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Abstract. In this paper, a nonlinear mathematical model of COVID-19 was developed. An 

SVEIHR model has been proposed using a system of ordinary differential equations. The model’s 

equilibrium points were found, and the model’s stability analysis and sensitivity analysis around 

these equilibrium points were investigated. The model’s basic reproduction number is investigated 

in the next-generation matrix. The disease free equilibrium of the COVID-19 model is stable if the 
basic reproduction number is less than unity; if the basic reproduction number is greater than unity, 

the disease free equilibrium is unstable. We also utilize numerical simulation to explain how each 

parameter affects the basic reproduction number. 
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1. Introduction 

Coronaviruses are a broad family of viruses that can cause respiratory infections in 

humans, ranging from the common cold to more serious illnesses like Middle East 

Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). At the 

end of 2019, a novel coronavirus, formerly known as 2019-nCoV, was discovered to be 

the cause of a cluster of pneumonia cases in Wuhan, China’s Hubei Province. It then spread 

throughout China and the rest of the world, turning into a global health crisis. COVID-19, 

which stands for coronavirus disease 2019, was declared a global pandemic by the World 

Health Organization (WHO) in February 2020 [4]. According to the WHO report (WHO, 

2020), there have been 236,616,092 confirmed cases of COVID-19 worldwide as of 

October 6, 2021, with 4,832,077 deaths reported to WHO [5]. The source of the disease, 

the route or modes of transmission, and the extent of infection are still being investigated. 

The current evidence of the emerging Corona virus, as well as previous experiences with 

other coronaviruses (such as the Middle East Respiratory Syndrome (MERS) and SARS 
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virus) and other respiratory symptoms viruses (such as bird flu), suggest that the new virus 

could be transmitted from an animal source [1, 2, 3, 8].  The coronavirus is spread through 

coughing, sneezing, contact with infected people, and touching items or surfaces 

contaminated with fecal traces [15]. Several preventive measures are recommended to 

combat this pandemic, including avoiding close contact with sick people; avoiding 

touching the eyes, nose, and mouth with unwashed hands; washing hands frequently with 

soap and water for at least 20 seconds; and using an alcohol-based hand sanitizer 

containing at least 60% alcohol when soap and water are not available [4, 14]. 

Mathematical models can play an essential role in understanding and forecasting disease 

transmission in the absence of a ready-to-use vaccination and in addition to medical and 

biological studies [12]. The development of a mathematical model for the coronavirus 

(COVID-19) is significant since it aids in explaining the disease’s scope, which is 

important considering that it is an invisible and contagious virus. This mathematical model 

could be used to determine whether permitted measures such as quarantine are sufficient 

to prevent the virus from spreading. A range of investigations and mathematical models 

have been used to study the coronavirus’s transmission [6, 7, 8, 10, 13, 14]. The SEIR 

model, which included susceptible, exposed, infected, and recovered individuals, was 

considered in [13]. The results of numerous scenarios show that ignoring social distancing 

and hygienic precautions might have disastrous consequences for the human population. 

A mathematical model was established in [7] to combine asymptomatic people with the 

isolation of diseased people, quarantine of contacting people, and home containment of the 

entire community. The level of containment is especially important to prevent disease 

spread in the absence of vaccine, as demonstrated by theoretical research and simulations. 

The SEIRU model was examined in [10], which included the vulnerable, exposed, 

infected, quarantined, and recovered individuals. When all precautionary measures are 

followed internationally, there is a likelihood that secondary infections may decrease. The 

stability analysis of a mathematical model of new coronavirus (COVID-19) disease spread 

in the population was considered in [3]. 

We will present a mathematical model that defines and describes the new coronavirus’s 

transmission (COVID-19). Compartmental models had a significant impact on the 

evolution of epidemiological modeling in the population. The majority of cases of the 

COVID-19 virus are transferred through human-to-human contact. In this paper, we extend 

the model by [3], a nonlinear mathematical model evaluated using the SEIHR model of 

COVID-19, in which population birth and death rates are not equal and the overall 

population is divided into five compartments. However, in our research, we expanded the 

model into SVEIHR, which includes the vaccinated class (𝑉). 

2. The Mathematical Model 

Our initial model [3] is represented by five ordinary differential equations. Our extended 

model is represented by six ordinary differential equations by adding one more 

compartment based on the following basic assumptions. For  this  dynamical  system  

we  considered  Susceptible class S(t), Vaccinated class 𝑉(𝑡), Asymptomatic infected 

case or cases with mild symptoms class 𝐸(𝑡), Infected people with symptoms and carriers 

of the virus class 𝐼(𝑡)  , Quarantined Infected (Hospitalized cases) class 𝐻(𝑡)  and 

Recovered class 𝑅(𝑡).The studies have shown that the virus can be transmitted from 

human to human. The population under this study is heterogeneous and varying with time, 

the whole human population is divided into six classes, the coronavirus can be transmitted 

by coughing, sneezing, contacting infected people.  

Individuals will join the susceptible compartment 𝒔(𝒕) by natural birth. Some of these 

people will leave this compartment due to natural deaths, and some others will enter to 

𝑬(𝒕) compartment after getting infected. The remaining people will stay in the 𝑺(𝒕) 
compartment itself. The people of 𝑺(𝒕) compartment are likely to get infected by the 
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people of 𝑬(𝒕) and the people of 𝑰(𝒕) only. We assume that the fraction of susceptible 

individuals 𝑺(𝒕) takes vaccination with efficacy 𝝋 and goes to vaccinated class 𝑽(𝒕) at 

a rate 𝜺. We assume that after individuals of vaccinated class 𝑽 who lack vaccination 

efficacy (𝟏 − 𝝋), 𝟎 < 𝝋 < 𝟏  make contact with infectious individuals 𝑬  and  𝑰 , and 

enters into Asymptomatic infected case or cases with mild symptoms class 𝑬 at per-capita 

rate (𝟏 − 𝝋)(
𝜷𝟏𝑽𝑬+𝜷𝟐𝑽𝑰

𝑵
). In this study we considered that, the transfer of COID-19 from 

infected people and pathogen to susceptible is by coughing, sneezing, contacting infected 

people, or touching items or surfaces that are contaminated with fecal traces. The total 

number of the human population at time 𝒕 is given by 𝑵(𝒕) = 𝑺(𝒕) + 𝑽(𝒕) + 𝑬(𝒕) +
𝑰(𝒕) + 𝑯(𝒕) + 𝑹(𝒕).Based on the above state variables and model assumptions we develop 

the following flow chart of the dynamical system:                   

                                                   
Figure 1. Schematic diagram for the flow of COVID-19 in the population. 

 

   We consider the following system of six non-linear differential equations: 

𝑑𝑆

𝑑𝑡
= 𝛬 − (𝜇 + 𝜀)𝑆 −

𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁
+ 𝜏𝑅                                        (1) 

𝑑𝑉

𝑑𝑡
= 𝜀𝑆 − (1 − 𝜑)(

𝛽1𝑉𝐸+𝛽2𝑉𝐼

𝑁
) − 𝜇𝑉                                       (2) 

𝑑𝐸

𝑑𝑡
= (1 − 𝜑)(

𝛽1𝑉𝐸+𝛽2𝑉𝐼

𝑁
) +

𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁
− (𝜇 + 𝛼 + 𝜃)𝐸                     (3) 

𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝜇 + 𝛿1 + 𝜆)𝐼                                                   (4) 

𝑑𝐻

𝑑𝑡
= 𝜌𝜆𝐼 − (𝜇 + 𝛿2 + 𝛾)𝐻                                                 (5) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐻 +  𝜃𝐸 + (1 − 𝜌)𝜆𝐼 − (𝜇 + 𝜏)𝑅                                    (6) 

With the initial condition 

 𝑆(0) > 0, 𝑉(0) ≥ 0 𝐸(0) ≥ 0, 𝐼(0) ≥ 0,𝐻(0) ≥ 0, 𝑎𝑛𝑑 𝑅(0) ≥ 0  

3. Basic Properties of the model 

3.1 Positivity of the solution 

Theorem 3.1 If  𝑆(0) > 0, 𝑉(0) > 0, 𝐸(0) > 0, 𝐼(0) > 0,𝐻(0) > 0, 𝑅(0) > 0 are 

positive in the feasible set Ω, then the solution set (𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡),𝐻(𝑡), 𝑅(𝑡)) of 

system (1-6) is positive for all 𝑡 ≥ 0. 

