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Abstract. In this study, we apply the basic Lie symmetry method to investigate of transient
three dimensional (3D) reaction-diffusion equation with singularities. We obtain the classical
Lie symmetries for the equation under consideration. Therefore, we respond to the question of
classification of the equation symmetries and, as a result, derived the infinitesimal symmetries
and thirteen basic combinations of vector fields which are used to reduce the order of the given
equation. We create the optimal system of Lie subalgebras and the symmetry reductions of
the considered equation.
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1. Introduction

A symmetry classification of partial differential equation modeling a transient dif-
fusive reactive three-dimensional phenomenon is introduced in this section. The
study is conducted in the Θ = E ⊗ Ω ⊂ R3, E ⊂ R,Ω ⊂ R3 domain, where E and
Ω are limited and closed domains.

ψ
∂T

∂t
+ kx

∂2T

∂x2
+ ky

∂2T

∂y2
+ kz

∂2T

∂z2
+BT = 0. (1)
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In this equation, it is assumed that kx, ky, kz are constants and not equal to zero,
and involves the functions T = T (x, y, z, t), B = B(x, y, z), and ψ = ψ(x, y, z),
where x, y, z, t ∈ R. The equation also includes bounded conditions of the first and
second type, as well as an initial condition. Partial differential equations givern or
represent the vast majority of physical problems. Mathematical methods, such as
those used for heat transfer, can produce analytical solutions for a limited range of
problems [2, 11], these methods are insufficient for solving most real-world prob-
lems. It is essential to keep the symmetry for solving the equations, as it is the key
for solving non-linear differntial equations. The classical and non-classical meth-
ods generate some exact arbitrary function and thus exhibit various solutions. The
symmetry group of equations is known as the most fundamental transformation
local group, acting on the dependent and independent variables in the system
[3, 6, 7, 10, 19]. Indeed, studies in nonlinear equations are growing exponentially
because such equations depict the modes and characteristics of nonlinear phenom-
ena. These equations expand the view of scientists in terms of physical aspects,
and in this regard, they find more usages in engineering and other sciences. The
establishment of a completely integrable model, which describes the true charac-
teristics of the scientific and engineering fields, is in progress, and a wide range of
useful findings are being obtained. Several properties of the integrable equations
include the presence of a Lax pair, which can be solved by the IST technique,
satisfying the Painlev criterion, having infinite symmetry and Hamiltonian and
Bi-Hamiltonian formulas, and other criteria [8, 16]. Through the Lie symmetry
group process, the problem of symmetry categorization is extensively taken into
account for various equations in different spaces [1, 4, 8]. Indeed, the Lie approach
(symmetry group approach), as a computational, algorithmic technique to obtain
constant group solutions, is widely utilized to solve differential equations. During
the mentioned process, suitable solutions are obtained through known solutions.
Also, its other applications are checking fixed solutions and reducing the order of
ODEs [9, 12, 17]. Studies in this area are in progress since such equations depict the
states and properties of nonlinear phenomena, broaden vision in terms of physical
aspects, and then become more practical in engineering and other sciences. So, the
search for accurate solutions is important in non-linear equations in several ways,
like plasma laser radiation [5, 13].
The paper is presented in several chapters as follows. The infinitesimal generators

of the symmetry algebra of Equation (1) are specified along with some other results
obtained in Section 2. In Section 3, we make the optimal ideal subalgebras of Eq.(1).
Following the third section, we discover the similarity solutions, Lie invariants, and
similarity reduction based on the infinitesimal symmetries of Eq.(1). In Section 4,
we show reductions for differential equations as well as for definite solutions.

2. Symmetry classification of Equation (1)

The symmetry group of a set of differential equations is defined as the largest local
group of transformations that acts on the independent and dependent variables of
the system, such that solutions of the system are transformed into other solutions.
More formally, let G be a local group of transformations acting on a manifold M ,
and let LCm be a subset ofM . If LCm is invariant under G then G G is said to be a
symmetrizing group of LCm. For a system of differential equations R, a symmetry
group of the system L is a local group of transformations G that acts on an open
subsetµ of the space of independent and dependent variables, such that solutions
of the system are invariant under G. To ensure the integrability of the system,
we aim to use the Painlev analysis to check the compatibility of each equation’s
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coefficients. Consider a system of PDEs of order p: ∆α

(
n, u(ρ)

)
= 0, α = 1, . . . , N .

