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Abstract. In this paper, a nonlinear mathematical model of COVID-19 was developed. An
SVEIHR model has been proposed using a system of ordinary differential equations. The model’s
equilibrium points were found, and the model’s stability analysis and sensitivity analysis around
these equilibrium points were investigated. The model’s basic reproduction number is investigated
in the next-generation matrix. The disease free equilibrium of the COVID-19 model is stable if the
basic reproduction number is less than unity; if the basic reproduction number is greater than unity,
the disease free equilibrium is unstable. We also utilize numerical simulation to explain how each
parameter affects the basic reproduction number.
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1. Introduction

Coronaviruses are a broad family of viruses that can cause respiratory infections in
humans, ranging from the common cold to more serious illnesses like Middle East
Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). At the
end of 2019, a novel coronavirus, formerly known as 2019-nCoV, was discovered to be
the cause of a cluster of pneumonia cases in Wuhan, China’s Hubei Province. It then spread
throughout China and the rest of the world, turning into a global health crisis. COVID-19,
which stands for coronavirus disease 2019, was declared a global pandemic by the World
Health Organization (WHO) in February 2020 [4]. According to the WHO report (WHO,
2020), there have been 236,616,092 confirmed cases of COVID-19 worldwide as of
October 6, 2021, with 4,832,077 deaths reported to WHO [5]. The source of the disease,
the route or modes of transmission, and the extent of infection are still being investigated.
The current evidence of the emerging Corona virus, as well as previous experiences with
other coronaviruses (such as the Middle East Respiratory Syndrome (MERS) and SARS
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virus) and other respiratory symptoms viruses (such as bird flu), suggest that the new virus
could be transmitted from an animal source [1, 2, 3, 8]. The coronavirus is spread through
coughing, sneezing, contact with infected people, and touching items or surfaces
contaminated with fecal traces [15]. Several preventive measures are recommended to
combat this pandemic, including avoiding close contact with sick people; avoiding
touching the eyes, nose, and mouth with unwashed hands; washing hands frequently with
soap and water for at least 20 seconds; and using an alcohol-based hand sanitizer
containing at least 60% alcohol when soap and water are not available [4, 14].
Mathematical models can play an essential role in understanding and forecasting disease
transmission in the absence of a ready-to-use vaccination and in addition to medical and
biological studies [12]. The development of a mathematical model for the coronavirus
(COVID-19) is significant since it aids in explaining the disease’s scope, which is
important considering that it is an invisible and contagious virus. This mathematical model
could be used to determine whether permitted measures such as quarantine are sufficient
to prevent the virus from spreading. A range of investigations and mathematical models
have been used to study the coronavirus’s transmission [6, 7, 8, 10, 13, 14]. The SEIR
model, which included susceptible, exposed, infected, and recovered individuals, was
considered in [13]. The results of numerous scenarios show that ignoring social distancing
and hygienic precautions might have disastrous consequences for the human population.
A mathematical model was established in [7] to combine asymptomatic people with the
isolation of diseased people, quarantine of contacting people, and home containment of the
entire community. The level of containment is especially important to prevent disease
spread in the absence of vaccine, as demonstrated by theoretical research and simulations.
The SEIRU model was examined in [10], which included the vulnerable, exposed,
infected, quarantined, and recovered individuals. When all precautionary measures are
followed internationally, there is a likelihood that secondary infections may decrease. The
stability analysis of a mathematical model of new coronavirus (COVID-19) disease spread
in the population was considered in [3].

We will present a mathematical model that defines and describes the new coronavirus’s
transmission (COVID-19). Compartmental models had a significant impact on the
evolution of epidemiological modeling in the population. The majority of cases of the
COVID-19 virus are transferred through human-to-human contact. In this paper, we extend
the model by [3], a nonlinear mathematical model evaluated using the SEIHR model of
COVID-19, in which population birth and death rates are not equal and the overall
population is divided into five compartments. However, in our research, we expanded the
model into SVEIHR, which includes the vaccinated class (V).

2. The Mathematical Model

Our initial model [3] is represented by five ordinary differential equations. Our extended
model is represented by six ordinary differential equations by adding one more
compartment based on the following basic assumptions. For this dynamical system
we considered Susceptible class S(t), Vaccinated class V(t), Asymptomatic infected
case or cases with mild symptoms class E (t), Infected people with symptoms and carriers
of the virus class I(t) , Quarantined Infected (Hospitalized cases) class H(t) and
Recovered class R(t).The studies have shown that the virus can be transmitted from
human to human. The population under this study is heterogeneous and varying with time,
the whole human population is divided into six classes, the coronavirus can be transmitted
by coughing, sneezing, contacting infected people.