Proof: From the first equation of the system 
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𝑑𝑆

𝑑𝑡
= 𝛬 − (𝜇 + 𝜀)𝑆 −

𝛽1𝑆𝐸 + 𝛽2𝑆𝐼

𝑁
+ 𝜏𝑅 

This can be rewrite as:  
𝑑𝑆

𝑑𝑡
+ (𝜇 + 𝜀 +

𝛽1𝐸 + 𝛽2𝐼

𝑁
)𝑆 = 𝛬 + 𝜏𝑅 

This equation is a first order linear ordinary differential equation. Whose solution is  

𝑆(𝑡) = 𝑒
−∫ (𝜇+𝜀+

𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 [𝑆(0) + ∫[(𝛬 + 𝜏𝑅)𝑒∫
(𝜇+𝜀+

𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 ]

𝑡

0

 𝑑𝜏] > 0 

Similarly, it can be shown that  𝑉(𝑡) > 0, 𝐸(𝑡) > 0, 𝐼(𝑡) > 0,𝐻(𝑡) > 0  𝑎𝑛𝑑 𝑅(𝑡) > 0. 

Thus, the solutions 𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡),𝐻(𝑡) 𝑎𝑛𝑑 𝑅(𝑡) of system (1-6) remain positive 

for all 𝑡 > 0. 

3.2 Invariant region 

Let us determine a region in which the solution of model (1-6) is bounded. For this model 

the total population is  𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝐻(𝑡) + 𝑅(𝑡) . Then, 

differentiating 𝑁(𝑡) with respect to time we obtain: 
𝑑𝑁

𝑑𝑡
=
𝑑𝑆

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
+
𝑑𝐸

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝐻

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
= 𝛬 − 𝛿1𝐼 − 𝛿2𝐻 − 𝜇𝑁 

If there is no death due to the disease, we get 
𝑑𝑁

𝑑𝑡
≤ 𝛬 − 𝜇𝑁 

After evaluating, we obtain 

𝑁(𝑡) ≤ (𝑁(0) −
𝛬

𝜇
) 𝑒−𝜇𝑡 +

𝛬

𝜇
 

As 𝑡 → ∞ , we obtain 0 < 𝑁 ≤
𝛬

𝜇
.  

3.3 Disease Free Equilibrium Point (DFEP) 

The disease free equilibrium of the model, (1) to (6), is obtained by making 
𝑑𝑆

 𝑑𝑡
=

𝑑𝑉

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝐻

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0. Further at the disease free equilibrium point there is no infectious 

person of the disease in the population, i.e. 𝐸 = 𝐼 = 𝐻 = 0. Therefore, the disease free 

equilibrium point is given by: 

(𝑆0, 𝑉0, 𝐸0, 𝐼0, 𝐻0, 𝑅0) = 𝑋0 = (
𝛬

𝜇 + 𝜀
,

𝜀𝛬

𝜇(𝜇 + 𝜀)
, 0,0,0,0) 

The point 𝑋0 is non-negative equilibrium, which exists without any condition.  

3.4 The basic reproduction number 

The basic reproduction number, usually denoted as 𝑅0 defines the average number of 

secondary infections caused by an individual in an entirely susceptible population. The 

value of 𝑅0  will indicate whether the epidemic could occur or not. If 𝑅0 < 1, then the 

disease will decrease and eventually die out . If 𝑅0 = 1, each existing infection causes one 

new infection. The disease will stay alive and stable, but there will not be an outbreak or 



M. D. Firdawoke & M. A. Mohammed /𝐼𝐽𝑀2𝐶, 13 -02 (2023) 01-19.                5 
 

 

an epidemic. If 𝑅0 > 1, each existing infection causes more than one new infection. The 

disease will spread between people, and there may be an outbreak or epidemic. To find the 

reproduction number, we will use the method of next-generation matrix [11] it is defined 

as the spectral radius (or dominant eigenvalue) of the model. The first step is rewriting the 

model equations, starting with the newly infected classes: 

 

 
𝑑𝐸

𝑑𝑡
= (1 − 𝜑)(

𝛽1𝑉𝐸 + 𝛽2𝑉𝐼

𝑁
) +

𝛽1𝑆𝐸 + 𝛽2𝑆𝐼

𝑁
− (𝜇 + 𝛼 + 𝜃)𝐸 

𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝜇 + 𝛿1 + 𝜆)𝐼                                                        

𝑑𝐻

𝑑𝑡
= 𝜌𝜆𝐼 − (𝜇 + 𝛿2 + 𝛾)𝐻 

Then system can be written as 

𝑑𝑥

𝑑𝑡
= 𝑓 − 𝑣 

Here the new infection matrix 𝑓 and the transition matrix  𝑣 are defined by 

𝑓 = (
(1 − 𝜑)(

𝛽1𝑉𝐸+𝛽2𝑉𝐼

𝑁
) +

𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁

0
0

) and 𝑣 = (

(𝜇 + 𝛼 + 𝜃)𝐸
(𝜇 + 𝛿1 + 𝜆)𝐼 − 𝛼𝐸  
(𝜇 + 𝛿2 + 𝛾)𝐻 − 𝜌𝜆𝐼

) 

Then by the principle of next-generation matrix, the Jacobian matrices at DFE is given 

by 

𝐹 = (

𝛽1𝜀𝛬(1−𝜑)

𝜇𝑁(𝜇+𝜀)
+

𝛽1𝛬

𝑁(𝜇+𝜀)

𝛽2𝜀𝛬(1−𝜑)

𝜇𝑁(𝜇+𝜀)
+

𝛽2𝛬

𝑁(𝜇+𝜀)
0

0 0 0
0 0 0

) and  

𝑉 = (

𝜇 + 𝛼 + 𝜃 0 0
−𝛼 𝜇 + 𝛿1 + 𝜆 0
0 −𝜌𝜆 𝜇 + 𝛿2 + 𝛾

)    

Then  

𝐹𝑉−1 = (

𝛽1𝛬(𝜀(1−𝜑)+𝜇)

𝜇𝑁(𝜇+𝜀)(𝜇+𝛼+𝜃)
+

𝛽2𝛬𝛼(𝜀(1−𝜑)+𝜇)

𝜇𝑁(𝜇+𝜀)(𝜇+𝛼+𝜃)(𝜇+𝛿1+𝜆)

𝛽2𝛬(𝜀(1−𝜑)+𝜇)

𝜇𝑁(𝜇+𝜀)(𝜇+𝛿1+𝜆)
0

0 0 0
0 0 0

)  

Therefore, 𝐹𝑉−1 is the next generation matrix of SVEIHR model, then the dominant 

eigenvalue of 𝐹𝑉−1represents 𝑅0 = 𝜌(𝐹𝑉
−1), which is 

𝑅0 =
𝛽1𝛬(𝜀(1−𝜑)+𝜇)

𝜇𝑁(𝜇+𝜀)(𝜇+𝛼+𝜃)
+

𝛽2𝛬𝛼(𝜀(1−𝜑)+𝜇)

𝜇𝑁(𝜇+𝜀)(𝜇+𝛼+𝜃)(𝜇+𝛿1+𝜆)
      

3.5 Stability Analysis of Diseases-free Equilibrium 

Theorem 3.2 The disease free equilibrium point 𝐸0 of the dynamical system (1) - (6) is 

locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1. 