, where x =
(
x1, . . . , xm

)
and T =

(
T 1, ..., Tn

)
are the m independent and n

dependent variables, Respectively and T (i) is the i-order derivative of T with Z
respect to x , 0 < i < 4. Infinitesimal transformations of a Lie group act on both
x, y as follows:

x̃i = xi + εξi(x, T ) + 0
(
ε2
)

1 ⩽ i ⩽ m,

T̃ j = T j + εϕj(x, T ) + 0
(
ε2
)

1 ⩽ j ⩽ n,

here ξi, ϕj represent the infinitesimal transformations for
{
x1, . . . , xρ

}
and{

T 1, . . . , T q
}
. An arbitrary infinitesimal generator corresponding to the groups

of transformation is:

v =

p∑
i=1

ξi(x, T )∂ix +

q∑
j=1

ϕj(x, T )∂jT

We apply x, y,z and t instead of x1, x2, x3 and x4 respectively, and for simplicity

ξj := ξj(x, y, t, T ), j = 1, · · · , 3,
ϕ := ϕ(x, y, t, T ).

Here, an infinitesimal transformations one-parameter Lie group is taken to apply
the process for Eq.(1) as:

x̃ = x+ εξ1(x, y, z, t, T ) + 0
(
ε2
)
,

ỹ = y + εξ2(x, y, z, t, T ) + 0
(
ε2
)
,

z̃ = z + εξ3(x, j, z, t, T ) + 0
(
ε2
)
,

t̃ = t+ εξ4(x, y, z, t, T ) + 0
(
ε2
)
,

T̃ = T + εϕ, (n, y, z, t, T ) + 0
(
ε2
)
,

The corresponding symmetry generator is:

v = ξ1(x, y, z, t, T )∂x + ξ2(x, y, z, t, T )∂y + ξ3(x, y, z, t, T )∂z

+ξt(x, y, z, t, T )∂t + ϕ1(x, y, z, t, T )∂T .

The condition of being invariance corresponds to equations:

pr(2)v

[
τ
∂T

∂t
+ kx

∂2T

∂x2
+ ky

∂2T

∂y2
+ kz

∂2T

∂z2
+BT

]
= 0

whenever τ ∂T∂t + kx
∂2T
∂x2 + ky

∂2T
∂y2 + kz

∂2T
∂z2 + BT = 0 since ξ1, ξ2, ξ3, ξ4, ϕ1, only

dependent on x, y, z, t and T. Setting the coefficients equal to zero, the number of
generated equations is 52 . We express the answer to the above set of equations in
the form of the following theorem:
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Theorem 2.1 The point symmetries Lie group of equation (1) contain Lie alge-
bra generated by Equation. The obtained coefficients are the infinetesimals in the
following forms:

ϕ1 =
1

8

(
−4Te

tc1k1
ψ1 e

√
−c3ze

√
−c2ye

tB

ψ ((
3

2
c1t

−2c13)ψ + tB (c1t+ 2c2) k3 − z

(
1

4
c1z + c11

)
ψ2

)
k2 −

1

4

ψ2k3y (c1y + 4c8)
)
k1 −

1

4
ψ2x (c1x+ 4c7)k2k3) e

√
c1xe

tk3c3
ψ

e
tk2c2
ψ + 8ψc20k1k2k3

(
c19 +

(
e
√
c3z
)2
c18

)((
e
√
c2y
)2
c16 + c17

)
(
c15 +

(
e
√
c1x)

2c14
))

/
(
k1k2k3e

tc1k1
ψ e

tk2c2
ψ e

t13
ψ e

tk3c3
ψ

e
√
c3ze

√
c2ye

√
c1x
)
,

ξ1 =
1

2
(c1x+ 2c7) t+ c5z +

1

2
xc2 + c4y + c6,

ξ2 =
1

2
(c1t+ c2) y −

k2c4x

k1
+ c10z + c8t+ c9,

ξ3 =
1

2

(
c1t+ c2z −

k3c5x

k1
− k3c10y

k2
+ c11t+ c12

)
,

ξ4 =
1

2
c1t

2 + c2t+ c3,

where ci ∈ R, i = 1, ..., T and a(T ) is a function satisfying Eq. (1).

