
International Journal of

Mathematical Modelling & Computations

Vol. 13, No. 01, Winter 2023, 1- 15
DOI:10.30495/ijm2c.2023.1960582.1254

A numerical solution for 2D-nonlinear Fredholm integral

equations based on Hybrid functions basis

M. Mohammad a, A. Zakerib,∗, M. Karamia, N. Taheria and R. Nuraea

aDepartment of Mathematics, Islamic Azad University, South Tehran Branch, Tehran,

Iran

bFaculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran

Abstract. This work considers a numerical method based on the 2D-hybrid block-pulse func-
tions and normalized Bernstein polynomials to solve 2D-nonlinear Fredholm integral equations
of the second type. These problems are reduced to a system of nonlinear algebraic equations
and solved by Newtons iterative method along with the numerical integration and collocation
methods. Also, the convergence theorem for this algorithm is proved. Finally, some numerical
examples are given to show the effectiveness and simplicity of the proposed method.

Received: 06 June 2022, Revised: 02 April 2023, Accepted: 01 March 2023.

Keywords: Fredholm integral equations; Collocation method; Bivariate hybrid block-pulse
functions; Normalized Bernstein polynomials; Convergence analysis.

AMS Subject Classification: 45G10, 45B05, 65R20, 65L60.

Index to information contained in this paper

1 Introduction

2 Hybrid Block-pulse functions

3 Outline of the solution method

4 Convergence analysis

5 Numerical results

6 Conclusion

1. Introduction

Linear and nonlinear integral equations appear in most fields of science and engi-
neering and they are of great importance due to their wide applications in different
fields(see [1–4]). Many problems in mechanics including electromagnetic, oscilla-
tion theory, fluid dynamics, and mathematical physics are modeled by Fredholm
integral equations. For more details, see [5–8] and references cited therein. A vari-
ety of powerful methods e.g. Chebyshev polynomials method [9], Sinc-collocation
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method [10–12], Legendre wavelet method [13], spectral collocation method [14],
Bernoulli matrix method [15], Bernoulli polynomials method [16, 17], operational
matrix method [18], Legendre polynomials method [19, 20], Adomian decomposi-
tion method [21, 22], Homotopy method [23], and hybrid functions [24–27] have
been provided to solve different types of integral equations.
Block-pulse functions as a set of basis set of functions have been studied extensively
for signal and function approximations. They have also have certain advantages for
solving problems involving integrals and derivatives. In the literature, some efforts
have been made in order to develop efficient methods based on these functions
for solving integral equations. For instance, Maleknejad and Shahabi have intro-
duced hybrid function operational matrices for solving 2D-nonlinear Volterra inte-
gral equations [28]. Mohammadi et al. [29], used the new direct method to solve
bivariate nonlinear Fredholm integral equations using operational matrices with
2D-hybrid block-pulse functions and Chebyshev polynomials. The hybrid block-
pulse and Legendre polynomial function have been also studied [30]. The use of
hybrid functions with Bernstein polynomials in solving some Volterra and Fred-
holm integral equations was investigated by Behiry [31], Hessameddin and Shahbazi
[32], and Mirzaei et al. [33]. Moreover, Bernstein polynomials play an important
role in different fields (see [34, 35]). Some fundamental works on various aspects
of Bernstein polynomials are done by Maleknejad et al. [36], Ramadan [37], and
Mirzaei et al.[38, 39].
The general form of the 2D-nonlinear Fredholm integral equation is as follows

u(x, t) = f(x, t) +

∫ 1

0

∫ 1

0
k(x, t, y, s, u(y, s))dyds, (x, t) ∈ [0, 1)× [0, 1), (1)

where f and k are known analytic functions defined on [0, 1) × [0, 1) and Ω =
[0, 1)4 × R, respectively, and u is an unknown function that will be determined.
The purpose of this paper is to apply a new set of basic functions with the help
of the hybrid 2D-block-pulse functions and normalized Bernstein polynomials to
solve Eq. (1) approximately in a direct approach. The use of normalized Bernstein
polynomials guarantees a high validity which leads to a proper approximate solu-
tion to this equation. Using the numerical integration and collocation method, Eq.
(1) is transformed into a nonlinear set of algebraic equations which will be solved
by Newtons iteration method.
This article is organized as follows:

The hybrid functions, approximation, and some of their properties are introduced
and explained in Section 2. In Section 3, these functions will be applied to approx-
imate the solution of 2D-nonlinear Fredholm integral equations. In Section 4, the
convergence analysis of this technique is investigated. To demonstrate the accuracy
and efficiency of the proposed method, three numerical examples are given. It is
noteworthy that all calculations are done by the Mathematica software (Version
10.2).

2. Hybrid Block-pulse functions

In this section, some definitions, symbols and properties of Bernstein polynomials,
and block-pulse functions are presented, briefly.
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2.1 Hybrid functions

[26]
The Bernstein polynomials of degree M are defined as follows [40]

Bj,M (x) =

(
M

j

)
xj(1− x)M−j , x ∈ [0, 1), (2)

for j = 0, 1, 2, . . . ,M .
A class of orthonormal polynomials is obtained from Bernstein polynomials by
the Gram-Schmidt orthonormalization process on Bj,M (x). These polynomials are
called orthonormal Bernstein polynomials of degree M and denoted by bj,M (x),
0 ⩽ j ⩽ M . For M = 1 , 3, we have

b0,1(x) = −
√
3(−1 + x), b1,1(x) = −1 + 3x,

b0,3(x) = −
√
7(−1 + x)3, b1,3(x) =

√
5(−1 + x)2(−1 + 7x),

b2,3(x) =
√
3(1− 13x+ 33x2 − 21x3), b3,3(x) = −1 + 15x− 45x2 + 35x3.

According to the above definitions, the hybrid functions hi1j1i2j2 are generally de-
fined in [0, 1)× [0, 1) as

hi1j1i2j2(x, t) = (3){√
N(M + 1)bj1,M (Nx− i1 + 1)bj2,M (Nt− i2 + 1), (x, t) ∈ [ i1−1

N , i1
N )× [ i2−1

N , i2
N ),

0, elsewhere,

for any i1, i2 = 1, 2, . . . , N and j1, j2 = 0, 1, . . . ,M .
It is clear that Eq. (3) is orthonormal and disjoint in L2([0, 1) × [0, 1)) with the
following orthogonality condition

∫ 1

0

∫ 1

0
hi1j1i2j2(x, t)hi3j3i4j4(x, t)dxdt =

{
1, (i1, i2) = (i3, i4), (j1, j2) = (j3, j4),

0, elsewhere.

2.2 Function approximation

Let X = L2([0, 1)× [0, 1)) and

{h1010(x, t), h1011(x, t), . . . , h101M (x, t), h1020(x, t), . . . , h102M (x, t),

. . . , hNMN0(x, t), . . . , hNMNM (x, t)},

be the set of hybrid functions that is defined by

XN,M+1 = span{hi1,j1,i2,j2(x, t)| i1, i2 = 1, 2, . . . , N, and j1, j2 = 0, 1, . . . ,M}.

If uN,M+1 ∈ XN,M+1 ⊂ X be the best approximation of u ∈ X, then

u(x, t) ≃ uN,M+1(x, t) =

N∑
i1=1

M∑
j1=0

N∑
i2=1

M∑
j2=0

ci1j1i2j2hi1j1i2j2(x, t) = CTH(x, t), (4)
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where

C = [c1010, c1011, . . . , c101M , c1020, . . . , c102M , . . . , cNMN0, . . . , cNMNM ]T ,

and

H(x, t) = [h1010, h1011, . . . , h101M , h1020, . . . , h102M , . . . , hNMN0, . . . , hNMNM ]T .