Individuals will join the susceptible compartment s(t) by natural birth. Some of these
people will leave this compartment due to natural deaths, and some others will enter to
E(t) compartment after getting infected. The remaining people will stay in the S(f)
compartment itself. The people of S(t) compartment are likely to get infected by the



M. D. Firdawoke & M. A. Mohammed /I]M?C, 13 -02 (2023) 01-19. 3

people of E(t) and the people of I(t) only. We assume that the fraction of susceptible
individuals S(t) takes vaccination with efficacy ¢ and goes to vaccinated class V(t) at
a rate £. We assume that after individuals of vaccinated class V who lack vaccination
efficacy (1 —¢),0 < ¢ <1 make contact with infectious individuals E and I, and
enters into Asymptomatic infected case or cases with mild symptoms class E at per-capita

rate (1 — @) (W) In this study we considered that, the transfer of COID-19 from
infected people and pathogen to susceptible is by coughing, sneezing, contacting infected
people, or touching items or surfaces that are contaminated with fecal traces. The total
number of the human population at time t is given by N(t) = S(t) + V(t) + E(¢t) +
I(t) + H(t) + R(t).Based on the above state variables and model assumptions we develop

the following flow chart . of the dynamical system:
T
8E
Aus 1‘ uE 1\(;: +8)1 1\@ +8,)H TuR
4 S _% E a—E) I —)'O'Lf H i)' R
EAY T
(1 -¢) (B525) (1= p)al

v_ﬁv

Figure 1. Schematic diagram for the flow of COVID-19 in the population.

We consider the following system of six non-linear differential equations:

L=A-(ute)s - BEET R (1)
T =es—(1-g) (BT — v )
= (1-) (AR ¢ B _ (uta + 0)E (3)
L= aE — (u+ 8, + NI (4)
‘Z—’Zzp/u-(u+52+y)ﬂ (5)
Z—f:yH+ OE + (1 — p)AM — (u+1)R (6)

With the 1nitial condition
S(0)>0,V(0) =0E(0)=0,1(0)=0,H(0) =0,and R(0) =0

3. Basic Properties of the model

3.1 Positivity of the solution

Theorem 3.1 If S(0)>0,V(0)>0,E(0)>0,1(0)>0,H(0)>0,R(0)>0 are
positive in the feasible set Q, then the solution set (S(t), V(t),E(t),l(t),H(t),R(t)) of
system (1-6) is positive for all t = 0.

Proof: From the first equation of the system
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dS BiSE + B,SI

i —(u+e)sS-— — N + TR
This can be rewrite as:

as BLE + B,1

E+(H+S+T)S—A+TR

This equation is a first order linear ordinary differential equation. Whose solution is
t

B a1 60y + f [(A 4+ TR)eh (et ar ] dr| >0

S(6) = e o(brer

0
Similarly, it can be shown that V(t) > 0,E(t) > 0,I(t) > 0,H(t) > 0 and R(t) > 0.
Thus, the solutions S(t),V(t), E(t),I(t), H(t) and R(t) of system (1-6) remain positive
forallt > 0.

3.2 Invariant region

Let us determine a region in which the solution of model (1-6) is bounded. For this model
the total population is N(t) =S() +V(t) + E(t) +1(t) + H(t) + R(t) . Then,
differentiating N (t) with respect to time we obtain:
dN dS dV dE dI dH+dR A b0 — 6.H — uN
PR TP TR T TR TR T 0T H
If there is no death due to the disease, we get
N
—<A—uN
ac =0Tk
After evaluating, we obtain

N < (N(O) _ /ﬁl) omht 4 /ﬁl

. A
Ast—>00,weobta1nO<NS;.

3.3 Disease Free Equilibrium Point (DFEP)

The disease free equilibrium of the model, (1) to (6), is obtained by making % = % =
Z—f = % = Z—IZ = Z—I: = 0. Further at the disease free equilibrium point there is no infectious
person of the disease in the population, i.e. E =1 = H = 0. Therefore, the disease free
equilibrium point is given by:

A eA

p+e p(u+e)
The point X, is non-negative equilibrium, which exists without any condition.

(S0, Vo, Eo, Io, Ho, Ro) = X = ( .0,0,0,0)

3.4 The basic reproduction number

The basic reproduction number, usually denoted as R, defines the average number of
secondary infections caused by an individual in an entirely susceptible population. The
value of R, will indicate whether the epidemic could occur or not. If Ry < 1, then the
disease will decrease and eventually die out . If Ry = 1, each existing infection causes one

new infection. The disease will stay alive and stable, but there will not be an outbreak or
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an epidemic. If Ry > 1, each existing infection causes more than one new infection. The
disease will spread between people, and there may be an outbreak or epidemic. To find the
reproduction number, we will use the method of next-generation matrix [11] it is defined
as the spectral radius (or dominant eigenvalue) of the model. The first step is rewriting the

model equations, starting with the newly infected classes:

dE BLVE + B,VIN  BiSE + B,SI
Z=a-9 » )+ et a4 0)F
L= aF - (u+ 8y + DI
dH
Zf —PM —(w+ 8 +YH
Then system can be written as
dx
aw T
Here the new infection matrix f and the transition matrix v are defined by
(1 _ (p) (ﬁll/E;ﬁzVI) + ﬁlsEI-\II—ﬁZSI (‘u +a+ H)E
f= 0 andv=| (u+6+)I—aE
0 (u+ 8, +y)H — pal

Then by the principle of next-generation matrix, the Jacobian matrices at DFE is given
by

B1eA(1—¢) B14 B2eA(1—-¢) B24
UN(u+e) N(u+e)  uN(u+e) N(u+e)