Corollary 2.2 All one parameter Lie groups of point symmetrices for Equation
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have the following infinitesimal generators:

ϑ13 =
1

2
xt∂x +

1

2
ty∂y +

1

2
tz∂z +

1

2
t2∂t

−1

8

1

k1k2k3ψ

(
T
(
6k1k2k3tψ + 4k1k2k3t

rB − k1k2z
2ψ2

−k1ψ2k3y
2 − ψ2x2k2k3∂T

)
,

ϑ12 =
1

2
x∂x +

1

2
y∂y +

1

2
z∂z + t∂T − Tt13∂T

ψ
,

ϑ11 = ∂t,

ϑ10 = y∂x −
k2x∂y
k1

,

ϑ9 = z∂x −
k3x∂z
k1

,

ϑ8 = ∂x,

ϑ7 = t∂x +
1

2

Tψx∂T
k1

,

ϑ6 = t∂y +
1

2

Tψy∂T
k2

,

ϑ5 = ∂y,

ϑ4 = z∂y − k3y∂z
k2

,

ϑ3 = t∂z +
1

2

T + 2∂Tψz∂T
k3

,

ϑ2 = ∂z,

ϑ1 = T∂T .

Table 1. Lie algebra for Eq. (1).

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7 ϑ8 ϑ9 ϑ10 ϑ11 ϑ12 ϑ13
ϑ1 0 0 0 0 0 0 0 0 0 0 0 0 0

ϑ2 0 0 1
2
ψϑ1

k3
ϑ5 0 0 0 0 ϑ8 0 0 1

2ϑ2
1
2ϑ3

ϑ3 0 −1
2
ψϑ1

k3
0 ϑ6 0 0 0 0 ϑ7 0 −ϑ2 −1

2ϑ3 0

ϑ4 0 −ϑ5 −ϑ6 0 k3ϑ3

k2
k3ϑ3 0 0 - k3ϑ10

k2
ϑ9 0 0 0

ϑ5 0 0 0 k3ϑ2

k2
0 1

2
ψϑ1

k2
0 0 0 ϑ8 0 1

2ϑ5
1
2ϑ6

ϑ6 0 0 0 −k3ϑ2

k2
0 −1

2
ψϑ1

k2
0 0 0 ϑ7 −ϑ5 1

2ϑ6 0

ϑ7 0 0 0 0 0 0 0 −1
2
ψϑ1

k1
k3ϑ2

k1
k2ϑ6

k1
−ϑ8 −1

2 ϑ7 0

ϑ8 0 0 0 0 0 0 1
2
ψϑ1

k1
0 −k3ϑ2

k1
−k2ϑ5

k1
0 1

2ϑ8
1
2ϑ7

ϑ9 0 −ϑ8 −ϑ7 −k3ϑ10

k2
0 0 k3ϑ3

k1
k3ϑ2

k1
0 −k2ϑ4

k1
0 0 0

ϑ11 0 0 ϑ2 0 0 ϑ5 ϑ8 0 0 0 0 −Bϑ1

ψ + ϑ11 −3ϑ1

4 + ϑ12
ϑ12 0 −1

2 ϑ2
1
2ϑ3 0 −1

2 ϑ5
1
2ϑ6

1
2ϑ7

−1
2 ϑ8 0 0 Bϑ4

ψ − ϑ11 0 ϑ13
ϑ13 0 −1

2 ϑ3 0 0 −1
2 ϑ6 0 0 −1

2 ϑ7 0 0 3ϑ1

4 − ϑ12 −ϑ13 0
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Table 2. Adjoint representation of the Lie algebra.

ϑ1 ϑ1 ϑ2 ϑ3 ϑ4 ϑ5

ϑ2 ϑ1 +
s2ψ
2k3

ϑ2 +
s22ψ
8k3

ϑ13 ϑ2 +
s2
2 ϑ12 ϑ2 +

s2
2 ϑ13 ϑ4

ϑ3 ϑ1 − s3ψ
2k3

ϑ3 +
s22ψ
4k3

ϑ11 ϑ2 − s3ϑ11 ϑ3 − s3
2 ϑ12 ϑ4 ϑ5

ϑ4 ϑ1 a1 + a2ϑ2 − a3ϑ5 a1 + a2ϑ3 − a3ϑ6 ϑ4 a1 + a2ϑ5 − a3ϑ2
ϑ5 ϑ1 a1 + a2ϑ2 − a3ϑ5 a1 + a2ϑ3 − a3ϑ6 ϑ4 a1 + a2ϑ5 − a3ϑ2