Finally, the unknown hybrid coefficients ci1j1i2j2 are obtained by

ci1j1i2j2 =
(u(x, t), hi1j1i2j2(x, t))

(hi1j1i2j2(x, t), hi1j1i2j2(x, t))
,

i1, i2 = 1, 2, . . . , N,
j1, j2 = 0, 1, . . . ,M.

3. Outline of the solution method

Using the hybrid functions and also applying the collocation method along with
numerical integration, a numerical method is introduced to solve the Eq. (1).
Let u(x, t) be a solution to Eq. (1). Then, it is approximated by the proposed
method as follows: Consider 2D-nonlinear Fredholm integral Eq. (1). u(x, t) ∈
L2(Ω) is approximated as

u(x, t) ≃ uN,M+1(x, t) =

N∑
i1=1

M∑
j1=0

N∑
i2=1

M∑
j2=0

ui1j1i2j2hi1j1i2j2(x, t) = UTH(x, t), (5)

where UT is an unknown vector that must be determined.
To find u approximation in Eq. (1), we use Eq. (5). Then, we obtain

ūN,M+1(x, t) = f(x, t)+

∫ 1

0

∫ 1

0
k(x, t, y, s, ūN,M+1(y, s))dyds, (x, t) ∈ [0, 1)×[0, 1).

Now, we define the set of collocation nodes {(xi = ih, tj = jh), for i, j =
1, 2, . . . , N(M + 1)}, where h = 1

N(M+1) is a fixed step size for the collocation

nodes. Then put

f(xi, tj) = ūN,M+1(xi, tj)−
∫ 1

0

∫ 1

0
k(xi, tj , y, s, ūN,M+1(y, s))dyds. (6)

Clearly, integral operator in Eq. (6) can be approximated by the Gauss-Legendre
quadrature. Consider the following linear transformations:

y =
1

2
(τ + 1), y ∈ [0, 1],

s =
1

2
(η + 1), s ∈ [0, 1].
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Using these transformations, Eq. (6) will be transformed into the following nonlin-
ear equations system:

f(xi, tj) = ūN,M+1(xi, tj)

−1

4

∫ 1

−1

∫ 1

−1
k

(
xi, tj ,

1

2
(τ + 1),

1

2
(η + 1), ūN,M+1(

1

2
(τ + 1),

1

2
(η + 1))

)
dτdη,

i, j = 1, 2, . . . , N(M + 1).

Now, applying the Legendre-Gauss-Lobatto integration formula leads to the fol-
lowing nonlinear system which includes (N(M + 1))2 equations

f(xi, tj) = ūN,M+1(xi, tj)

−1

4

r1∑
n=1

r2∑
m=1

wnwmk

(
xi, tj ,

1

2
(τm + 1),

1

2
(ηn + 1), ūN,M+1(

1

2
(τm + 1),

1

2
(ηn + 1))

)
,

i, j = 1, 2, . . . , N(M + 1), (7)

where τm and ηn are the Legendre-Gauss points of degrees r1 and r2 in [−1, 1)

respectively, and wm and wn are the weights.
This system can be solved by Newtons iteration method.

Remark 3.1 If k is a polynomial of the unknown function u, then Newton’s
iteration method is convergent.

4. Convergence analysis

In this section, at first, we assume that Newton’s iteration method used for solving
nonlinear system of Eq. (7), is convergent. Then, an accurate estimation of the
proposed method is obtained.
Let

χi1,i2(x, t) =

{
1, (x, t) ∈ [ i1−1

N , i1
N )× [ i2−1

N , i2
N ),

0, elsewhere,
i1, i2 = 1, 2, . . . , N,

and gi1i2 ∈ CM+1([0, 1]× [0, 1]) is a known function. Put

g(x, t) =

N∑
i1,i2=1

gi1i2(x, t)χi1,i2(x, t). (8)

Also, suppose that

Yi1i2 = span{hi10i20(x, t), hi10i21(x, t), . . . , hi10i2M (x, t), hi11i20(x, t), . . . ,

hi11i2M (x, t), . . . , hi1Mi20(x, t), . . . , hi1Mi2M (x, t)}, i1, i2 = 1, 2, . . . , N.