F = 0 0 0 and
0 0 0

u+a+6 0 0
V= ( —a u+o6;+4 0 >
Then

B1A(e(1-p)+p) BrAa(e(1—@)+u) B2 A(e(1—p)+u)

Fy-1 = UN(u+e)(u+a+6) = uN(u+e)(u+a+0)(u+81+4)  uN(u+e)(p+8,+2)

- 0 0 0

0 0 0

Therefore, FV ™! is the next generation matrix of SVEIHR model, then the dominant
eigenvalue of FV ~lrepresents Ry = p(FV~1), which is

_ BiA(e(1-9)+p) B2 Aa(e(1—@)+p)

T uN(ute)(uta+8) | pN(u+e)(uta+0)(u+dy+A)

0

3.5 Stability Analysis of Diseases-free Equilibrium

Theorem 3.2 The disease free equilibrium point E, of the dynamical system (1) - (6) is
locally asymptotically stable if R, < 1 and unstable if Ry > 1.
Proof: The Jacobian matrix for the disease-free equilibrium X, = (S,V,E,I,H,,R) =

A eA L
(E'M' 0,0,0,0) is given byJ(X,) =
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—Hh—e 0 - N(ﬁ;i\s) - Nﬁfi\e) 0 t
S 2k B U b s B 0
0 0 J33 J34 0 0 [Wh
0 0 a —(u+6,+21) 0 0
0 0 0 pA —(u+6,+y) 0
0 0 0 (1-p)2 y —(u+ 1)l

] _ _ Bied Bid
ere, J33 = (1 —¢) NuarD + NGtD (u+a+06) and
Bz " B4

S = 0= DG NG v o
The characteristic equation of this matrix is given by det(J(X,) — élg) = 0 , where I is
a square identity matrix of order 6 and ¢ is eigenvalues of the Jacobian matrix.
Therefore, the characteristic equation is
4+ u+6 +A_]33)f] _

(k=== DU+ T+ O+ +1 - 9|
u=8)(=n $)(u =+ +y f_(#+51+/1)]33_a]34
0 The Jacobian evaluated at the DFE has six eigenvalues, four of which are

& =—u,¢, =—(/J+8), & =—(u+1) and &, = —(u + &, + y) which are negative.

The remaining two eigenvalues are obtained by determining trace value and determinant
of the sub-Jacobian given by:

33 J34
o) =[5 3% 1 p)
It is easy to show that the eigenvalues are both negative (or have negative real parts) if
traceJ],(DFE) = J33 — (u+6; + 1) <O0,then J33 < (u+a+6)+ (u+6 +4)
and det J; (DFE) = —(u + 6, + A)J335 — aJ3, > 0 Substitute the value of J35 and Js, ,
we get

P [ﬁlA(s(l —$) +u)

Nu(u + ¢€)
~(ut 8+ D |- )

—(u+a+9)]—aﬁ2A(e(1_¢)+#)>0

5 § Nu(u +¢)

€4 14

Nu(u+e)+1v(u+e)‘(”+“+9)]
p2ed P24

B ot s B

Bid(e(L — ) + 1)

—(u+6;+4) NiGi+ o) +u+6+D)+a+6)
_apdCU-) +w
Nu(p + ¢)
B14(e(1 —132(; ,i)gi + 6,4+ 1) ‘152/1152((1#;(1;)) + W < U+ + D+ a+8)

Both side divided by (u + 8; + 2)(u + a + 6)we have
PrA(e(1 — @) + ) N afoA(e(1 — @) + )
Nu(u+e)(u+a+80) Nu(u+e)(u+d+D)u+a+0)
Implies Ry < 1. Based on the above description, if Js3 < (u+a+6)+ (u+6; +
A)and Ry < 1, then all eigenvalues are negative. It indicates that the disease free
equilibrium point is stable.

3.6 Global stability at disease free equilibrium

To prove the global stability, we make use of Castillo-Chavez method [16]. Consider a
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model of the form

dF
L =F(,T)
da

d—f =G(Y,T), G(Y,0)=0

Where Y € R™ represents, individuals that are not infected in the population
and T € R™ represents infected individuals. Following the above representation, the
disease free equilibrium state can be written as X, = (Y*,0), the two conditions given
below are used to verify the disease-free equilibrium is globally is asymptotically stable.

(Ly). For % = F(Y,0) is globally asymptotically stable.

(Ly). G(y,T) =BT — G(Y,T),G(Y,T) = 0 for all (Y,T) € Q.

Where B = D;G(Y*,0) is an M-matrix (the off diagonal elements of B are non-negative)
and (2 is the region where the model makes biological sense.

Corollary 1: The fixed point X, = (Y*,0) is globally asymptotically stable

equilibrium of (*) provided that Ry < 1 and assumption that (L;) and (L,) are
satisfied.

Theorem 3.3 The disease free equilibrium point of the SVEIHR model is globally
asymptotically stable.