ϑ6 ϑ1 − s6ψ
2k2

ϑ5 +
s22ψ
4k2

ϑ11 ϑ2 ϑ3 − s6k3
k2
ϑ4 ϑ4 ϑ5 − s6ϑ11

ϑ7 ϑ1 − s7ψ
2k1

ϑ8 +
s22ψ
4k1

ϑ11 ϑ2 ϑ3 − s7k3
k1
ϑ9 ϑ4 ϑ5

ϑ8 ϑ1 +
s8ψ
2k1

ϑ7 +
s28ψ
8k1

ϑ12 ϑ2 − s8k3
k1
ϑ9 ϑ3 ϑ4 ϑ5 − s8k3

k1
ϑ10

ϑ9 ϑ1 a4 + a5ϑ2 − a6ϑ8 a4 + a5ϑ3 − a6ϑ7 a4 + a5ϑ4 + a6ϑ10 ϑ5
ϑ10 ϑ1 ϑ2 ϑ3 a7 + a8ϑ4 − a9ϑ9 a7 + a8ϑ5 − a9ϑ8
ϑ11 ϑ1 − s11B

ψ − s11(2s11B+3ψ)
4ψ ϑ13 ϑ2 + s11ϑ3 ϑ3 ϑ4 ϑ5 + s11ϑ6

ϑ12 ϑ1 − B(−1+e−s12 )
ψ ϑ11 e−

s12
2 ϑ2 e

s12
2 ϑ3 ϑ4 e−

s12
2 ϑ5

ϑ13 ϑ1 +
3s13
4 ϑ11 ϑ2 ϑ3 − s3

2 ϑ13 ϑ4 ϑ5

ϑ1 ϑ6 ϑ7 ϑ8 ϑ9 ϑ10
ϑ2 s2ϑ4 + ϑ5 ϑ6 ϑ7 ϑ8 + s2ϑ9 ϑ9
ϑ3 s3ϑ4 + ϑ6 ϑ7 + s3ϑ9 ϑ8 ϑ9 ϑ10
ϑ4 a1 + a2ϑ6 − a3ϑ3 ϑ7 ϑ8 a1 + a2ϑ9 − a3ϑ10 a1 + a2ϑ9 − a3ϑ10
ϑ5 a1 + a2ϑ6 − a3ϑ3 ϑ7 ϑ8 a1 + a2ϑ9 − a3ϑ10 a1 + a2ϑ9 − a3ϑ10
ϑ6 ϑ6 − s6

2 ϑ12 ϑ7 + s6ϑ10 ϑ8 ϑ9 ϑ10
ϑ7 ϑ6 − s7k3

k1
ϑ10 ϑ7 − s7

2 ϑ12 ϑ8 − s7ϑ11 ϑ9 ϑ10
ϑ8 ϑ6 ϑ7 +

s8
2 ϑ13 ϑ8 +

s8
2 ϑ12 ϑ9 ϑ10

ϑ9 ϑ6 a4 + a5ϑ7 + a6ϑ3 a4 + a5ϑ8 + a6ϑ2 ϑ9 a4 + a5ϑ10 − a6ϑ4
ϑ10 a7 + a8ϑ7 + a9ϑ6 a7 + a8ϑ8 + a9ϑ5 a7 + a8ϑ9 + a9ϑ4 ϑ9 ϑ10
ϑ11 ϑ6 ϑ7 ϑ8 + s11ϑ7 ϑ9 ϑ10
ϑ12 e

s12
2 ϑ6 e

s12
2 ϑ7 e

s12
2 ϑ8 ϑ9 ϑ10

ϑ13 ϑ6 − s13
2 ϑ5 ϑ7 − s13

2 ϑ8 ϑ8 ϑ9 ϑ10

ϑ1 ϑ11 ϑ12 ϑ13
ϑ2 ϑ11 ϑ12 ϑ13
ϑ3 ϑ11 ϑ12 ϑ13
ϑ4 ϑ11 ϑ12 ϑ13
ϑ5 ϑ11 ϑ12 ϑ13
ϑ6 ϑ11 ϑ12 ϑ13
ϑ7 ϑ11 ϑ12 ϑ13
ϑ8 ϑ11 ϑ12 ϑ13
ϑ9 ϑ11 ϑ12 ϑ13
ϑ10 ϑ11 ϑ12 ϑ13

