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Abstract. This paper presents a fixed point analytical approach to one of the most commonly
used optimization techniques known as particle swarm optimization (PSO) and established
that the solution space of PSO is a Banach space. With the help of well constructed fixed
point theorem, the iterative intelligence algorithm of the PSO was shown to converge to the
unique global fixed point. The PSO iterative algorithm was further proven to be T-stable. An
example was provided and used to demonstrate the applicability of the stability result. Our
results complement other methods of obtaining solutions for PSO in the literature.
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1. Introduction and Preliminary Definitions

Particle swarm optimization (PSO) is one of the classical optimization techniques.
It is a heuristic global optimization technique based on bird flocking or fish school-
ing. It is one of the Swarm intelligence algorithms. The iteration emanated from
Kennedy and Eberhart in 1995. It has enormous applications in diverse subject
areas including Biology (artificial immune systems), Chemistry, Communication
Systems, Engineering, Mathematics (Topology) and Medicine. The techniques of
PSO have gained in-depth insight and a lot of theoretical analyses have been done
on the algorithm. Many authors have given their perspectives on the convergence
and stability of PSO, chief among them are: [3], [8]-[10], [12]- [16], [19], [22] and [28].
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Many of these papers concentrated on the behaviour of a single particle in PSO and
analyzing the particle’s trajectory or its stability using a deterministic approach.
In addition, a huge amount of work was done through empirical simulations in ad-
vancing the original version of PSO. In [9], Clerc considered an alternative version
of PSO by including a parameter called constriction factor which should replace the
restriction on velocities. In order to provide the most general result possible, rather
than focusing on just the original or the canonical PSO (CPSO), a large class of
PSO variants are considered. In the general case, all positional memory, such as
the personal and neighborhood best positions, are modeled as sequences of ran-
dom variables. This generality implies that variants such as the fully informed PSO
[16] and the unified PSO [22]. Concerning PSO’s success, a considerable amount
of theoretical work has been performed on the stochastic search algorithm to try
and predict and understand its underlying behaviour (see [8] and [12]). Almost all
the theoretical research performed has to some extent relied upon the stagnation
assumption, whereby the personal and neighborhood best positions of a particle
are assumed to be fixed, which is not a true reaction of the behavior of PSO algo-
rithms. It is important to state that the non-stagnant distribution assumption is a
weaker assumption than all previously made assumptions placed on the particles’
personal and neighborhood best positions, as each of the mentioned assumptions
can be constructed as a specialization of the non-stagnant distribution assump-
tion. Also, it is known that the non-stagnant distribution assumption is in fact
a necessary assumption for order-1 and order-2 stabilities. In [19], Minglun et al.
optimized PSO algorithm based on the simplicial algorithm of fixed point theory.
Nature - inspired optimization algorithms make use of iterative procedure in order
to solve real-world optimization problems and provide near- optimal solutions cor-
responding to such problems [3]. Since near-optimal solution is obtained, it leads
to generation of error in subsequent iterations. Thus, parameter selection based on
stability analysis plays a vital role in making algorithm efficient.

Fixed point approach is another very useful way of proving the convergence and
stability analysis of PSO. Fixed point theorems for contraction mappings, have
always been a vibrant field of research with the celebrated Banach contraction
mapping principle since 1922. Several other fixed point theorems of various iterative
schemes for contraction mappings have been proved to date, chief among them are:
1], [2] , [5], [11], [18] and [20].

The study of stability of iterative schemes plays a crucial role in numerical mathe-
matics due to chaotic behaviour of functions and discretization of computations in
computer programming. Several authors have contributed to the study of stability
of iterative schemes, for a comprehensive survey of the literature, see [5], [10], [11],
[21], [25] and [27] for details. The first predominant result on T-stable contractive
mapping was obtained by Ostrowski [21] for Picard iteration.

The long-established result on stability due to Ostrowski has been extended to
multi-valued mappings by Singh and Chadha [25] and further broaden by Singh and
Bhatnagar [26] and Singh et al. [27]. Supplementary, stability of iterative schemes
has an exceptional importance in fractal graphics while generating fractals. Its
functionality lies in the fact that in fractal graphics, fractal objects are generated
by an infinite recursive process of successive approximations. An iterative scheme
produces a sequence of results and tends towards one final object called a set
attractor (fractal), which is independent of the initial choice. This stable disposition
of set attractor is due to the stability of iterative scheme, otherwise, the system of
underlying successive approximations would show chaotic behaviour and will never
settle into a stationary state. Nevertheless, fractals themselves have a variety of
applications in digital imaging, mobile computing, architecture and construction,
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different branches of engineering and applied sciences. For a survey of study on
potential applications of fractal geometry in related fields see: [6], [17] and [24].
The link between the round-off stability with the concept of limit shadowing for a
fixed point problem involving multi-valued maps can be found in [23].