Proof: The model equation

ds SE + 3,51
By s PSS
dv VE + B,VI
dE BLVE + B,VIN  BiSE + B,SI
dt—(l <p)( dIN )+ ~ (u+a+0)E
E=aE—(u+51+A)I
dH
——=pM—-(u+6+y)H
R dt
E=yH+9E+(1—p)/11—(u+T)R

Is re-written as in form of (¥) by setting Y = (S,V,R) and T = (E, I, H). The disease
free equilibrium is given by

*0)= (A &4
UO (Y ) 0) - (u+g ] u(u+£) ] 0101010)
and the system Z—: = F(Y,0) becomes
ds SE + B,SI
Ezll—(ﬂﬁ'f)s—%ﬁ"[}?
v _ o 1 BiVE+BVIN
51 g (B2

dR
E=yH+ OE+ (1 —p)Al — (u+ )R

This equation has a unique equilibrium point

A eA
Xo = (E'#(Me)’o)
Which is globally asymptotically stable. Therefore, the condition (L) is satisfied.

(1-¢) (BlVE;ﬁzw) + ﬁlSE;M' —(u+a+0)E
For Lp; G(Y,T) = aE — (u+ 68, + NI

pAl = (u+ 6, +y)H
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D,G(Y*,0)
BieA(1 — @) ABy B2eA(1 — @) AB, 0
—| Nu(u+e) N(u+s)_(’u+a+6) Nu(u+¢) +N(Il+€) 0
¢ TEHAED s +y)
0 pA

Clearly, B = DyG(Y*,0) is a M-matrix. On the other hand, G(Y,T) = BT — G(Y,T)
this implies

0
G(Y, T) =BT —G(Y,T) = (0).
0
Hence G(Y,T) = (Y,T) = 0 forall (Y,T) € Q. Therefore, conditions (L;) and (L,)
are satisfied. Thus the DFE is globally asymptotically stable.

3.7 Endemic Equilibrium Point (EEP)
The endemic equilibrium point of the model, (1) to (6), is obtained by making % = % =
=2 =20 =% =0 . Therefore, the Endemic Equilibrium Point (EEP) denoted by
E*of the model in Equation (1) to (6) is given by:

X* — (S*, V*, E*, I*, H*,R*)

Where
= N*Aa(u+t)(u+8,+y)—KN*I*
T (D) (8o +y)[aN (ute)+((u+81 +0) By +aBy)I*]
. _ aN*[eN*Aa(u+T)(u+6,+y)—eKN*I* ]
T (D)t [A-@) ((u+81+) By +af,)I* +uaN*][aN* (u+e)+((u+8, +) B +ap)I* |
* (u+51+1) *
E*=——"—""I",
a
H* = pA I
p+d+y
R* = pAya+(u+8,+y)(u+8:1+1)0+(u+8,+y)(1-p)ia I*
a(u+t)(u+62+y)

And the equilibrium point /* is obtained by solving the second degree polynomial
equation as follows.
fU)=b (I +byI* +b3=0
Where N*=S*"+V*+E*+I"+H"+R"
K=tplya+ u+6+y)(u+6 +1)0t+ (u+ 6, +y)(1 —p)iaz
by = [+ D+ 8&+P)p+a+0)u+8 +D((+ 6+ Dy +aBy) +

K((u+ 8 + DBy + aB)|A — @) ((u+ 8, + DBy + ap,)
by=lu+w+A-Dlu+D)@u+86+V)(u+a+0)(u+6; +DaN*((u+
8, +A)By + aﬁz) - ((H +6; + Dp; + aﬁz)[/la(,u +D)(u+6,+y)A - QD)((.U +
8 + DBy + apy) — [u+e(l - )laN"K]
by=(u+D)+ 8 +Vp+a+60)(u+ 8+ Dua®(N)*(u+¢)

— Aa?N*(( + 81 + DBy + ) [(1 = le + pul(u+ D)+ 6, +)

When we divide both sides of by (I*)? + b,I* + b; = 0 byb; # 0, we get

(IH% + Z—Zl* +2 — 0. This can be written in form of
1

b
V42 Y =0 (7)
Where Z =z—i and
_ by _ (p+7) (ut+ 8 +y) (u+a+0) (u+68,+1) (u+e)pa®(N*)?(1-Ry)
C by (1-) (S + DBy +aB;) (D) (a8 +y) (uta+0) (u+ 8, +1)+K]

From the Equation (7) we have I* = %M When Ry > 1 we have:
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Y <0, o 224 VZZZ_M>Oand ZZoVzE oAy VZZZ“‘Y<0

This shows that there is a unique endemic equilibrium point.

When Ry < 1 we have Y > 0,

1. if Z2 > 4Y, thenZ? —4Y >0,
ﬁ—zivzzz—zw <0
ii. if Z? < 4Y,thenZ? — 4Y < 0, no real roots of (7).