Proof: The Jacobian matrix for the disease-free equilibrium 𝑋0 = (𝑆, 𝑉, 𝐸, 𝐼, 𝐻, , 𝑅) =

(
𝛬

𝜇+𝜀
,

𝜀𝛬

𝜇(𝜇+𝜀)
, 0,0,0,0) is given by𝐽(𝑋0) =
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[
 
 
 
 
 
 
 −𝜇 − 𝜀 0 −

𝛽1Λ

𝑁(𝜇+𝜀)
−

𝛽2Λ

𝑁(𝜇+𝜀)
0 𝜏

𝜀 −𝜇 −(1 − 𝜙)
𝛽1𝜀Λ

𝑁𝜇(𝜇+𝜀)
−(1 − 𝜙)

𝛽2𝜀Λ

𝑁𝜇(𝜇+𝜀)
0 0

0 0 𝐽33 𝐽34 0 0

0 0 𝛼 −(𝜇 + 𝛿1 + 𝜆) 0 0

0 0 0 𝜌𝜆 −(𝜇 + 𝛿2 + 𝛾) 0

0 0 𝜃 (1 − 𝜌)𝜆 𝛾 −(𝜇 + 𝜏)]
 
 
 
 
 
 
 

Wh

ere, 𝐽33 = (1 − 𝜙)
𝛽1𝜀Λ

𝑁𝜇(𝜇+𝜀)
+

𝛽1Λ

𝑁(𝜇+𝜀)
− (𝜇 + 𝛼 + 𝜃) and 

𝐽34 = (1 − 𝜙)
𝛽2𝜀Λ

𝑁𝜇(𝜇 + 𝜀)
+

𝛽2Λ

𝑁(𝜇 + 𝜀)

 

The characteristic equation of this matrix is given by det(𝐽(𝑋0) − 𝜉𝐼6) = 0 , where 𝐼6 is 

a square identity matrix of order 6 and 𝜉 is eigenvalues of the Jacobian matrix. 

Therefore, the characteristic equation is  

(−𝜇 − 𝜉)(−𝜇 − 𝜀 − 𝜉)(𝜇 + 𝜏 + 𝜉)(−(𝜇 + 𝛿2 + 𝛾) − 𝜉) [
𝜉2 + (𝜇 + 𝛿1 + 𝜆 − 𝐽33)𝜉

−(𝜇 + 𝛿1 + 𝜆)𝐽33 − 𝛼𝐽34
] =

0 The Jacobian evaluated at the DFE has six eigenvalues, four of which are

( )1 2, ,    = − = − + 𝜉3 = −(𝜇 + 𝜏) and 𝜉4 = −(𝜇 + 𝛿2 + 𝛾) which are negative.  

The remaining two eigenvalues are obtained by determining trace value and determinant 

of the sub-Jacobian given by: 

𝐽1(𝐷𝐹𝐸) = [
𝐽33 𝐽34
𝛼 −(𝜇 + 𝛿1 + 𝜆)

] 

It is easy to show that the eigenvalues are both negative (or have negative real parts) if 

𝑡𝑟𝑎𝑐𝑒𝐽1(𝐷𝐹𝐸) = 𝐽33 − (𝜇 + 𝛿1 + 𝜆) < 0, then 𝐽33 < (𝜇 + 𝛼 + 𝜃) + (𝜇 + 𝛿1 + 𝜆)   

and 𝑑𝑒𝑡 𝐽1 (𝐷𝐹𝐸) = −(𝜇 + 𝛿1 + 𝜆)𝐽33 − 𝛼𝐽34 > 0 Substitute the value of 𝐽33 and 𝐽34 , 

we get 

−(𝜇 + 𝛿1 + 𝜆) [
𝛽1Λ(𝜀(1 − 𝜙) + 𝜇)

𝑁𝜇(𝜇 + 𝜀)
− (𝜇 + 𝛼 + 𝜃)] −

𝛼𝛽2Λ(𝜀(1 − 𝜙) + 𝜇)

𝑁𝜇(𝜇 + 𝜀)
> 0 

−(𝜇 + 𝛿1 + 𝜆) [(1 − 𝜙)
𝛽1𝜀Λ

𝑁𝜇(𝜇 + 𝜀)
+

𝛽1Λ

𝑁(𝜇 + 𝜀)
− (𝜇 + 𝛼 + 𝜃)]

− 𝛼 [(1 − 𝜙)
𝛽2𝜀Λ

𝑁𝜇(𝜇 + 𝜀)
+

𝛽2Λ

𝑁(𝜇 + 𝜀)
] > 0 

−(𝜇 + 𝛿1 + 𝜆)
𝛽1Λ(𝜀(1 − 𝜙) + 𝜇)

𝑁𝜇(𝜇 + 𝜀)
+ (𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛼 + 𝜃)

−
𝛼𝛽2Λ(𝜀(1 − 𝜙) + 𝜇)

𝑁𝜇(𝜇 + 𝜀)
> 0 

𝛽1Λ(𝜀(1 − 𝜙) + 𝜇)(𝜇 + 𝛿1 + 𝜆)

𝑁𝜇(𝜇 + 𝜀)
+
𝛼𝛽2Λ(𝜀(1 − 𝜙) + 𝜇)

𝑁𝜇(𝜇 + 𝜀)
< (𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛼 + 𝜃) 

Both side divided by (𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛼 + 𝜃)we have 
𝛽1Λ(𝜀(1 − 𝜙) + 𝜇)

𝑁𝜇(𝜇 + 𝜀)(𝜇 + 𝛼 + 𝜃)
+

𝛼𝛽2Λ(𝜀(1 − 𝜙) + 𝜇)

𝑁𝜇(𝜇 + 𝜀)(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛼 + 𝜃)
< 1 

Implies 𝑅0 < 1 . Based on the above description, if 𝐽33 < (𝜇 + 𝛼 + 𝜃) + (𝜇 + 𝛿1 +
𝜆) and𝑅0 < 1 , then all eigenvalues are negative. It indicates that the disease free 

equilibrium point is stable. 

3.6 Global stability at disease free equilibrium 

To prove the global stability, we make use of Castillo-Chavez method [16]. Consider a 
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model of the form 

{

𝑑𝐹

𝑑𝑡
= 𝐹(𝑌, 𝑇)             

𝑑𝐺

𝑑𝑡
= 𝐺(𝑌, 𝑇),   𝐺(𝑌, 0) = 0

               * 

 

Where  𝑌 ∈ ℛ𝑚  represents, individuals  that  are  not  infected  in  the  population  

and 𝑇 ∈ ℛ𝑚  represents infected  individuals. Following the above representation, the 

disease free equilibrium state can be written as 𝑋0 = (𝑌
∗, 0), the two conditions given 

below are used to verify the disease-free equilibrium is globally is asymptotically stable. 

(𝐿1). For 
𝑑𝐹

𝑑𝑡
= 𝐹(𝑌, 0) is globally asymptotically stable. 

(𝐿2). 𝐺(𝑦, 𝑇) = 𝐵𝑇 − �̂�(𝑌, 𝑇), �̂�(𝑌, 𝑇) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑌, 𝑇) ∈ 𝛺. 

Where 𝐵 = 𝐷𝑇𝐺(𝑌
∗, 0) is an M-matrix (the off diagonal elements of 𝐵 are non-negative) 

and 𝛺 is the region where the model makes biological sense. 

Corollary 1: The fixed point 𝑋0 = (𝑌
∗, 0) is globally asymptotically stable  

equilibrium of (*) provided that 𝑅0 ≤ 1 and assumption that (𝐿1) and (𝐿2) are 

satisfied. 

Theorem 3.3 The disease free equilibrium point of the 𝑆𝑉𝐸𝐼𝐻𝑅  model is globally 

asymptotically stable.  