In the following, the convergence theorem for the approximation of g is presented
according to [13].
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Lemma 4.1 [13], suppose that g(x, t) be defined as (8). Also, let CT
i1i2Hi1i2(x, t)

is the best approximation of gi1i2 respect to Yi1i2, and Eq. (4), where

Ci1i2 = [ci10i20, ci10i21, . . . , ci10i2M , ci11i20, . . . , ci11i2M , . . . , ci1Mi20, . . . , ci1Mi2M ]T ,

and

Hi1i2(x, t) = [hi10i20(x, t), hi10i21(x, t), . . . , hi10i2M (x, t), hi11i20(x, t), . . . ,

hi11i2M (x, t), . . . , hi1Mi20(x, t), . . . , hi1Mi2M (x, t)]T , i1, i2 = 1, 2, . . . , N.(9)

Then we have

∥g(x, t)−CTH(x, t)∥2 ⩽ 2M+1γ

NM+1(M + 1)!
,

where γ = maxx,t∈[0,1),0≤k≤M+1

∣∣∣ ∂M+1g(x,t)
∂xk∂tM+1−k

∣∣∣.
Proof See [30]. ■

Theorem 4.2 Let k ∈ C1(Ω), with C0 = supΩ

∣∣∣∂k∂ξ (x, t, y, s, ξ)∣∣∣ < ∞. Also, let

u ∈ CM ([0, 1]× [0, 1]) for M > 2 and ūN,M+1(x, t) be the exact and approximation
solution of Eq. (1), respectively. If the matrix A = (Ai1i2)N×N is a nonsingular
matrix such that Ai1i2 similar to Hi1i2 in Eq. (9) is defined

Ai1j1i2j2 = hi1j1i2j2(xi, tj)−
∫ 1

0

∫ 1

0

∂k

∂u
(xi, tj , y, s, ξ(y, s))hi1j1i2j2(y, s)dyds, (10)

for any collocating points (xi =
i

N(M+1) , tj = j
N(M+1))(i, j = 1, 2, . . . , N(M + 1)),

and
ξ ∈ (min(uN,M+1, ūN,M+1),max(uN,M+1, ūN,M+1)). Then

∥u(x, t)− ūN,M+1(x, t)∥2 ⩽
1

(M + 1)!
(
2

N
)M+1

(
γ +N

3

2 (M + 1)
3

2C1∥A−1∥2
)
.

Proof Consider Eq. (5), and let

u(x, t) ≃ ūN,M+1(x, t) = UTH(x, t), (11)

be an approximation of u(x, t) where unknown vector UT is the solution of non-
linear system (7).
Substituting Eq. (11) in Eq. (1), gives

f(x, t) = ūN,M+1(x, t)−
∫ 1

0

∫ 1

0
k(x, t, y, s, ūN,M+1(y, s))dyds. (12)

Also, substituting Eq. (4) in Eq. (1), gives

f̂(x, t) = uN,M+1(x, t)−
∫ 1

0

∫ 1

0
k(x, t, y, s, uN,M+1(y, s))dyds. (13)
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Now, subtracting (13) from (12) gives

f̂(x, t)− f(x, t) = uN,M+1(x, t)− ūN,M+1(x, t)

−
(∫ 1

0

∫ 1

0
(k(x, t, y, s, uN,M+1(y, s))− k(x, t, y, s, ūN,M+1(y, s)))dyds

)
.