ϑ11 ϑ11 + s11ϑ12 +
s211
2 ϑ13 ϑ12 + s11ϑ13 ϑ13

ϑ12 e−s12ϑ11 ϑ12 es12ϑ13

ϑ13 ϑ11 ϑ12 − s13ϑ11 ϑ13 − s13ϑ12 +
s213
2

where

a1 =
1
2e

√
−k2k3s4
k2 , a2 =

1
2e

−
√

−k2k3s4
k2 , a3 =

k3(e
−

√
−k2k3s4
k2 −e

√
−k2k3s4
k2 )

2
√
−k2k3

a4 =
1
2e

√
−k1k3s9
k1 , a5 =

1
2e

−
√

−k1k3s9
k1 , a6 =

k3(e
−

√
−k1k3s9
k1 −e

√
−k1k3s9
k1 )

2
√
−k1k3

a7 =
1
2e

√
−k1k2s10
k1 , a8 =

1
2e

−
√

−k1k2s10
k1 , a9 =

k3(e
−

√
−k1k2s10
k1 −e

√
−k1k2s10
k1 )

2
√
−k1k2

.

Gi groups containing one parameter produced by ϑi are described in the following
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expressions:

exp(εϑi)(x, t, u) = (x̃, t̃, ũ)

G1 = (x, y, z, t, T eε) ,

G2 = (x, y, ε+ z, t, T ) ,

G3 =

(
x, y, tε+ z, t, T e

∫ ε

0

1

2

ψ (z19 + z)

k3
dz19

)
,

G4 =

x, z
√
k2sin(

√
k3ε√
k2

)
√
k3

+ ycos(

√
k3ε√
k2

),−

√
k3(−

−z
√
k2cos(

√
k3ε√
k2

)
√
k3

) + ysin(
√
k3ε√
k2

)
√
k2

, t, T

 ,

G5 = (x, ε+ y, z, t, T ),

G6 =

(
x, tε+y, z, t, T e

∫ e

0

1

2

(
t z19+y)ψ

k2
dz19

)
,

G7 =
(
tε+ x, y, z, t, T e

∫ e
0

1

2

ψ(z19+y)

k1
dz19
)
,

G8 = (ε+x, y, z, t, T ) ,

G9 =


z
√
k1 sin

(√
k3√
k1
ε
)

√
k3

+ x cos

(√
k3ε√
k1

)
, y,−

√
k2

−z
√
k1 cos

(√
k3ε√
k1

)
√
k3

+ x sin(

√
k1


√
k3√
k1
ε), t, T ),

G10 =


y
√
k1 sin

(√
k2√
k1
ε
)

√
k2

+ x cos

(√
k2ε√
k1

)
,−

√
k2

−y
√
k1 cos

(√
k2ε√
k1

)
√
k2

+ x sin(

√
k1



√
k2√
k1
ε), z, t, T ),

G11 = (x, y, z, ε+ t, T ),

G12 =
(
xe

1

2
ε, ye

1

2
ε, ze

1

2
ε, teε, T e

tB

ψ e−
teεB

ψ

)
,

G13 =

(
2x

t
(
−ε+ 2

t

) , 2y

t
(
−ε+ 2

t

) , 2z

t
(
−ε+ 2

t

) , 2

−ε+ 2
t

,

T e−
1

2
ψx2

k1(ε− 2

t )t2
− 1

2
ψz2

k3(ε− 2

t
t2

+ 2B
ψ(ε− 2

t )
− 1

2
ψy2

k2(ε− 2

t )t2
+ 3

2 ln
(
ε−2
t

)
e
− 1

4

ψ2x2k2k3−k1k2z2t2+4k1k2k3t
2B−k1ψ2k3y

2−6ln(−2
3

)k1k2ψk1t

tk1k3ψk2

 .
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3. Classification of 1D subalgebras

Using the developed symmetry group, we can now determine the optimal system
with one parameter group of equations. It is important to obtain the subgroups of
the system since they offer various types of solutions for the equation. Therefore,
finding solutions that remain unaffected is essential. To achieve this, our proposed
approach provides an expression for an optimal group of subalgebras. The classi-
fication procedure of subalgebras is similar to the classification for representation
orbits that are adjointed. By assigning one representation from every subalgebra
group within the system, we can obtain a solution for a problem with an optimal
group of subalgebras. Assuming g to be the Lie algebra determined by Corollary
2.2, we can obtain the adjoint action for the equation in table 2. We can then set
up an optimal system of the subalgebras for the equation.