Proof: The model equation  
𝑑𝑆

𝑑𝑡
= 𝛬 − (𝜇 + 𝜀)𝑆 −

𝛽1𝑆𝐸 + 𝛽2𝑆𝐼

𝑁
+ 𝜏𝑅 

𝑑𝑉

𝑑𝑡
= 𝜀𝑆 − (1 − 𝜑)(

𝛽1𝑉𝐸 + 𝛽2𝑉𝐼

𝑁
) − 𝜇𝑉 

𝑑𝐸

𝑑𝑡
= (1 − 𝜑)(

𝛽1𝑉𝐸 + 𝛽2𝑉𝐼

𝑁
) +

𝛽1𝑆𝐸 + 𝛽2𝑆𝐼

𝑁
− (𝜇 + 𝛼 + 𝜃)𝐸 

𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝜇 + 𝛿1 + 𝜆)𝐼 

𝑑𝐻

𝑑𝑡
= 𝜌𝜆𝐼 − (𝜇 + 𝛿2 + 𝛾)𝐻 

𝑑𝑅

𝑑𝑡
= 𝛾𝐻 +  𝜃𝐸 + (1 − 𝜌)𝜆𝐼 − (𝜇 + 𝜏)𝑅 

Is re-written as in form of (*) by setting 𝑌 = (𝑆, 𝑉, 𝑅) and 𝑇 = (𝐸, 𝐼, 𝐻). The disease 

free equilibrium is given by 

  𝑈0(𝑌
∗, 0) = (

𝛬

𝜇+𝜀
,

𝜀𝛬

𝜇(𝜇+𝜀)
, 0,0,0,0) 

 and the system 
𝑑𝑌

𝑑𝑡
= 𝐹(𝑌, 0) becomes 

𝑑𝑆

𝑑𝑡
= 𝛬 − (𝜇 + 𝜀)𝑆 −

𝛽1𝑆𝐸 + 𝛽2𝑆𝐼

𝑁
+ 𝜏𝑅 

𝑑𝑉

𝑑𝑡
= 𝜀𝑆 − (1 − 𝜑)(

𝛽1𝑉𝐸+𝛽2𝑉𝐼

𝑁
) − 𝜇𝑉    

𝑑𝑅

𝑑𝑡
= 𝛾𝐻 +  𝜃𝐸 + (1 − 𝜌)𝜆𝐼 − (𝜇 + 𝜏)𝑅 

 

This equation has a unique equilibrium point 

 𝑋0 = (
𝛬

𝜇+𝜀
,

𝜀𝛬

𝜇(𝜇+𝜀)
, 0) 

Which is globally asymptotically stable. Therefore, the condition (𝐿1) is satisfied. 

For 𝐿2; 𝐺(𝑌, 𝑇) = (

(1 − 𝜑) (
𝛽1𝑉𝐸+𝛽2𝑉𝐼

𝑁
) +

𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁
− (𝜇 + 𝛼 + 𝜃)𝐸

𝛼𝐸 − (𝜇 + 𝛿1 + 𝜆)𝐼
𝜌𝜆𝐼 − (𝜇 + 𝛿2 + 𝛾)𝐻

) 
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𝐷𝑇𝐺(𝑌
∗, 0)

=

(

 

𝛽1𝜀𝛬(1 − 𝜑)

𝑁𝜇(𝜇 + 𝜀)
+

𝛬𝛽1
𝑁(𝜇 + 𝜀)

− (𝜇 + 𝛼 + 𝜃)

𝛼
0

  

𝛽2𝜀𝛬(1 − 𝜑)

𝑁𝜇(𝜇 + 𝜀)
+

𝛬𝛽2
𝑁(𝜇 + 𝜀)

−(𝜇 + 𝛿1 + 𝜆)
𝜌𝜆

 
0
0

−(𝜇 + 𝛿2 + 𝛾)
)

  

Clearly, 𝐵 = 𝐷𝑇𝐺(𝑌
∗, 0) is a M-matrix. On the other hand,  𝐺(𝑌, 𝑇) = 𝐵𝑇 − �̂�(𝑌, 𝑇) 

this implies  

 �̂�(𝑌, 𝑇) = 𝐵𝑇 − 𝐺(𝑌, 𝑇) = (
0
0
0
). 

Hence �̂�(𝑌, 𝑇) = (𝑌, 𝑇) ≥ 0 for all (𝑌, 𝑇) ∈ 𝛺. Therefore, conditions (𝐿1) 𝑎𝑛𝑑 (𝐿2) 
are satisfied. Thus the DFE is globally asymptotically stable. 

3.7 Endemic Equilibrium Point (EEP) 

The endemic equilibrium point of the model, (1) to (6), is obtained by making  
𝑑𝑆

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝐻

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 . Therefore, the Endemic Equilibrium Point (EEP) denoted by 

𝐸∗of the model in Equation (1) to (6) is given by: 

𝑋∗ = (𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐻∗, 𝑅∗) 
Where 

𝑆∗ =
𝑁∗𝛬𝛼(𝜇+𝜏)(𝜇+𝛿2+𝛾)−𝐾𝑁

∗𝐼∗

(𝜇+𝜏)(𝜇+𝛿2+𝛾)[𝛼𝑁
∗(𝜇+𝜀)+((𝜇+𝛿1+𝜆)𝛽1+𝛼𝛽2)𝐼

∗]
  ,        

𝑉∗ =
𝛼𝑁∗[𝜀𝑁∗𝛬𝛼(𝜇+𝜏)(𝜇+𝛿2+𝛾)−𝜀𝐾𝑁

∗𝐼∗ ]

(𝜇+𝜏)(𝜇+𝛿2+𝛾)[(1−𝜑)((𝜇+𝛿1+𝜆)𝛽1+𝛼𝛽2)𝐼
∗ +𝜇𝛼𝑁∗][𝛼𝑁∗(𝜇+𝜀)+((𝜇+𝛿1+𝜆)𝛽1+𝛼𝛽2)𝐼

∗ ]
 ,      

𝐸∗ =
(𝜇+𝛿1+𝜆)

𝛼
𝐼∗, 

𝐻∗ =
𝜌𝜆

𝜇+𝛿2+𝛾
𝐼∗ , 

𝑅∗ =
𝜌𝜆𝛾𝛼+(𝜇+𝛿2+𝛾)(𝜇+𝛿1+𝜆)𝜃+(𝜇+𝛿2+𝛾)(1−𝜌)𝜆𝛼

𝛼(𝜇+𝜏)(𝜇+𝛿2+𝛾)
𝐼∗   

And the equilibrium point 𝐼∗ is obtained by solving the second degree polynomial 

equation as follows. 

𝑓(𝐼∗) = 𝑏1(𝐼
∗)2 + 𝑏2𝐼

∗ + 𝑏3 = 0                          

Where   𝑁∗ = 𝑆∗ + 𝑉∗ + 𝐸∗ + 𝐼∗ +𝐻∗ + 𝑅∗ 
𝐾 = 𝜏𝜌𝜆𝛾𝛼 + (𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝛿1 + 𝜆)𝜃𝜏 + (𝜇 + 𝛿2 + 𝛾)(1 − 𝜌)𝜆𝛼𝜏  

𝑏1 = [(𝜇 + 𝜏)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝛼 + 𝜃)(𝜇 + 𝛿1 + 𝜆)((𝜇 + 𝛿1 + 𝜆)𝛽1 + 𝛼𝛽2) +

     𝐾((𝜇 + 𝛿1 + 𝜆)𝛽1 + 𝛼𝛽2)](1 − 𝜑)((𝜇 + 𝛿1 + 𝜆)𝛽1 + 𝛼𝛽2)    

𝑏2 = [𝜇 + (𝜇 + 𝜀)(1 − 𝜑)](𝜇 + 𝜏)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝛼 + 𝜃)(𝜇 + 𝛿1 + 𝜆)𝛼𝑁
∗((𝜇 +