3.8 Locally Stability of endemic equilibrium point

Theorem 3.4 The endemic equilibrium point E* of the dynamical system (1) - (6) is
locally asymptotically stable if R, > 1 and unstable if R, < 1.
Proof: The Jacobian matrix at the endemic equilibrium X* = (S*,V*, E*, I*, H*,R*) is

given by
Jiu 0 Jis J1a 0 T
e Jaz J23 J2a 0 0
* ]31 ]32 ]33 ]34 0 0
JE)=10 0 a —(u+6,+2 0 0
0 0 0 pA —(u+8,+7) 0
0 0 6 (1-p)A 14 —(u+1)
_ _ BiS _ BS _
Ji1="Js1—u—&J13 = —TJM = —T,fzz =—1-@)31— /32
= (1 - QD)]31; .
_ _ _ BV
Jss=—Jos—Jiz—(W+a+0),Jss =—J24 —J1a,J23 = —(1 — (P)T;]m
_ B.V"
= —(1*— ®) N
E + 8,51
andy = BE

The characteristic equation of this matrix is given by det(J(X*) — éI) = 0 , where I is
a square identity matrix of order 6 and ¢ is eigenvalues of the Jacobian matrix. Therefore,
the characteristic equation is

agél + asé® + st + az83 + a2+ a8+ ay =0
Where

ag=1
as =3u+6 +A+1t+8,+y —Jo2—J11—J33
ay = J1Jsz tJa2Jss t (u+ 61 + DQu+ 6, +v +7—J11 — J22 — J33)
_]13]31 _]23]32
T+ 6, + )+t —J11—J22 —J33) — (Wt D Us1 + 22 +J33) +J11)22
—af3y
az = J13J31)22 + J1J23)32 + JiJ22(u+ 61 + ) + J1d2(u+ 8, +v)
+ 133+ 61 + 1)
HiJzz(+ 62 + ) + Jo2)33( + 61 + ) + afz)33 + J22)11 (1 + T)
+ 2233+ 62 +y)
sz + 1) + afi1Jza + J22)33(u+ ) + (u+ 8 + D+ 6, +y)(u+ 1) — J13)326
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—J1iJ22)33 = JiaJa1( + 81 + A) — JiaJz1@ — JizJs1 (U + 82 +¥) — Ja3)52(u + 61 + 2)
—Juu+8; + D)W+ 6, +y) — 0131 — Jo3)32(u+ 62 +v)
—Ja2(u+ 6, + DU+, +7v)
—Juu(u+8; + D)W+ 1) = Jozfz32(u+7) = J33(u+ 8, + D+ 6, +y)
—Jaaa(u+ 6, +y)
—Juu+ 6 +yY)(u+1) —Joo(u+ 61 + D+ 1) — J32)24a
—Ja2(u+ 6+ V) (u+1)
—Ja3(u+ 61 + D +1) = Jaa(u+71) = J33(u+ 8 + )+ 1) — J13/3:(u + 1)

ay = J13J31)22( + 61 + A) — J13J326(u + 8 + A) — J1aea]35 + J14)22)31@
—JiJ22J33(u+ 61 + 2)
—J11)22J34@ + J11J23)32(u + 81 + A) — Ji3&)5(u + 82 +¥) + J13)3)22( + 6, +¥)
—J1t)223s( + 62 +¥) + J11J23fz2 (W + 82 +¥) + i)+ 61 + D+ 6, +y)
—180/3,
+10)22/31 — €J13J32 (U + T) + J13J31)22( + ) — J13J3:(u + 8, + D(u + 6, +y)
—tea(l—p)A
—J1aJz1a(u + 6, +v) — JiJa2Jss(u + ) + J11J23)32 (1 + T)
+JiJsz3(u+ 6 + D+ 6, +v)
+hisaa(u+6; +y) + Jid2(u+ 61 + D+ 1) —10)3,(u + 6; + 1)
+ JaoJzsa(u + 6, +y)
Ha2Js3(u+ 8 + D+ 8, +¥) — JozJso(+ 81 + D+ 6, +7) + /11320 24
— JidJzra(u + 1)
izt 6 + )+ 1) + 133+ 61 + D+ 1) + JiJz0a(p + 1)
—10]3,(u+ 6, +v)
—J1zJs1w+ 6+ Y)W+ ) + 1S3+ 6 + Y)W+ 1) + Jop)33(u + 6 + D+ 1)
+o2Jzaa(u+ 1) = Ja3)3(u+ 0 + D(u+1) = J1;(u+ 6 + D+ 6, +y)(u+1)
+a2J33( + 8 + V) + 1) = Jozf3(u+ 8 +Y)(u + 1)
—Jo2(u+ 6 + D)+ 8, +y)(u+1)
—JaJoaa(u+ 6, +y) = Jas(u+ 6 + DH(u+ 8, +y)(u+ 1)
—Jaaa(u+ 6, +y)(n+ 1)
—J13J31(u + 61 + D+ 1) — J32/20a(u + 1)

ay; = Ji1J2af2a(u + 1) = JaaJs2a(u + 6, +y)(u+ 1)

—eli3fz2(u+ 8+ D+ 6, +y)
+sl22s1( + 61 + DU+ 8, +v) — eafiafzo( + 6, +¥) + AJ1afo2)51(u+ 62 +v)
—J1J22J33( + 61 + D+ 82 +v) — JidJ22/zaa(u + 8, +y) — tea(l — p)AJs;
+11)23)32( + 8 + D+ 8, +y) +ta(1 — p)A31)2, — 1660]3,(u + 61 + )
+10)22)31 (1 + 61 + 1) — €]13J3,(u + 6 + D+ 1) + J13)22/3:(u + 61 + D) + 1)
—&af14)32(1 + 1) + aJ14)22)31(U + T) = J11)22)33( + 8 + D) (u + 1)