Which turns into the following equation by the mean value theorem

f̂(x, t)− f(x, t) = uN,M+1(x, t)− ūN,M+1(x, t)

−
∫ 1

0

∫ 1

0

∂k

∂u
(x, t, y, s, ξ)(uN,M+1(y, s)− ūN,M+1(y, s))dyds,

where ξ ∈ (min(uN,M+1, ūN,M+1),max(uN,M+1, ūN,M+1)). By using (N(M + 1))2

collocating points (xi =
i

N(M+1) , tj =
j

N(M+1))(i, j = 1, 2, . . . , N(M + 1)), gives

f̂(xi, tj)− f(xi, tj) =

N∑
i1=1

M∑
j1=0

N∑
i2=1

M∑
j2=0

(ci1j1i2j2 − ui1j1i2j2)

(
hi1j1i2j2(xi, tj)−

∫ 1

0

∫ 1

0

∂k

∂u
(xi, tj , y, s, ξ)hi1j1i2j2(y, s)dyds

)
.

(14)

So, we can write

F̂− F = A(C−U), (15)

where A defined in Eq. (10) and

F = [f(xi, tj)]
N(M+1)
i,j=1 , F̂ =

[
f̂(xi, tj)

]N(M+1)

i,j=1
,

C = [c1010, c1011, . . . , c101M , c1020, . . . , c102M , . . . , cNMN0, . . . , cNMNM ]T ,

U = [u1010, u1011, . . . , u101M , u1020, . . . , u102M , . . . , uNMN0, . . . , uNMNM ]T .

From (15), the following bound is obtained for ∥C−U∥2

∥C−U∥2 ⩽ ∥A−1∥2∥F̂− F∥2. (16)

Additionally

∥F̂−F∥22 =
N(M+1)∑
i,j=1

|f̂(xi, tj)− f(xi, tj)|2 ⩽ (N(M +1))2∥f̂(x, t)− f(x, t)∥22. (17)

Also, we have

f̂(x, t) = f(x, t) + (uN,M+1(x, t)− u(x, t))

−
(∫ 1

0

∫ 1

0
(k(x, t, y, s, uN,M+1(y, s))dyds−

∫ 1

0

∫ 1

0
(k(x, t, y, s, u(y, s))dyds

)
.
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Now, using the triangle inequality, Lemma 4.1, also the mean value theorem, leads
to the following inequality

∥f̂(x, t)− f(x, t)∥2 ⩽ ∥uN,M+1(x, t)− u(x, t)∥2 + C0∥uN,M+1(x, t)− u(x, t)∥2

⩽ (1 + C0)
2M+1γ

NM+1(M + 1)!
,

where C0 = supΩ |∂k
∂ξ

(x, t, y, s, ξ)| < ∞. Consequently

∥F̂− F∥2 ⩽ N(M + 1)∥f̂(x, t)− f(x, t)∥2 = C1
2M+1

NMM !
. (18)

The following ralation is obtained if we substituting Eq. (18) into Eq. (16)

∥C−U∥2 ⩽ C1∥A−1∥2
2M+1

NMM !
. (19)

According to triangle inequality, we can write

∥u(x, t)−ūN,M+1(x, t)∥2 ⩽ ∥u(x, t)−uN,M+1(x, t)∥2+∥uN,M+1(x, t)−ūN,M+1(x, t)∥2,
(20)

for the second phrase we have

∥uN,M+1(x, t)− ūN,M+1(x, t)∥22 =
∫ 1

0

∫ 1

0
|uN,M+1(x, t)− ūN,M+1(x, t)|2dxdt

⩽
∫ 1

0

∫ 1

0

∣∣∣∣∣∣
N∑

i1,i2=1

M∑
j1,j2=0

(ci1j1i2j2 − ui1j1i2j2)hi1j1i2j2(x, t)

∣∣∣∣∣∣
2

dxdt

⩽
N∑

i1,i2=1

M∑
j1,j2=0

|ci1j1i2j2 − ui1j1i2j2 |2
N∑

i1,i2=1

M∑
j1,j2=0

∫ 1

0

∫ 1

0
|hi1j1i2j2(x, t)|2dxdt

⩽ ∥C−U∥22N(M + 1).