𝛿1 + 𝜆)𝛽1 + 𝛼𝛽2) − ((𝜇 + 𝛿1 + 𝜆)𝛽1 + 𝛼𝛽2)[𝛬𝛼(𝜇 + 𝜏)(𝜇 + 𝛿2 + 𝛾)(1 − 𝜑)((𝜇 +

𝛿1 + 𝜆)𝛽1 + 𝛼𝛽2) − [𝜇 + 𝜀(1 − 𝜑)]𝛼𝑁
∗𝐾]   

𝑏3 = (𝜇 + 𝜏)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝛼 + 𝜃)(𝜇 + 𝛿1 + 𝜆)𝜇𝛼
2(𝑁∗)2(𝜇 + 𝜀)

− 𝛬𝛼2𝑁∗((𝜇 + 𝛿1 + 𝜆)𝛽1 + 𝛼𝛽2)[(1 − 𝜑)𝜀 + 𝜇](𝜇 + 𝜏)(𝜇 + 𝛿2 + 𝛾) 

When we divide both sides of  𝑏1(𝐼
∗)2 + 𝑏2𝐼

∗ + 𝑏3 = 0 by𝑏1 ≠ 0, we get 

 (𝐼∗)2 +
𝑏2

𝑏1
𝐼∗ +

𝑏3

𝑏1
= 0. This can be written in form of   

(𝐼∗)2 + 𝑍𝐼∗ + 𝑌 = 0                             (7)                                                    

Where   𝑍 =
𝑏2

𝑏1
 and   

𝑌 =
𝑏3

𝑏1
=

(𝜇+𝜏)(𝜇+𝛿2+𝛾)(𝜇+𝛼+𝜃)(𝜇+𝛿1+𝜆)(𝜇+𝜀)𝜇𝛼
2(𝑁∗)2(1−𝑅0)

(1−𝜑)((𝜇+𝛿1+𝜆)𝛽1+𝛼𝛽2)
2
[(𝜇+𝜏)(𝜇+𝛿2+𝛾)(𝜇+𝛼+𝜃)(𝜇+𝛿1+𝜆)+𝐾]

  

From the Equation (7) we have 𝐼∗ =
−𝑍±√𝑍2−4𝑌

2
. When 𝑅0 > 1 we have: 
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𝑌 < 0, ⇒
−𝑍+√𝑍2−4𝑌

2
> 0 and  

−𝑍−√𝑍2−4𝑌

2
< 0 

This shows that there is a unique endemic equilibrium point.  

When 𝑅0 < 1 we have 𝑌 > 0, 

i. if 𝑍2 ≥ 4𝑌, then 𝑍2 − 4𝑌 ≥ 0,  

⇒
−𝑍±√𝑍2−4𝑌

2
≤ 0 

ii. if 𝑍2 < 4𝑌, then 𝑍2 − 4𝑌 < 0, no real roots of (7). 

3.8 Locally Stability of endemic equilibrium point 

Theorem 3.4 The endemic equilibrium point 𝐸∗ of the dynamical system (1) - (6) is 

locally asymptotically stable if 𝑅0 > 1 and unstable if 𝑅0 < 1. 

Proof: The Jacobian matrix at the endemic equilibrium  𝑋∗ = (𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐻∗, 𝑅∗) is 

given by  

𝐽(𝑋*) =

[
 
 
 
 
 
𝐽11 0 𝐽13 𝐽14 0 𝜏
𝜀 𝐽22 𝐽23 𝐽24 0 0
𝐽31 𝐽32 𝐽33 𝐽34 0 0

0 0 𝛼 −(𝜇 + 𝛿1 + 𝜆) 0 0

0 0 0 𝜌𝜆 −(𝜇 + 𝛿2 + 𝛾) 0

0 0 𝜃 (1 − 𝜌)𝜆 𝛾 −(𝜇 + 𝜏)]
 
 
 
 
 

  

𝐽11 = −𝐽31 − 𝜇 − 𝜀, 𝐽13 = −
𝛽1𝑆

*

𝑁
, 𝐽14 = −

𝛽2𝑆
*

𝑁
, 𝐽22 = −(1 − 𝜑)𝐽31 − 𝜇, 𝐽32

= (1 − 𝜑)𝐽31, 

𝐽33 = −𝐽23 − 𝐽13 − (𝜇 + 𝛼 + 𝜃), 𝐽34 = −𝐽24 − 𝐽14, 𝐽23 = −(1 − 𝜑)
𝛽1𝑉

*

𝑁
, 𝐽24

= −(1 − 𝜑)
𝛽2𝑉

*

𝑁
 

𝑎𝑛𝑑𝐽31 =
𝛽1𝐸

* + 𝛽2𝐼
*

𝑁
 

The characteristic equation of this matrix is given by det(𝐽(𝑋∗) − 𝜉𝐼6) = 0 , where 𝐼6 is 

a square identity matrix of order 6 and 𝜉 is eigenvalues of the Jacobian matrix. Therefore, 

the characteristic equation is  

𝑎6𝜉
6 + 𝑎5𝜉

5 + 𝑎4𝜉
4 + 𝑎3𝜉

3 + 𝑎2𝜉
2 + 𝑎1𝜉 + 𝑎0 = 0

 

Where   

𝑎6 = 1 

𝑎5 = 3𝜇 + 𝛿1 + 𝜆 + 𝜏 + 𝛿2 + 𝛾 − 𝐽22 − 𝐽11 − 𝐽33 

𝑎4 = 𝐽11𝐽33 + 𝐽22𝐽33 + (𝜇 + 𝛿1 + 𝜆)(2𝜇 + 𝛿2 + 𝛾 + 𝜏 − 𝐽11 − 𝐽22 − 𝐽33)
− 𝐽13𝐽31 − 𝐽23𝐽32 

+(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏 − 𝐽11 − 𝐽22 − 𝐽33) − (𝜇 + 𝜏)(𝐽11 + 𝐽22 + 𝐽33) + 𝐽11𝐽22
− 𝛼𝐽34 

𝑎3 = 𝐽13𝐽31𝐽22 + 𝐽11𝐽23𝐽32 + 𝐽11𝐽22(𝜇 + 𝛿1 + 𝜆) + 𝐽11𝐽22(𝜇 + 𝛿2 + 𝛾)
+ 𝐽11𝐽33(𝜇 + 𝛿1 + 𝜆) 

+𝐽11𝐽33(𝜇 + 𝛿2 + 𝛾) + 𝐽22𝐽33(𝜇 + 𝛿1 + 𝜆) + 𝛼𝐽22𝐽33 + 𝐽22𝐽11(𝜇 + 𝜏)
+ 𝐽22𝐽33(𝜇 + 𝛿2 + 𝛾) 

+𝐽11𝐽33(𝜇 + 𝜏) + 𝛼𝐽11𝐽34 + 𝐽22𝐽33(𝜇 + 𝜏) + (𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) − 𝐽13𝐽32𝜀 
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−𝐽11𝐽22𝐽33 − 𝐽13𝐽31(𝜇 + 𝛿1 + 𝜆) − 𝐽14𝐽31𝛼 − 𝐽13𝐽31(𝜇 + 𝛿2 + 𝛾) − 𝐽23𝐽32(𝜇 + 𝛿1 + 𝜆) 
−𝐽11(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾) − 𝜃𝜏𝐽31 − 𝐽23𝐽32(𝜇 + 𝛿2 + 𝛾)

− 𝐽22(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾) 
−𝐽11(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝜏) − 𝐽23𝐽32(𝜇 + 𝜏) − 𝐽33(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)

− 𝐽34𝛼(𝜇 + 𝛿2 + 𝛾) 
−𝐽11(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) − 𝐽22(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝜏) − 𝐽32𝐽24𝛼

− 𝐽22(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
−𝐽33(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝜏) − 𝐽34𝛼(𝜇 + 𝜏) − 𝐽33(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) − 𝐽13𝐽31(𝜇 + 𝜏) 
 