The complete normed linear space is well suitable for the investigation of physical
events, and also has important applications in nonlinear analysis. Thus, in this
article, we shall propose a fixed point approach for obtaining convergence and
stability of PSO. Firstly, we shall prove that the solution space of PSO is a complete
normed linear space. Also, we shall employ convergence theorem to obtain fixed
point of the PSO algorithm in the space and finally, establish that a PSO algorithm
is stable with respect to the mapping 7.

Definition 1.1 [14] Let PSO represent particle swarm optimization.

(i) Particle: A particle ¢, in a PSO is defined as the basic component of solution
in the solution space. The dimension of the solution is N. The number of
iteration is t. The position of particle, 4, is given by
zi(t) = zir(t), ziz(t), xi3(t), ... win (1)

(ii) Particle Swarm: This is made up of N particles. It stands for the N candi-
date solution. The population after iteration ¢ is given by
POP(t) = z1(t), z2(t), x3(t), ..., xn (t).

(iii) The velocity of a particle: It is the variation of one iteration. It represents
the displacement of the solution in the space C. It is defined as:
vi(t) = v (t), via(t), vis(t), ..., vin (t).

Definition 1.2 [14] Let C be the solution space or the search space of a particle
swarm optimization (PSO). The iterative scheme defined on C, is given by:

vi(t + 1) = woi(t) + crr[pi(t) — xi(t)] + caralpg(t) — ()] (1.1)
Equation (1.1) is called PSO velocity update equation.
xi(t+1) :xi(t)+vi(t+1), 1<i<N. (1.2)

Where z;(t + 1) is the position of particle, ¢, at iteration ¢ + 1;
x;(t) is the position of particle, 4, at iteration ¢;

v;(t + 1) is the velocity of particle, i, at iteration ¢ + 1;

v;(t) is the velocity of particle, 4, at iteration t;

1, co are acceleration factors;

r1, 72 are unoformly distributed random variables in [0, 1];

p; is the PBest (the best position of particle I);

pg is the GBest (the best position of population I);

w is inertial factor.

Let a1 = c171, and ag = corg and let a = oy + ao.
Using o, g, v in (1.1), substituting in (1.2) and simplifying, we have

zi(t+1) = (1 — a)zi(t) + aupi(t) + aapg(t) + wvi(t). (1.3)
Where w < 1, 0 < o + g < 2w+ 2. (1.3) is called the PSO algorithm or the PSO

iterative scheme.

Definition 1.3 [6] Let E be a linear space over a field K. A norm on E is a real
valued function ||.| : E — [0, 00) which satisfies the following conditions:
N1:|z|| > 0,Vx € E;
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N2 :|jz|| =0, if and only if x = 0;

N3: ||lazx| = |of ||z|, Ya € K, x € E;

Na:lz 4yl <[l +yll, V 2,y € E.

Therefore, (E,|.||) is a normed linear space. A complete normed linear space E is
called a Banach space. A normed linear space F is said to be complete if every
Cauchy sequence in ' converges to a point or an element of F.

Definition 1.4 [7] Let £ be a normed linear space and {z, }72, be a sequence of
points in E. {x,}°2, converges to a point € E if for any € > 0, there exists ng
such that

|xn —z|| <€, ¥ n=ng. (1.4)

Definition 1.5 [7] Let E be a normed linear space and {z,}°2 , be a sequence of
points in E. {z,}22, is called a Cauchy sequence if for any € > 0, there exists ng
such that

|xn — zm| <€ Vn, m=ng. (1.5)

Definition 1.6 [7] Let E be a normed linear space and {z,}.2, be a sequence
of points in E. {z,}7°, is called a global Cauchy sequence if for any € > 0, there
exists ng such that

|z — ]| < €, ¥V n = mnp. (1.6)

Definition 1.7 [1] Let E be a Banach space, C' a nonempty closed convex subset
of Eand T : C — C be a selfmap of C. A point x* € C is called a fixed point of
the selfmap T if Tz* = 2*. The set of all fixed point of T is written as: Fp = {z* €
E:Tx* =uz*}.

Definition 1.8 Let X be a metric space, and T : X — X be a selfmap of X. A
mapping 7T is called a contraction if there exists a number §, satisfying § € [0, 1)
such that

d(Tz,Ty) < dd(x,y), Vx,y € X. (1.7)

Theorem 1.9 (Banach Contraction Principle). Let X be a complete metric
space, and T : X — X be a selfmap of X. Then

(i) T has a unique fixed point z* in X;

(ii) Tz — z*, Vz € X; and

(iii) d(T"z,2*) < 2sd(x, Tx).