Ad (exp (s · ϑt) · ϑr) = ϑr − s · [ϑt, ϑr] +
s2

2
· [ϑt, [ϑt, ϑr] , . . .] .

In this equation, s is a variable and [ϑt, ϑr] is defined in Table 1 for t, r = 1, . . . , 13,
where s is a variable in this representation. Assuming g to be the Lie algebra as
determined by Corollary 2.2, we can derive the adjoint action for the equation,
as shown in Table 2. Using this information, we can establish an optimal system
of subalgebras for the Equation. Specifically, a one-dimensional optimal system of
Equation is provided below:

Theorem 3.1 An example of a one-dimensional optimal system of the equation
is given by:

1) ϑ13 + c1ϑ1 + c2ϑ2 + c3ϑ4 + c4ϑ5 + c5ϑ6 + c6ϑ8 + c7ϑ9 + c8ϑ10 + c9ϑ11,

2) ϑ12 + c1ϑ1 + c2ϑ4 + c3ϑ5 + c4ϑ9 + c5ϑ10 + c6ϑ11,

3) ϑ11 + c1ϑ3 + c2ϑ4 + c3ϑ6 + c4ϑ7 + c5ϑ9 + c6ϑ10,

4) ϑ10 + c1ϑ1 + c2ϑ2 + c3ϑ3 + c4ϑ4 + c5ϑ5 + c6ϑ8 + c7ϑ9,

5) ϑ9 + c1ϑ1 + c2ϑ4 + c3ϑ5 + c4ϑ6 + c5ϑ8,

6) ϑ8 + c1ϑ1 + c2ϑ2 + c3ϑ3 + c4ϑ4 + c5ϑ5 + c6ϑ6,

7) ϑ7 + c1ϑ1 + c2ϑ2 + c3ϑ3 + c4ϑ4 + c5ϑ6,

8) ϑ6 + c1ϑ1 + c2ϑ2 + c3ϑ3 + c4ϑ4,

9) ϑ5 + c1ϑ1 + c2ϑ2 + c3ϑ3 + c4ϑ4,

10) ϑ4 + c1ϑ1 + c2ϑ2 + c3ϑ3,

11) ϑ3,

12) ϑ2 + c1ϑ1,

13) ϑ1.

Proof Looking at Table 1, it is enough to determine the subalgebras of

⟨ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6, ϑ7, ϑ8, ϑ9, ϑ10, ϑ11, ϑ12, ϑ13⟩

function F st : g → g defined by ϑ → Ad(Exp(sϑi)ϑ) is a linear map, for i =
1, . . . , 13. For example, two matrices A10 and A12 of F si , i = 1, . . . , 13, with respect
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to basis, are the following:

A10 =



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 a7 + a8 0 0 0 0 −k2
k3
a9 0 0 0 0

0 0 0 0 a7 + a8 0 0 −k2
k3
a9 0 0 0 0 0

0 0 0 0 0 a7 + a8 −k2
k3
a9 0 0 0 0 0 0

0 0 0 0 0 −k1
k3
a9 a7 + a8 0 0 0 0 0 0

0 0 0 0 −k1
k3
a9 0 0 a7 + a8 0 0 0 0 0

0 0 0 −k1
k3
a9 0 0 0 0 a7 + a8 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1



A12 :=



1 0 0 0 0 0 0 0 0 0 −B(−1+e−s12)
ψ 0 0

0 e−
1

2
s 0 0 0 0 0 0 0 0 0 0 0

0 0 e
1

2
s 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 e−
1

2
s 0 0 0 0 0 0 0 0

0 0 0 0 0 e
1

2
s 0 0 0 0 0 0 0

0 0 0 0 0 0 e
1

2
s 0 0 0 0 0 0

0 0 0 0 0 0 0 e−
1

2
s 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 e−s 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 es
12