𝑎2 = 𝐽13𝐽31𝐽22(𝜇 + 𝛿1 + 𝜆) − 𝐽13𝐽32𝜀(𝜇 + 𝛿1 + 𝜆) − 𝐽14𝜀𝛼𝐽32 + 𝐽14𝐽22𝐽31𝛼
− 𝐽11𝐽22𝐽33(𝜇 + 𝛿1 + 𝜆) 

−𝐽11𝐽22𝐽34𝛼 + 𝐽11𝐽23𝐽32(𝜇 + 𝛿1 + 𝜆) − 𝐽13𝜀𝐽32(𝜇 + 𝛿2 + 𝛾) + 𝐽13𝐽31𝐽22(𝜇 + 𝛿2 + 𝛾) 
−𝐽11𝐽22𝐽33(𝜇 + 𝛿2 + 𝛾) + 𝐽11𝐽23𝐽32(𝜇 + 𝛿2 + 𝛾) + 𝐽11𝐽22(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)

− 𝜏𝜀𝜃𝐽32 
+𝜏𝜃𝐽22𝐽31 − 𝜀𝐽13𝐽32(𝜇 + 𝜏) + 𝐽13𝐽31𝐽22(𝜇 + 𝜏) − 𝐽13𝐽31(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)

− 𝜏𝜀𝛼(1 − 𝜌)𝜆 
−𝐽14𝐽31𝛼(𝜇 + 𝛿2 + 𝛾) − 𝐽11𝐽22𝐽33(𝜇 + 𝜏) + 𝐽11𝐽23𝐽32(𝜇 + 𝜏)

+ 𝐽11𝐽33(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾) 
+𝐽11𝐽34𝛼(𝜇 + 𝛿2 + 𝛾) + 𝐽11𝐽22(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝜏) − 𝜏𝜃𝐽31(𝜇 + 𝛿1 + 𝜆)

+ 𝐽22𝐽34𝛼(𝜇 + 𝛿2 + 𝛾) 
+𝐽22𝐽33(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾) − 𝐽23𝐽32(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾) + 𝐽11𝐽32𝛼𝐽24

− 𝐽14𝐽31𝛼(𝜇 + 𝜏) 
+𝐽11𝐽22(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) + 𝐽11𝐽33(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝜏) + 𝐽11𝐽34𝛼(𝜇 + 𝜏)

− 𝜏𝜃𝐽31(𝜇 + 𝛿2 + 𝛾) 
−𝐽13𝐽31(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) + 𝐽11𝐽33(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) + 𝐽22𝐽33(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝜏) 
+𝐽22𝐽34𝛼(𝜇 + 𝜏) − 𝐽23𝐽32(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝜏) − 𝐽11(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
+𝐽22𝐽33(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) − 𝐽23𝐽32(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏)

− 𝐽22(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
−𝐽32𝐽24𝛼(𝜇 + 𝛿2 + 𝛾) − 𝐽33(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏)

− 𝐽34𝛼(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
−𝐽13𝐽31(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝜏) − 𝐽32𝐽24𝛼(𝜇 + 𝜏) 

 

𝑎1 = 𝐽11𝐽24𝐽32𝛼(𝜇 + 𝜏) − 𝐽24𝐽32𝛼(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏)
− 𝜀𝐽13𝐽32(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾) 

+𝐽13𝐽22𝐽31(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾) − 𝜀𝛼𝐽14𝐽32(𝜇 + 𝛿2 + 𝛾) + 𝛼𝐽14𝐽22𝐽31(𝜇 + 𝛿2 + 𝛾) 
−𝐽11𝐽22𝐽33(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾) − 𝐽11𝐽22𝐽34𝛼(𝜇 + 𝛿2 + 𝛾) − 𝜏𝜀𝛼(1 − 𝜌)𝜆𝐽32 
+𝐽11𝐽23𝐽32(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾) + 𝜏𝛼(1 − 𝜌)𝜆𝐽31𝐽22 − 𝜏𝜀𝜃𝐽32(𝜇 + 𝛿1 + 𝜆) 
+𝜏𝜃𝐽22𝐽31(𝜇 + 𝛿1 + 𝜆) − 𝜀𝐽13𝐽32(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝜏) + 𝐽13𝐽22𝐽31(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝜏) 
−𝜀𝛼𝐽14𝐽32(𝜇 + 𝜏) + 𝛼𝐽14𝐽22𝐽31(𝜇 + 𝜏) − 𝐽11𝐽22𝐽33(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝜏)

− 𝐽11𝐽22𝐽34𝛼(𝜇 + 𝜏) 
+𝐽11𝐽23𝐽32(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝜏) − 𝜏𝛾𝛼𝜌𝜆𝐽31 − 𝜏𝜀𝜃𝐽32(𝜇 + 𝛿2 + 𝛾)

+ 𝜏𝜃𝐽22𝐽31(𝜇 + 𝛿2 + 𝛾) 
−𝜀𝐽13𝐽32(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) + 𝐽13𝐽22𝐽31(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏)

− 𝐽11𝐽22𝐽33(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
+𝐽11𝐽23𝐽32(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) − 𝜏𝛼(1 − 𝜌)𝜆𝐽31(𝜇 + 𝛿2 + 𝛾)

+ 𝐽11𝐽22(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
−𝜏𝜃𝐽31(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾) + 𝛼𝐽11𝐽32𝐽24(𝜇 + 𝜏)

− 𝐽13𝐽31(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
−𝐽14𝐽31𝛼(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) + 𝐽11𝐽33(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏)

+ 𝐽11𝐽33𝛼(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
+𝐽22𝐽33(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) + 𝐽22𝐽34𝛼(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
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−𝐽23𝐽32(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
𝑎0 = 𝐽11𝐽32𝐽24𝛼(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) − 𝜏𝜀𝛼𝜌𝜆𝛾𝐽32 + 𝜏𝛼𝛾𝜌𝜆𝐽22𝐽31

− 𝜏𝜀𝛼(1 − 𝜌)𝜆𝐽32(𝜇 + 𝜏) 
+𝜏𝛼(1 − 𝜌)𝜆𝐽22𝐽31(𝜇 + 𝜏) − 𝜏𝜀𝜃𝐽32(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)

− 𝜀𝛼𝐽14𝐽32(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
−𝜀𝐽13𝐽31(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) + 𝐽13𝐽22𝐽31(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
+𝛼𝐽14𝐽22𝐽31(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) − 𝐽11𝐽22𝐽33(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
−𝐽11𝐽22𝐽34𝛼(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) + 𝐽11𝐽23𝐽32(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾)(𝜇 + 𝜏) 
+𝜏𝜃𝐽22𝐽31(𝜇 + 𝛿1 + 𝜆)(𝜇 + 𝛿2 + 𝛾) 
Following Routh-Hurwitz stability criteria for polynomial of degree six, the eigenvalues 

are all negative if 𝑎6 > 0, 𝑎5 > 0, 𝑎0 > 0, 𝑎4 −
𝑎3

𝑎5
> 0 ,

𝑎5𝑎4𝑎3−𝑎3
2−𝑎2𝑎5

2+𝑎1𝑎5

𝑎5𝑎4−𝑎3
> 0,  𝑎2 −

𝑎1

𝑎5
−
(𝑎5𝑎4𝑎1−𝑎3𝑎1−𝑎0𝑎5

2)(𝑎5𝑎4−𝑎3)

𝑎5
2𝑎4𝑎3−𝑎3

2𝑎5−𝑎2𝑎5
3+𝑎1𝑎5

2 > 0 and 

𝑎1 −
𝑎0𝑎5

2

𝑎5𝑎4 − 𝑎3

−
𝑚2𝑎0𝑎5

𝑝(𝑎5𝑎2 − 𝑎1)(𝑎5𝑎4 − 𝑎3) − (𝑎5𝑎4𝑎1 − 𝑎3𝑎1 − 𝑎0𝑎5
2)(𝑎5𝑎4 − 𝑎3)2

> 0 

Where 𝑚 = 𝑎5𝑎4𝑎3 − 𝑎3
2 − 𝑎2𝑎5

2 + 𝑎1𝑎5𝑎𝑛𝑑𝑝 = 𝑎5𝑎4𝑎3 − 𝑎3
2 − 𝑎2𝑎5 +

𝑎1𝑎5. 