— JiJ22Jzaa(p + T)
+11J23)32( + 61 + D + 1) — tyapifz — 1e6]3,(u + 6, + )

+ 102/ (u+ 6, +7)
—&f13)J32( + 8 + V) + 1) + J13)22)31(u + 82 + V) (U + 7)

—JiJ22)33(u+ 6, +Y)(u + 1)
+11J23)32( + 6 + V) + 1) —ta(l — p)A3,(u + 6, +v)

+ iS22+ 6+ D+ 6 +y)(u+1)
—10)3(u+ 61 + D+ 8 +v) + afi32)24( + T)

—JizJsiu+ 6 + D+ 8, +y)(u+1)
—Jiafziau+ 6+ )+ 1) + JiJss(w+ 8 + D+ 8, + )+ 1)

+ JiJssa(u+ 6, +y)(u+1)
+a2Jas(u+ 6 + D+ 8, +y)(u+ 1) + Jop)zea(u+ 8, +y)(u+ 1)
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—Ja3J32(u+ 6, + D(u+ 8, +y)(u+ 1)
ag = J11S32J2a0(u + 85 + V) (U + 1) — TEApAy )3 + TAYPA22]31

—tea(1 — p)Az(u+ 1)
+ta(1 — p)A2J31(u + 1) —180]3,( + 6, + D(u+ 5, +7v)

—eafia)3(+ 6 + V) + 1)
—&13J31(+ 81+ DU+ 8 + Y)W+ 1) +J13)22/30(u+ 6 + D+ 6, +y)(u+1)
+af14)22)31 (1 + 6 + VI +T) — J1J22)33(u + 61 + D+ 6, + ) (u + 1)
—J1J22Jzaa(u + 6, + V) + 1) + J14J23)32( + 61 + D+ 6, +y)(u + 1)

+70)22)31 (U + 8, + D+ 8, +v)
Following Routh-Hurwitz stability criteria for polynomial of degree six, the eigenvalues

asa,as—a3—a,ai+a,as

are all negative if ag > 0,as > 0,a, >0,a4—%>0, — >0, a; —
5 544703

2
a (a5a4a1—a3a1—a0a5)(a5a4—a3)

s aZasaz—aias—ayai+a,a? >0 and
aga’
a, —————
asay — as

m?ayas >0
p(asa, — a;)(asa, — az) — (asasa; — aza; — aoaé)(asa4 — az)?

Where  m = asa,as; — a3 — a,at + a;asandp = asa,a; — a3 — ayas +
a,as.

ag=1>0is true and tr(J(X)) < 0is also true therefore, the endemic
equilibrium of the model is locally asymptotically stable ifdet(J(X")) >

asasaz—a3—azai+a,as

. .. a
Ooras > 0, ap > Oand the inequalities a, — = > 0, > 0,
as asas—as
2
a asasa,—azai—apat)(asas,—az)
az——l—( = : 5)3 —- > Qand
as a5a4a3—a3a5—a2a5+a1a5
2 2
apga m-apga
a, — ———— oS > QOare true.

Asa4—as p(asaz—al)(a5a4—a3)—(a5a4a1—a3a1—a0a§)(a5a4—a3)2

3.9 Global stability of endemic equilibrium point

Theorem 3.5 If Ry > 1, the endemic equilibrium point of the model is globally
asymptotically stable.
Proof: To establish the global stability of the endemic equilibrium of the model, we
construct the following by Lyapunov function.
V(S V*E* I*,H,R*)
= (S S*—=S5"1 S)+(V Vr—=v*l V>+(E E*—E"] E)
- ns* n V* n E*
+(I =11 I)+(H H*—H"] H>+(R R* —R"1 R)
T e T
If we take the derivative of /" we obtain,
av (1 S*) dS+ (1 V*) dV+ (1 E) dE 4 <1 I*) dl + (1 H*)dH
dt s/ dt V) dt E) dt 1)dt H)/ dt

- )
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Where
s _ , _ B1SE+B,SI
== A—(u+¢)S —* TR

AV _ o pa N (BVERBVI
Pkl ¢ (p)( N ) w

dE _ 1 BLVE+B,VI BiSE+B2SI
= - (B L B (it a+ 0)E .

i—aE (u+ 6+ I

d
d
;=pll—(u+5z+y)H

L Z—I:=yH+ E+ (1—p)Al —(u+ )R

Substituting each, we get

*

v (1—5—)(/1—(M+£)5——315E+BZSI+TR)

@ s 4 N BLVE + B, VI
# (1) (- -0 (F=) - w)
E* BLVE + B,VIN  BiSE + B,SI1
(i) 0-mBEE BS
+9)E>+(1—£)[aE—( +6, + DI
i U 1
H*
(1——>[p/11 (u+8;+7y)H |
+(1—%*>[yH+ OFE + (1 —p)Al — (u+ T)R]
Expanding equation (8) above, we obtain;
av (§—59% B(E—ENS—5) PB(S—S)*U-1T)
arm e _ﬁ(V Vlzfz(E E*)_ N% V-V -1)
—(1—¢)<1 7 )—(1—@ —
_U*\2 _ *\2 _7*\2
—Hw—(ﬂ'ﬂl'i'@)%—(ﬂ'ﬂ%"‘l)g
H_H*Z R_R*Z S*
—(H+52+]’)%—(ﬂ+‘[)¥+(1—?>/1

(1—S—*)(R—R*)T+e(1—v—*>(5—5*)

fa- ( BV — V)(E E*)?

o) 1_E_*)ﬁz(V VD) B SE - E*)?