Alternatively by acting these matrices on x =
13∑
i=1

ciϑi. x is a vector field, x can by

simplified as follows:
By taking c13 ̸= 0, the coefficient of ϑ3, ϑ7 and ϑ12 can be disappeard by setting

s2 = −2
c2
c13

s8 = −−2c7
c13

ands11 = −c12
c13

respectively. Scalling x, we assume c13 = 1, thus, x can be to the case (1). For
c13 = 0 and c12 ̸= 0, the coefficients of ϑ2, ϑ3, ϑ6, ϑ7 and ϑ8 can be disappered by

setting s2 =
−2c2
c12

, s3 =
2c3
12

, s6 =
2c6
c12

and s8 = −2c8
c12

respectively. Scalling x, we

assume c12 = 1. Thus x can be to the case (2).
For c13 = c12 = 0 and c11 ̸= 0, the coefficients of ϑ1, ϑ2, ϑ5 and ϑ8 can be disappered

by setting s2 =
−4c1
c11

, s3 =
c2
c11

, s6 =
c5
c11

, s7 =
c8
c11

respectively. Scalling x, we

assume c11 = 1. Thus x can be to the case (3).
For c13 = c12 = c11 = 0 and c10 ̸= 0, the coefficents of ϑ6 and ϑ7 can be disappered

by setting s7 =
k1c6
k2c10

and s6 =
−c7
c10

respectively. Scalling x, we assume c10 = 1.

Thus x can be to the case (4).
For c13 = c12 = c11 = c10 = 0 and c9 ̸= 0, the coefficents of ϑ2, ϑ3 and ϑ7 can be
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disappered by setting s8 =
k1c2
k3c9

, s7 =
k1c3
k3c9

and s2 = −c7
c9

respectively. Scalling x,

we assume c9 = 1. Thus x can be to the case (5).
For c13 = c12 = c11 = c10 = c9 = 0 and c8 ̸= 0, the coefficients of ϑ7 and ϑ8 can be

disappered by setting s13 =
2c7
c8

and s8 = −2c12
c8

.

respectively. Scalling x, we assume c8 = 1. Thus x can be to the case (6).
For c13 = c12 = c11 = c10 = c9 = c8 = c7 = 0 and c6 ̸= 0, the coefficients of ϑ5
can be disappered by setting s11 = −c5

c6
respectively. Scalling x, we assume c6 = 1.

Thus x can be to the case (7).
For c13 = c12 = c11 = c10 = c9 = c8 = c7 = c6 = c5 = 0 and c4 ̸= 0, the coefficents

of ϑ3 can be disappered by setting s6 =
2k2c2
k3c4

respectively. Scalling x, we assume

c4 = 1. Thus x can be to the case (8). For c13 = c12 = c11 = c10 = c9 = c8 = c7 =
c6 = c5 = c4 = 0, and c3 ̸= 0, the coefficents of ϑ2 can be disappered bysetting

s6 = −c2
c3

respectively. Scalling x, we assume c3 = 1. Thus x can be to the case

(9). ■

4. Reduction of Eq. (1)

First, symmetry reduction of Eq.(1) is classified, taking into account the subal-
gebras of Theorem 3. It is essential to look for a new form of Eq. (1) in special
coordinates. In these new coordinates, reduction occurs. Independent variables p, q
and r must be found for the infinitesimal generator to create these coordinates.
Hence, the equation is expressed in novel coordinates through the chain rule re-
ducing the system. Table 3 shows the similarity variables ξi, etai, wi and hi for
1D subalgebras in Theorem 3. Using each similarity variable, the reduced PDE of
Eq.(1) is found (Table 4).

Table 3. The parameters of Lie invariants and the similarity solutions

Hi ξi ηi wi ui
ϑ2 t x y h(ξ, η)

ϑ3 t x y e
1

4
ψz2

tk3
h(ξ, η)

ϑ4 t x k3y2+k2z2

k2
h(ξ, η)

ϑ4 t x z h(ξ, η)

ϑ5 t x z e−
1

4
ψy2

k2t
h(ξ, η)

ϑ5 t y z e−
1

4
ψy2

k2t
h(ξ, η)

ϑ5 t y z h(ξ, η)

ϑ5 t y k3x2+k1z2

k1
h(ξ, η)

ϑ5 t z k2x2+k1y2

k1
h(ξ, η)

ϑ5 x y z h(ξ, η)
ϑ11

t
x2

y
x

z
x h(ξ, η)

ϑ1 + ϑ2 t x y h(ξ, η)
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