 # 0, the coefficients of 99, V3, ¥g, U7 and g can be disappered by

—2c 2¢c 2¢ 2¢
setting so = 72, 83 = —3, s = 0 and sg = 8 respectively. Scalling z, we
cl 12 C12 C12

assume cj2 = 1. Thus z can be to the case (2).

For ¢13 = ¢12 = 0 and ¢11 # 0, the coeflicients of ¥, 2, ¥5 and g can be disappered
—4c () cs s . .
s3 = —, §¢ = —, 87 = — respectively. Scalling x, we
C11 c11 c11
assume ci; = 1. Thus = can be to the case (3).
For ¢13 = ¢12 = ¢11 = 0 and ¢qg # 0, the coefficents of ¥g and 97 can be disappered
klcﬁ

by setting so =

—c
and sg = — respectively. Scalling z, we assume cjp = 1.
kac10 €10

Thus x can be to the case (4).

For c13 = ¢19 = ¢11 = ¢190 = 0 and ¢g # 0, the coefficents of 9, ¥3 and 97 can be

by setting sy =
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kic kic: c
1—2, s7 = 1% and 82 = — respectively. Scalling z,
k?gCg k:369 C9
we assume cg = 1. Thus = can be to the case (5).
For ¢13 = ¢19 = ¢11 = ¢19 = ¢9 = 0 and cg # 0, the coefficients of 97 and g can be
c c
disappered by setting si3 = 7 and sg = -~z
c8 8
respectively. Scalling z, we assume cg = 1. Thus z can be to the case (6).
For ¢13 = ¢12 = ¢11 = ¢c10 = cg = ¢g = ¢7 = 0 and ¢g # 0, the coefficients of 15

disappered by setting sg =

c
can be disappered by setting s1; = ] respectively. Scalling x, we assume cg = 1.
Cé

Thus z can be to the case (7).
For ci1s=cio=c11 =cio=c9g =cg =c7 =cg = c; =0 and ¢4 # 0, the coefficents

2koc
of Y3 can be disappered by setting sg = 3 272 respectively. Scalling x, we assume
3C4
¢4 = 1. Thus = can be to the case (8). For ¢13 = ¢12 = ¢11 = ¢10 = ¢9 = ¢g = ¢7 =
c6 = c5 = ¢4 = 0, and c3 # 0, the coefficents of 12 can be disappered bysetting

c
S¢ = _— respectively. Scalling x, we assume c¢3 = 1. Thus x can be to the case
c3

9). m

4. Reduction of Eq. (1)

First, symmetry reduction of Eq.(1) is classified, taking into account the subal-
gebras of Theorem 3. It is essential to look for a new form of Eq. (1) in special
coordinates. In these new coordinates, reduction occurs. Independent variables p, q
and r must be found for the infinitesimal generator to create these coordinates.
Hence, the equation is expressed in novel coordinates through the chain rule re-
ducing the system. Table 3 shows the similarity variables &;, eta;, w; and h; for
1D subalgebras in Theorem 3. Using each similarity variable, the reduced PDE of
Eq.(1) is found (Table 4).

Table 3. The parameters of Lie invariants and the similarity solutions

H; S M w; u;

192 t € Yy L h 267 77)

193 t € Qy ) eZItpTZB (5777)

0y |t a RSk h(€,n)

194 t € z h(fﬂ?)

’195 t x z 67f1ﬁgt2h(§vn)

95 |ty z e T YL h(E, )

I t oy N h(&,m)

Us |ty Rethe h(&,m)

’195 t z W h(ﬁ,’l’])

U5 oy z h(&,m)

V11 L ¢ z h(&,m)
i+ |tz y h(&,m)
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