Definition 1.10 [2] Let (X, d) be a metric space and T': X — X be a selfmap of
X. Assume that Fr =p € X : T), = p is the set of fixed points of T'. For zg € X,
the sequence {x,}°° defined by

Tn+1 :T.’En7 n:O7172)3)"'7 (18)

is called the Picard iterative scheme.

Definition 1.11 [18] Let E be a Banach space and T': E — E a self map of E.
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For zy € E, the sequence {z,}22 defined by
Tnt1 = (1 —ap)zy + Tz, n=0,1,2,3,..., (1.9)

where {a,}72 is a real sequence in (0,1), such that Y ° ja;, = oo is called the
Mann iterative scheme.

Note that, if oo, = 1 in (1.9), we have the Picard iterative scheme (1.8).

Berinde [5], gave a well illustrative explanation on how to derive the stabil-
ity of iterative schemes as follows: Let {z,}>2, be the sequence generated by an
iterative scheme involving the mapping 7'

Tn41 :f(Twrn)a TL:O,172,3,..., (110)

where g € X is the initial approximation and f is some function. For example,
the Picard iterative scheme (1.8) is obtained from (1.10) for f(7’, zy) = T'zy, while
the Mann iterative scheme (1.9) is obtained for f(T,x,) = (1 — ap)zy + anTzy,
where {a,}7° is a sequence in (0,1) and E a Banach space. Suppose {z,}52
converges to a fixed point «* of T. When calculating {z,}7°, then we cover the
following steps:

1. We choose the initial approximation xg € X.

2. Then we compute x1 = f(T,xp), but due to various errors (rounding errors,
numerical approximations of functions, derivatives or integrals), we do not get the
exact value of x1, but a different one uy, which is very close to z;

3. Consequently, when computing zo = f(T,z1) we shall have actually
xo = f(T,u1) and instead of the theoretical value z2, we shall obtain a
closed value and so on. In this way, instead of the theoretical sequence {x,}5°,
generated by the iterative method, we get an approximant sequence {u,}5° .
We say the iteration method is stable if and only if for u, closed enough to x,,
{un}52  still converges to the fixed point z* of T.

The following definition and lemma will be employed in proving the main
result.

Definition 1.12 [11] Let (X,d) be a metric space and 7' : X — X a self map,
xo € X and the iterative scheme defined by (1.8) such that the generated sequence
{zn}72, converges to a fixed point z* of T. Let {u,}>2, be arbitrary sequence in
X, and set €, = d(up+1, f(T,uyn)), for n =0,1,2,.... We say the iterative scheme
(1.8) is T'—stable if and only if lim,,_, €, = 0 implies that lim, o u, = z*.

Lemma 1.13 [5] Let ¢ be a real number satisfying 0 < 6 < 1 and {e,}2, a
sequence of positive numbers such that lim,,,. €, = 0, then for any sequence
of positive numbers {uy,}2°, satisfying up4+1 < dup + €5, n=0,1,2,..., we have
limg, oo un = 0.

In the main result, we shall make use of fixed point method, using the contraction
mapping to obtain convergence and stability results for particle swarm optimization
(PSO) iterative scheme (1.3).
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2. Main Result

2.1 Strong Convergence and Stability Results for PSO in Banach Spaces

In this section, the results will be obtained in three folds:

1. We will show that the space of a particle swarm optimization (PSO) is a Banach
space.

2. We will also, prove that the PSO iterative scheme converges strongly to the
unique fixed point of the contraction map 7.

3. Finally, we will prove that the PSO iterative scheme is T'— stable.

We start by showing that the space of the PSO is a Banach space.

Proposition 2.1 Let E be a vector space and z;(t) be the position of particle, 4,
on E defined by: x;(t) = x;1(t), zia(t), zi3(t), ..., z;n(t), where ¢ is the number of
iterations. Let the modulus of x;(¢) be given by:

i (D) = (2.1)

then, (E, ||.||) is a Banach space.

Proof. Firstly, we prove that (2.1) satisfies the properties of a normed lin-
ear(vector) space as follows:

N1:|z|| >0, Vz € E.

22(t) > 0, Va; € E, for each i.

Thus, [|z]| = [|z:(t)[| = /2L 23(1), Yz € E.

Hence, N1 is satisfied.

N2 :||z|| =0, if and only if z = 0.