Now, using Eq. (19) gives

∥uN,M+1(x, t)− ūN,M+1(x, t)∥2 ⩽ C1∥A−1∥2
2M+1

√
M + 1

NM− 1

2M !
. (21)

Finally, we find an upper bound of L2-Norm error from Lemma 4.1, Eqs. (21) and
(20) as below

∥u(x, t)− ūN,M+1(x, t)∥2 ⩽
1

(M + 1)!
(
2

N
)M+1

(
γ +N

3

2 (M + 1)
3

2C1∥A−1∥2
)
,

and the proof is completed. ■



M. Mohammad et al./ IJM2C, 13 - 01 (2023) 1-15. 9

5. Numerical results

In this section, in order to illustrate the accuracy of the introduced method some
numerical examples are presented. Absolute errors are calculated at arbitrary
points (x, t) = ( 1

2r ,
1
2r ), r = 1, 2, . . . , 6. All calculations have been run in Math-

ematica software. For the analysis of error of this algorithm, the Chebyshev and
L2 norms taken over [0, 1]2 are used for the error function eN,M+1(x, t) defined as
follows

eN,M+1(x, t) = |u(x, t)− ūN,M+1(x, t)|, (x, t) ∈ [0, 1)2, and N,M ∈ N,

where u(x, t) is the exact solution and ūN,M+1(x, t), is the approximate solution of
the Eq. (1).

Example 5.1 Consider the following 2D-nonlinear Fredholm integral equation

u(x, t) = f(x, t) +

∫ 1

0

∫ 1

0
sin(x+ t)(u(y, s) + 1)dyds, (x, t) ∈ [0, 1)× [0, 1),

where

f(x, t) = x cos(t)− 1

2
sin(x+ t)(2 + sin(1)).

The exact solution of this equation is u(x, t) = x cos(y).
After solving the nonlinear system (7), the Chebyshev and L2 norms for the error
function eN,M+1(x, t) have been computed and shown in Table (1). The comparison

Table 1. The absolute values of the error function eN,M+1(x, t) and its Chebyshev and
L2 norms with N = 2 and M = 1, 3, 5, 7 for Example (5.1).

(x, t) = ( 1
2r ,

1
2r ) N = 2,M = 1 N = 2,M = 3 N = 2,M = 5 N = 2,M = 7

r = 1 0.12605E(−1) 0.24973E(−4) 0.27688E(−7) 0.17014E(−10)
r = 2 0.95386E(−4) 0.28906E(−5) 0.85593E(−9) 0.33925E(−13)
r = 3 0.92576E(−3) 0.34579E(−6) 0.23751E(−9) 0.72032E(−13)
r = 4 0.10796E(−2) 0.40124E(−6) 0.57474E(−9) 0.19176E(−12)
r = 5 0.75086E(−3) 0.90208E(−6) 0.21975E(−9) 0.33905E(−14)
r = 6 0.44519E(−3) 0.73516E(−6) 0.48015E(−9) 0.20263E(−12)

∥eN,M+1(x, t)∥2 0.62857E(−2) 0.97485E(−5) 0.72765E(−8) 0.38016E(−11)
∥eN,M+1(x, t)∥∞ 0.24963E(−1) 0.63201E(−4) 0.57183E(−7) 0.34506E(−10)

of maximum absolute errors of the proposed method and the method proposed in
[30] is given in Table (2).
The results show that an approximate solution with more accuracy is obtained by
the current method.

Table 2. Comparison of maximum absolute errors for Example (5.1).

N = 2 and M = 3, 5, 7 Hybrid Block-Pulse Legendre Method [30] Present Method
N = 2,M = 3 5.43× 10−6 6.32× 10−5

N = 2,M = 5 3.14× 10−7 5.72× 10−8

N = 2,M = 7 7.22× 10−10 3.46× 10−11
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Figure 1. Plots of the Logarithm absolute error function for Example (5.1).

Example 5.2 Consider the following 2D-nonlinear Fredholm integral equation

u(x, t) = f(x, t) +

∫ 1

0

∫ 1

0

x

1 + t
(1 + y + s)u2(y, s)dyds, (x, t) ∈ [0, 1)× [0, 1),
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where

f(x, t) =
1

(1 + x+ t)2
− x

6 + 6t
.