N
( )2(5 U -17) a*(1—§>(E—E*)
+p/1( )(1—1)+y(1—%)(H—H*)
+9(1—%)(E—E*)+(1—p)/1(1—R—>(I—I*)

A

R
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. . . . av
Collecting the positive and negative terms we obtain = C — D, where

c=(1-2)A+R-RID+e(1-2) (s - 57) + ELL[EDATD
ﬁl(jv—s*)] + (1 _ EE) (=1 [(1:<p)ﬁ13(v—v*) + Bz(-jv—S*)] +a (1 _ 17) (E—E") +
pl(l—%)(I—I*)+y(1—%)(H—H*)+ 9(1—%)(5—5*“ (1—,0)/1(1—
B

and

_ (=8’ BuE-ET) | pa(=1)] , =V [ (ﬁl(s—E*))
D =C | ooty + D BT U0 [ - gy (BEEED) o
(1- (p)%_l)+u] +(u+a+ 6)(E_:*)2 +(u+6; +’1)(1_11*)2 +(u+6,+
P 4 () &

If C < D,then Z—: will be negative and If C > D, then % will be positive. i—‘: = 0;if
andonlyif S =S*, V=V* E=E*I=1"H=H" and R = R*. Thus, the maximum
compact invariant set is {(S*, V* E*I*,H",R*) € : Z—: = 0} which is the set {X*},
hence the endemic equilibrium, by LaSalle’s Invariant principles; it implies that X* is
globally asymptotically stable (GAS) in 2 if C < D.

3.10 Sensitivity Analysis

In determining how best to reduce human mortality and morbidity due to covid-19, it is
necessary to know the relative importance of the different factors responsible for its
transmission. Sensitivity analysis is commonly used to determine the robustness of model
predictions to parameter values, that is, to help us know the parameters that have a high
impact on the reproduction number R,. For sensitivity analysis we use the normalized

sensitivity index [9]. The normalized forward sensitivity indices of R, that depends

differentiable on a parameter m, is defined by Hf{’ = Rﬂ% ,we take m =
0

B, B, A €, @,0,4,6; and u. The parameter values displayed in a table 2 below are used

to evaluate the sensitivity indices of some parameters which are responsible for the

transmission dynamics of COVID-19 infectious disease, the result of which is presented

in table 1 below.

Table 1. Sensitivity indices of the basic reproduction number to model parameters.
Parameter Symbol | Sensitivity Index

U —1.8301

A 1
B 0.8804
B> 0.4891

a —0.1304

A —0.0319

0 —0.0141

[ —0.0013

£ —0.0007

The sensitivity index in Table 1 has a sensitivity index of R, that has positive and negative
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values, and each parameter value has a varying effect on R,. A positive value indicates that
if the parameter value is increased while the other parameters remain constant, the basic
reproduction number will increase, and if the parameter value is decreased while the other
parameters remain constant, the basic reproduction number will decrease. On the other
hand, a negative value indicates that increasing the parameter value while keeping other
parameters constant will result in a decrease in the basic reproduction number, while
decreasing the parameter value while keeping other parameters constant will result in an
increase in the basic reproduction number. According to sensitivity analysis, the new birth
rate in the susceptible human population, the transmission coefficient from susceptible to

infected persons with symptoms and carriers of the virus, and the natural death rate are the

most sensitive parameters to changes in the value of Ry,.

4. Numerical Simulation

In this section, we perform numerical simulations of the model (1)- (6) are carried out
using the MATLAB software to illustrate the results in section 3. From the SVEIHR
Mathematical model with a system of six —variable differential equations (S,V,E,I, H,R)
with parameters that affect the system. The parameters values adopted from Table 2 and
the initial population levels were assumed as follows:S(0) = 200,V(0) = 115,E(0) =
65,1(0) =80,H(0) = 10 and R(0) = 30.

Table 2. Definition and values of parameter for the SVEIHR model.

Parameter Description Value | Ref.