If ]| = ()]l = /3L, 27 () = 0, then

x2(t) = 0, for each i

= x;(t) = 0, for each i.

= z=0.

Conversely, if 2 = 0, then, z;(t) = 0, for each i.
= z2(t) =0, for each i

N

Thus, ||z = [lz;(t)|] = \/22il, 27 () = 0.
Therefore, ||z| = 0, if and only if z = 0.
N3 : |az| = |a| ||z||, Ya € K, = € E,
laz|| = oz ()| = /3L, o223 (D).

N
= laly/ 3L 23(1) = lalllzi ()] = o]
N4z +yl <zl +lyll, v 2,y € E.
Let [l + gl = li(t) + ui ()] = /S (wi(t) + i(0))?
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Let N = 2, then,

2
lz + ylI* = ll2i () + w1 = Y (2:(t) + wilt))?
i=1
2 2 2
=D (@) + 2zi()ya(t) + ¥ (1) = D@ () + 2D lwa(t)yi(t)]
=1 =1 i=1
2

2 2 2 2
+3 g2 <Y @26 20" 22) O s + Dy
=1 3 1 =1

=1 i=1 =

(By Cauchy Schwartz’s inequality).
= K2 42K, Ky + K2, where K1 = (Y2, 22(1))2 and Ky = (32, 42(t))z.
— (K + K2)? = (|2l + Iyl
Thus, ||z + y|| < all + [y, ¥ 2,y € E.
Since the modulus of the position of a particle, 4, satisfies all the properties,
therefore, (E, ||.||) is a normed linear (vector) space. This means that the solution
space is a normed linear (vector) space.

Next, we show completeness.

Let ;(t + 1) = T'(z;(t)) = Txi(t).

By the definition of fixed point, there is a point z € E such that z = Tx.

Let z* be the limit of the sequence {z;(¢)};2;, which is the unique fixed point.

That is, limy_, o z;(t) = z*.
Then, Tz* = T(limy—00 ;(t)) = limy_y00 T (i (t)).

= lim; xi(t + 1) = limy_ o0 l’z(t) =z

Next, using the contraction mapping, we show that there is a Cauchy se-
quence in F that converges to the unique fixed point in F.
From definition 1.8, if X = E, then contraction condition (1.7) is written as:

Tz —Ty|| <6l|lz—yll, Vo,y € E, § €[0,1). (2.2)
Notice that
Iz =yl < llz =Tl + |Te = Tyl + 1Ty -y, ¥V x,y € E. (2.3)
Applying (2.2) in (2.3), we have
le —yll < llz =Tzl +6llz —yll + 1Ty —yll, Y2,y € E. (2.4)
Thus,

(llz = Tl + |ly = Tyl])
1-96

lz =yl < , Va,y€E. (2.5)

Notice also that using (2.2), we have

i (t) = T (t)|| < 0"[ls(1) — Ts(1)]], 6" € [0,1). (2.6)
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lyi(s) = Tyi(s)ll < 0°|lyi(1) = Tys(1)|, 6° € [0,1). (2.7)
Thus,

(6t + 6%)

Ja(t) - mi(s)]| <

[5(1) = Ta; (1)}, 6 € [0,1). (2.8)
Hence, {x;(t)}72, is a Cauchy sequence in E and it converges to z* € E since

l2i(t) = zi(s)l| < llzi(t) — 27| + 2™ —zi(s)]| < 5 + 5 =€ (2.9)

Therefore, since the properties of normed linear space E are satisfied and {z;(¢)}52,
is a Cauchy sequence in E and it converges to * € E, then F is a Banach space.
This ends the proof.

Theorem 2.2 Let E be a Banach space, C (the solution or search space) be a
subset of E and T : C' — C' be the contraction mapping satisfying the condition

[Tw — Tyl < 6llz —yll, (2.10)

for each z,y € C, 0 < § < 1. Let =* be the unique fixed point of T'. For z;(0) € E,
let {z;(t)};2, be the PSO algorithm (iterative scheme) (1.3) defined by z;(t+1) =
(1 —a)zi(t) + a1pi(t) + aopy(t) + wov;(t), for i =1,2,3,...,n.

Then, the PSO iterative scheme (1.3) converges strongly to z* of T'.