𝑎6 = 1 > 0 is true and 𝑡𝑟(𝐽(𝑋*)) < 0 is also true therefore, the endemic 

equilibrium of the model is locally asymptotically stable if𝑑𝑒𝑡( 𝐽(𝑋*)) >

0or𝑎5 > 0, 𝑎0 > 0and the inequalities 𝑎4 −
𝑎3

𝑎5
> 0,

𝑎5𝑎4𝑎3−𝑎3
2−𝑎2𝑎5

2+𝑎1𝑎5

𝑎5𝑎4−𝑎3
> 0, 

𝑎2 −
𝑎1

𝑎5
−
(𝑎5𝑎4𝑎1−𝑎3𝑎1−𝑎0𝑎5

2)(𝑎5𝑎4−𝑎3)

𝑎5
2𝑎4𝑎3−𝑎3

2𝑎5−𝑎2𝑎5
3+𝑎1𝑎5

2 > 0and 

𝑎1 −
𝑎0𝑎5

2

𝑎5𝑎4−𝑎3
−

𝑚2𝑎0𝑎5

𝑝(𝑎5𝑎2−𝑎1)(𝑎5𝑎4−𝑎3)−(𝑎5𝑎4𝑎1−𝑎3𝑎1−𝑎0𝑎5
2)(𝑎5𝑎4−𝑎3)2

> 0are true. 

3.9 Global stability of endemic equilibrium point 

Theorem 3.5 If 𝑅0 > 1, the endemic equilibrium point of the model is globally 

asymptotically stable. 

Proof: To establish the global stability of the endemic equilibrium of the model, we 

construct the following by Lyapunov function.   

𝑉(𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐻∗, 𝑅∗)

= (𝑆 − 𝑆∗ − 𝑆∗ ln
𝑆

𝑆∗
) + (𝑉 − 𝑉∗ − 𝑉∗ ln

𝑉

𝑉∗
) + (𝐸 − 𝐸∗ − 𝐸∗ ln

𝐸

𝐸∗
)

+ (𝐼 − 𝐼∗ − 𝐼∗ ln
𝐼

𝐼∗
) + (𝐻 − 𝐻∗ −𝐻∗ ln

𝐻

𝐻∗
) + (𝑅 − 𝑅∗ − 𝑅∗ ln

𝑅

𝑅∗
) 

If we take the derivative of V we obtain,  
𝑑𝑉

𝑑𝑡
= (1 −

𝑆∗

𝑆
)
𝑑𝑆

𝑑𝑡
+ (1 −

𝑉∗

𝑉
)
𝑑𝑉

𝑑𝑡
+ (1 −

𝐸∗

𝐸
)
𝑑𝐸

𝑑𝑡
+ (1 −

𝐼∗

𝐼
)
𝑑𝐼

𝑑𝑡
+ (1 −

𝐻∗

𝐻
)
𝑑𝐻

𝑑𝑡

+ (1 −
𝑅∗

𝑅
)
𝑑𝑅

𝑑𝑡
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Where 

{
 
 
 
 

 
 
 
 

𝑑𝑆

𝑑𝑡
= 𝛬 − (𝜇 + 𝜀)𝑆 −

𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁
+ 𝜏𝑅                  

𝑑𝑉

𝑑𝑡
= 𝜀𝑆 − (1 − 𝜑)(

𝛽1𝑉𝐸+𝛽2𝑉𝐼

𝑁
) − 𝜇𝑉                 

𝑑𝐸

𝑑𝑡
= (1 − 𝜑)(

𝛽1𝑉𝐸+𝛽2𝑉𝐼

𝑁
) +

𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁
− (𝜇 + 𝛼 + 𝜃)𝐸  

𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝜇 + 𝛿1 + 𝜆)𝐼                          

𝑑𝐻

𝑑𝑡
= 𝜌𝜆𝐼 − (𝜇 + 𝛿2 + 𝛾)𝐻                         

𝑑𝑅

𝑑𝑡
= 𝛾𝐻 +  𝜃𝐸 + (1 − 𝜌)𝜆𝐼 − (𝜇 + 𝜏)𝑅             

          8 

 

Substituting each, we get 

𝑑𝑉

𝑑𝑡
= (1 −

𝑆∗

𝑆
) (𝛬 − (𝜇 + 𝜀)𝑆 −

𝛽1𝑆𝐸 + 𝛽2𝑆𝐼

𝑁
+ 𝜏𝑅)

+ (1 −
𝑉∗

𝑉
)(𝜀𝑆 − (1 − 𝜑)(

𝛽1𝑉𝐸 + 𝛽2𝑉𝐼

𝑁
) − 𝜇𝑉)

+ (1 −
𝐸∗

𝐸
)((1 − 𝜑)(

𝛽1𝑉𝐸 + 𝛽2𝑉𝐼

𝑁
) +

𝛽1𝑆𝐸 + 𝛽2𝑆𝐼

𝑁
− (𝜇 + 𝛼

+ 𝜃)𝐸) + (1 −
𝐼∗

𝐼
) [𝛼𝐸 − (𝜇 + 𝛿1 + 𝜆)𝐼]

+ (1 −
𝐻∗

𝐻
) [𝜌𝜆𝐼 − (𝜇 + 𝛿2 + 𝛾)𝐻  ]

+ (1 −
𝑅∗

𝑅
) [𝛾𝐻 +  𝜃𝐸 + (1 − 𝜌)𝜆𝐼 − (𝜇 + 𝜏)𝑅 ] 

Expanding equation (8) above, we obtain; 

𝑑𝑉

𝑑𝑡
= −(𝜇 + 𝜀)

(𝑆 − 𝑆∗)2

𝑆
−
𝛽1(𝐸 − 𝐸

∗)(𝑆 − 𝑆∗)2

𝑁𝑆
−
𝛽2(𝑆 − 𝑆

∗)2(𝐼 − 𝐼∗)

𝑁𝑆

− (1 − 𝜑)(
𝛽1(𝑉 − 𝑉

∗)2(𝐸 − 𝐸∗)

𝑁𝑉
) − (1 − 𝜑)

𝛽2(𝑉 − 𝑉
∗)2(𝐼 − 𝐼∗)

𝑁𝑉

− 𝜇
(𝑉 − 𝑉∗)2

𝑉
− (𝜇 + 𝛼 + 𝜃)

(𝐸 − 𝐸∗)2

𝐸
− (𝜇 + 𝛿1 + 𝜆)

(𝐼 − 𝐼∗)2

𝐼

− (𝜇 + 𝛿2 + 𝛾)
(𝐻 − 𝐻∗)2

𝐻
− (𝜇 + 𝜏)

(𝑅 − 𝑅∗)2

𝑅
+ (1 −

𝑆∗

𝑆
)𝛬

+ (1 −
𝑆∗

𝑆
) (𝑅 − 𝑅∗)𝜏 + 𝜀 (1 −

𝑉∗

𝑉
) (𝑆 − 𝑆∗)

+ (1 − 𝜑)(
𝛽1(𝑉 − 𝑉

∗)(𝐸 − 𝐸∗)2

𝑁𝐸
)

+ (1 − 𝜑)(1 −
𝐸∗

𝐸
)
𝛽2(𝑉 − 𝑉

∗)(𝐼 − 𝐼∗)

𝑁
+
𝛽1(𝑆 − 𝑆

∗)(𝐸 − 𝐸∗)2

𝑁𝐸

+ (1 −
𝐸∗

𝐸
)
𝛽2(𝑆 − 𝑆

∗)(𝐼 − 𝐼∗)

𝑁
+ 𝛼 (1 −

𝐼∗

𝐼
) (𝐸 − 𝐸∗)