The exact solution is u(x, t) = 1
(1+x+t)2 . Put N = 2. Numerical results and the

Chebyshev and L2 norms for the error function eN,M+1(x, t) for various values of
M = 1, 3, 5, have been computed and presented in Table (3). Also Figure (2) shows
the ū(x, t).

Example 5.3 Let f(x, t) = xt− 1
20(2x+ t) and

u(x, t) = f(x, t) +

∫ 1

0

∫ 1

0
(2xy + st)u3(y, s)dyds, (x, t) ∈ [0, 1)× [0, 1),

with the exact solution u(x, t) = xt. Applying the proposed method different values
of M and N = 2, leads to the following results.

6. Conclusion

In this paper, 2D- nonlinear Fredholm integral equations of the second kind have
been solved by the 2D- hybrid block-pulse functions and normalized Bernstein poly-
nomials. These equations are reduced into a nonlinear system of algebraic equations
using numerical integration and collocation method. One of the advantages of this
technique is less that error than other methods. In addition, the convergence anal-
ysis of the proposed scheme has been presented.
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Table 3. The error function eN,M+1(x, t) with M = 1, 3, 5 and its Chebyshev and L2

norms for Example (5.2).

(x, t) = ( 1
2r ,

1
2r ) N = 2,M = 1 N = 2,M = 3 N = 2,M = 5

r = 1 0.14126E(−1) 0.14394E(−3) 0.14466E(−5)
r = 2 0.18772E(−1) 0.13091E(−3) 0.60706E(−6)
r = 3 0.41893E(−3) 0.3815E(−3) 0.32831E(−7)
r = 4 0.46417E(−1) 0.3076E(−5) 0.10684E(−4)
r = 5 0.86791E(−1) 0.16173E(−2) 0.16602E(−4)
r = 6 0.11271 0.32083E(−2) 0.68165E(−4)

∥eN,M+1(x, t)∥2 0.11949E(−1) 0.22414E(−3) 0.44646E(−5)
∥eN,M+1(x, t)∥∞ 0.13292 0.47293E(−3) 0.53282E(−5)

Figure 2. Plots of the Logarithm absolute error function for Example (5.2).

Table 4. Comparison of maximum absolute errors for Example (5.2).

N = 2 and M = 1, 3, 5 Hybrid Block-Pulse Legendre Method [30] Present Method
N = 2,M = 1 4.58× 10−2 1.33× 10−1

N = 2,M = 3 1.57× 10−3 4.73× 10−4

N = 2,M = 5 5.13× 10−5 5.32× 10−6

Table 5. Chebyshev and L2 norms for Example (5.3) for N = 2 and M = 1, 2.

(x, t) = ( 1
2r ,

1
2r ) N = 2,M = 1 N = 2,M = 3

r = 1 0.15543E(−14) 0.66613E(−15)
r = 2 0.89512E(−15) 0.27756E(−16)
r = 3 0.48225E(−15) 0.10408E(−16)
r = 4 0.22855E(−15) 0.69389E(−17)
r = 5 0.10202E(−15) 0
r = 6 0.48572E(−16) 0.69389E(−17)

∥eN,M+1(x, t)∥2 0.26246E(−14) 0.11917E(−15)
∥eN,M+1(x, t)∥∞ 0.15210E(−13) 0.11657E(−14)



M. Mohammad et al./ IJM2C, 13 - 01 (2023) 1-15. 15

Figure 3. Logaritmic absolute error functions log10|e2,1(x, t)| and log10|e2,3(x, t)| in unit
square domain for Example (5.3).

Table 6. Comparison of maximum absolute errors for Example (5.3).

N = 2 and M = 1, 3 Hybrid Block-Pulse Legendre Method [30] Present Method
N = 2,M = 1 4.12× 10−12 1.52× 10−13

N = 2,M = 3 1.09× 10−12 1.17× 10−14