Proof:

[zi(t + 1) — 2" = [[[(1 — a)zi(t) + arpi(t) + copy(t) + wovi(t)] — 27|
S (= a)llzit) = 2| + oallps(t) — ™| + azllpg(t) — 27|
twluit) — 2]l (2.11)

Applying contraction condition (2.10) in (2.11), we obtain (2.12), (2.13), (2.14a)
and (2.14b) as follows

lzi(t) — 2%|| = [[Twi(t = 1) — ™[] < 0fjai(t — 1) — 27
<o <O | (1) — 2. (2.12)

[vi(t) — 2™ = [|Tvi(t = 1) — 2*[| < 8l|vi(t —1) — 2|
<o <O Y| (1) — 2. (2.13)

[pi(t) — ™| = 1Tps(t — 1) — ™| < 8[lps(t — 1) — 27|
< <Y pa(1) — 2 (2.14a)

Ipg(t) — @™l = | Tpg(t — 1) — 2™[| < bllpg(t —1) — 27|
<. <8 pg(1) — 27| (2.14b)
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Substituting (2.12) - (2.14b) in (2.11), we obtain

li(t +1) = 27| <61 = a)[lri(1) = 2*[| + onllps(1) — 27|
+ag|[pg(1) — 2| + wllvi(1)] — ™[], (2.15)

Since =1 € [0,1) then |lz;(t + 1) — 2*|| — 0 as t — oc.
That is, limy_oo x;(t) = 2*. This ends the proof.

Theorem 2.3 Let E be a Banach space, C' (the solution or search space) be a
subset of £ and T : C' — C be the contraction mapping with a unique fixed point
x* satisfying the contraction condition

l2* = Tyl < dlj=* —yll, (2.16)

for each z,y € C, 0 < § < 1. For z;(0) € E, let {z;(t)}?2, be the PSO iterative
scheme (1.3), i = 1,2,3,...,n. Then, the PSO iterative scheme (1.3) is T'—stable.

Proof: Assume that limy_,o ;(t) = * or x;(t) — x* as t — oo.
Define {z;(t)}22; by zi(t +1) = (1 — a)z;(t) + a1¢i(t) + aaqq(t) + wu;(t).
Then,

[zi(t + 1) — 27| = [lzi(t + 1) — [(1 = @)2i(t) + 014i(t) + a2qy(t) + wui(t))
+ (1= )zit) + i) + a2qy(t) + wui(t))] — 27|
<zt +1) = (1 = a)zi(t) + a14i(t) + caqy(t) + wui(t))||
+ (1 = @)2i(t) + 1gi(t) + a2y (t) + wui(t)) — 7]
<ei(t) + 07 (1 = a)]lz(1) — 2"l + enllgi(1) — 27|
+ azllge(1) — 2™ + wllui(1) — 2*[]]. (2.17)

Using lemma 1.13 on (2.17), it follows that lim;_, [|2i(t + 1) — 2*|| = 0. That is,
limy o0 2 (t) = x*.

Conversely, let limy_, o, z;(t) = z*, we prove that lim;_, €;(t) = 0 as follows:

€i(t) = llzi(t +1) = [(1 — a)zi(t) + a14i(t) + a2qy(t) + wui(t))]]
Szt +1) =27 + fl2" = (1 = a)zi(t) + 1 gi(t) + aagy(t) + wui(t))]]
<zt +1) = 2| + 8711 = a)ll2i(1) — 2™ + enllgi(1) — 2]
+azllgg(1) — 27| + wllui (1) — 27]. (2.18)

Since limy_so0 ||2i(t) — 2*|| = 0 by assumption, then lim; . €;(t) = 0.
Therefore, the PSO iterative scheme defined by (1.3) is T'—stable. This ends the
proof.

Example 2.4 Let E =0, ] and T : [0,1] — [0,1]. Let Tz = £ and z(t) = 1,
ui(t) = £.,ai(t) = &, q4(t) = 1. Let Fr = [0,1], where [0, 1] has the usual metric.
Then T satisfies the inequality ||[Tz(t) — z*|| < o|lx(t) — z*|.

We shall prove that the PSO iterative scheme (1.3) is T'—stable.
1

Letac*:O,takeOz:%,w:%,Ozl:l g =

4> 4
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then, limy o 2;(t) = limy— 00 % = 0. Also,

lim e(t) = Jim (¢ + 1) = [(1— @)z(t) + onai(t) + asgy(t) + wus(t))]

t—o00

1 1.1 1.1, 1.1 1.1
B 20— 15~ 106 — 2 (@)

Hence, the PSO iterative scheme (1.3) is T'—stable.

3.

Conclusion

In this research, the solution space of a particle swarm optimization (PSO) was
proved to be a Banach space. With the help of Banach contraction mapping, it
was shown that the PSO algorithm converges strongly to the unique fixed point of
the self map T" and also that the PSO algorithm is T'— stable in a Banach space.
The PSO iterative algorithms employed in this study have good potentials for
further applications.
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