N Total population 500 Assumed

A New birth rate in susceptible human population 100 Assumed

By The transmission coefficient from susceptible | 0.045 | Assumed
individuals to asymptomatic infected case

B2 The transmission coefficient from susceptible | 0.025 | Assumed

individuals to infected individual with symptoms and
carriers of the virus

a The rate of transmission of asymptomatic infected to | 0.022 | [3]
infected individual with symptoms
Progression rate from [ to either Hor R 0.024 | [3]

The transmission coefficient of the hospitalized cases | 0.015 | [3]
to the recovered class

0 The rate of transmission of asymptomatic infected | 0.001 | [3]
case to the recovered case due the strong immunity

01 The death rate of the infected individuals 0.001 | [3]

6, The death rate of the hospitalized cases 0.004 | [3]
The natural death rate 0.065 | [3]

T The rate of recovered individual become | 0.15 | [14]

susceptible again
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£ The vaccination rate from susceptible to vaccinated 0.035 | Assumed

Q The vaccination efficacy 0.95 | [12]
p Proportion of Hospitalized individuals 0.7 Assumed

1000

R
s V(1)

E(t)
[ —ret
——H(t)
R(t)

800

600

400

HumanPopulation

200

0 10 20 30 40 50
Time

Figure 2. Graphs of Transmision of covid-19 with vaccination.

From the figure 2, we observe that with time the susceptible and vaccinated population
increases, exposed will constant, infected decreases and both hospitalized and recovery
population become almost zero.

1000 T T T :

] F i

8 800

+

=

=

S 600 1

Ay

=

)

‘= 400 r b

[

[«B]

(]

(g ———c — 0.035

[@®) 200 ——c = 0.07 |

e = 0.105
e c — (.14
0 . . . .
(0} 10 20 30 40 50

Time

Figure 3. Effect of € on Susceptible individuals.

Figure 3, showing the effects of the rate of vaccination on the susceptible population, we
see that as the rate of vaccination increases, the susceptible population also increases.
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1000
— 800
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2. 600 |
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= 400t
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0 1 1 f 1
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Figure 4. Effect of € on Vaccinated individuals.

Figure 4, showing the effect of rates on the vaccinated population, we see that as the rate
of vaccination increases, the vaccinated population also increases as expected. Because the
susceptible population are aware of vaccination of covid-19 and they enter in to vaccinated
population and it reduces the spread of the diseases.

1000 T

w— 3, = 0.045
e 3 = 0.09 ||

By =0.135
— 3, = 0.18

800 |-

600

400

Susceptible Population

200

Time

Figure 5. Effect of B on Susceptible individuals.

Figure 5, it shows the effect of asymptomatic infection rate on the susceptible population.
We see that as the rate of asymptomatically infected decreases, the susceptible population
also increases and vice versa.
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0 | | I I I
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Figure 6. Effect of B1 on Infected people with symptoms.

Figure 6, it shows the effect of asymptomatically infected rate on the infected population.
We see that as the rate of asymptomatically infected population increases, the infected
population increases as assumed.

4.1 Impacts of some key parameters on disease control

Consider that our control parameter is §;. The basic control parameter that can
decrease the spread of the disease is 8, is the transmission coefficient from susceptible
people to asymptomatic infected cases. The other parameters are all fixed. The graphical
representation of the control parameter [; versus the basic reproduction number R, is

given below.

Ry

0.5 a

B
Figure 7. The basic reproduction number R, versus control parameter 4graph.

Figure 7 shows that when p; is less than 0.04, the basic reproduction number R is less
than unity, and when f; is greater than 0.04, R, is greater than unity. Therefore, the
value of the control parameter ; must decrease(less than 0.04) in order to stop the spread
of COVID-19.

Consider that our control parameter is €. The basic control parameter that can decrease
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the spread of the disease is €, is the vaccination rate from susceptible to vaccinated class,
and the remaining parameters are constant. The graphical representation of the control

parameter ¢ versuse the basic reproduction number R, is given below

0 . . .
0 0.5 1 1.5 2

€

Figure 8. The basic reproduction number R versus control parameter & graph.

Fig-8 shows that when ¢ greater than 0.06, the basic reproduction number R, is less
than unity, and when ¢ less than 0.06, R, is greater than unity. Therefore, the control
parameter € value must increase (greater than 0.06) in order to stop the propagation of
COVID-19.

Consider that our control parameter is 8. The basic control parameter that can decrease
the spread of the disease is 8, is the rate of transmission of asymptomatic infected case to
the recovered case due the strong immunity and the remaining parameters are constant.

The graphical representation of the control parameter 6 versus the basic reproduction

number R, is given below.

Figure 9. The basic reproduction number R versus control parameter 6 graph.

Fig-9 shows that when 6 is greater than 1.8, the basic reproduction number R, is less
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than unity, and when 6 is less than 1.8, R, is greater than unity.Therefore, the value of
the control parameter 8 needs to be increased (greater than 1.8) in order to stop the spread
of COVID-19.

5. Conclusions

In this study, the dynamics of COVID-19 are presented and explored using a deterministic
model. The disease-free and endemic equilibrium stability was determined. The basic
reproduction number (R,) was determined using the next-generation matrix technique.
According to the model, the disease free equilibrium is unstable when R, greater than
unity, implying that the disease will persist. As the transmission coefficient increases from
susceptible persons to asymptomatic infected people, infected people with symptoms, and
carriers of the virus, the basic reproduction number increases. As a result, COVID-19
transmission will increase. The transmission coefficient from susceptible to infected
people with symptoms and carriers of the virus was found to be the most sensitive
parameter affecting COVID-19 transmission in a sensitivity analysis. Furthermore, the
numerical simulation results show that increasing the vaccination rate decreases the basic
reproduction number, implying that COVID-19 spread was decreased.
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