+ 𝜌𝜆 (1 −
𝐻∗

𝐻
)(𝐼 − 𝐼∗) + 𝛾 (1 −

𝑅∗

𝑅
) (𝐻 −𝐻∗)

+  𝜃 (1 −
𝑅∗

𝑅
) (𝐸 − 𝐸∗) + (1 − 𝜌)𝜆 (1 −

𝑅∗

𝑅
) (𝐼 − 𝐼∗) 
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Collecting the positive and negative terms we obtain 
𝑑𝑉

𝑑𝑡
= 𝐶 −𝐷, where 

𝐶 = (1 −
𝑆∗

𝑆
) (𝛬 + (𝑅 − 𝑅∗)𝜏) + 𝜀 (1 −

𝑉∗

𝑉
) (𝑆 − 𝑆∗) +

(𝐸−𝐸∗)2

𝐸
[
(1−𝜑)𝛽1(𝑉−𝑉

∗)

𝑁
+

𝛽1(𝑆−𝑆
∗)

𝑁
] + (1 −

𝐸∗

𝐸
) (𝐼 − 𝐼∗) [

(1−𝜑)𝛽2(𝑉−𝑉
∗)

𝑁
+
𝛽2(𝑆−𝑆

∗)

𝑁
] + 𝛼 (1 −

𝐼∗

𝐼
) (𝐸 − 𝐸∗) +

𝜌𝜆 (1 −
𝐻∗

𝐻
) (𝐼 − 𝐼∗) + 𝛾 (1 −

𝑅∗

𝑅
) (𝐻 − 𝐻∗) +  𝜃 (1 −

𝑅∗

𝑅
) (𝐸 − 𝐸∗) + (1 − 𝜌)𝜆 (1 −

𝑅∗

𝑅
) (𝐼 − 𝐼∗)  

and  

𝐷 =
(𝑆−𝑆∗)

2

𝑆
[(𝜇 + 𝜀) +

𝛽1(𝐸−𝐸
∗
)

𝑁
+
𝛽2(𝐼−𝐼

∗
)

𝑁
] +

(𝑉−𝑉∗)
2

𝑉
[(1 − 𝜑)(

𝛽1(𝐸−𝐸
∗
)

𝑁
) +

(1 − 𝜑)
𝛽2(𝐼−𝐼

∗
)

𝑁
+ 𝜇] + (𝜇 + 𝛼 + 𝜃)

(𝐸−𝐸∗)2

𝐸
+ (𝜇 + 𝛿1 + 𝜆)

(𝐼−𝐼∗)2

𝐼
+ (𝜇 + 𝛿2 +

𝛾)
(𝐻−𝐻∗)2

𝐻
+ (𝜇 + 𝜏)

(𝑅−𝑅∗)2

𝑅
  

If 𝐶 < 𝐷,then 
𝑑𝑉

𝑑𝑡
 will be negative and If 𝐶 > 𝐷, then 

𝑑𝑉

𝑑𝑡
 will be positive. 

𝑑𝑉

𝑑𝑡
= 0; if 

and only if 𝑆 = 𝑆∗, 𝑉 = 𝑉∗, 𝐸 = 𝐸∗,𝐼 = 𝐼∗, 𝐻 = 𝐻∗ and 𝑅 = 𝑅∗. Thus, the maximum 

compact invariant set is {(𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐻∗, 𝑅∗) ∈ 𝛺:
𝑑𝑉

𝑑𝑡
= 0} which is the set {𝑋∗}, 

hence the endemic equilibrium, by LaSalle’s Invariant principles; it implies that 𝑋∗ is 

globally asymptotically stable (GAS) in 𝛺 if 𝐶 < 𝐷. 

3.10  Sensitivity Analysis 

In determining how best to reduce human mortality and morbidity due to covid-19, it is 

necessary to know the relative importance of the different factors responsible for its 

transmission. Sensitivity analysis is commonly used to determine the robustness of model 

predictions to parameter values, that is, to help us know the parameters that have a high 

impact on the reproduction number 𝑅0. For sensitivity analysis we use the normalized 

sensitivity index [9]. The normalized forward sensitivity indices of 𝑅0  that depends 

differentiable on a parameter m, is defined by 𝐻𝑚
𝑅0 =

𝑚

𝑅0

𝜕𝑅0

𝜕𝑚
,we take  𝑚 =

𝛽1, 𝛽2, 𝛬, 𝜀, 𝛼, 𝜃, 𝜆, 𝛿1 𝑎𝑛𝑑 𝜇. The parameter values displayed in a table 2 below are used 

to evaluate the sensitivity indices of some parameters which are responsible for the 

transmission dynamics of COVID-19 infectious disease, the result of which is presented 

in table 1 below.  

Table 1. Sensitivity indices of the basic reproduction number to model parameters. 

Parameter Symbol Sensitivity Index  

𝜇 −1.8301 

𝛬 1 

𝛽1 0.8804 

𝛽2 0.4891 

𝛼 −0.1304 

𝜆 −0.0319 

𝜃 −0.0141 

𝛿1 −0.0013 

𝜀 −0.0007  

 

The sensitivity index in Table 1 has a sensitivity index of 𝑅0 that has positive and negative 
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values, and each parameter value has a varying effect on 𝑅0. A positive value indicates that 

if the parameter value is increased while the other parameters remain constant, the basic 

reproduction number will increase, and if the parameter value is decreased while the other 

parameters remain constant, the basic reproduction number will decrease. On the other 

hand, a negative value indicates that increasing the parameter value while keeping other 

parameters constant will result in a decrease in the basic reproduction number, while 

decreasing the parameter value while keeping other parameters constant will result in an 

increase in the basic reproduction number. According to sensitivity analysis, the new birth 

rate in the susceptible human population, the transmission coefficient from susceptible to 

infected persons with symptoms and carriers of the virus, and the natural death rate are the 

most sensitive parameters to changes in the value of 𝑅0. 

4. Numerical Simulation 

In this section, we perform numerical simulations of the model (1)- (6) are carried out 

using the 𝑀𝐴𝑇𝐿𝐴𝐵 software to illustrate the results in section 3. From the SVEIHR 

Mathematical model with a system of six –variable differential equations (𝑆, 𝑉, 𝐸, 𝐼, 𝐻, 𝑅) 

with parameters that affect the system. The parameters values adopted from Table 2 and 

the initial population levels were assumed as follows:𝑆(0) = 200, 𝑉(0) = 115 , 𝐸(0) =

65, 𝐼(0) = 80,𝐻(0) = 10 and 𝑅(0) = 30.  

Table 2. Definition and values of parameter for the SVEIHR model. 

Parameter Description Value  Ref. 

N Total population 500 Assumed  

Λ New birth rate in susceptible human population  100 Assumed  

𝛽1  The transmission coefficient from susceptible 

individuals to asymptomatic infected case 

0.045 Assumed  

𝛽2  The transmission coefficient from susceptible 

individuals to infected individual with symptoms and 

carriers of the virus 

0.025 Assumed  

𝛼  The rate of transmission of asymptomatic infected to 

infected individual with symptoms 

0.022 [3] 

𝜆  Progression rate from 𝐼 to either 𝐻or 𝑅 0.024 [3] 

𝛾  The transmission coefficient of the hospitalized cases 

to the recovered class 

0.015 [3] 

𝜃  The rate of transmission of asymptomatic infected 

case to the recovered case due the strong immunity  

0.001 [3] 

𝛿1  The death rate of the infected individuals 0.001 [3] 

𝛿2  The death rate of the hospitalized cases 0.004 [3] 

𝜇  The natural death rate  0.065 [3] 

𝜏  The rate of  recovered individual become  

susceptible again 

0.15 [14] 
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𝜀  The vaccination rate from susceptible to vaccinated 0.035 Assumed  

𝜑  The vaccination efficacy 0.95 [12] 

𝜌  Proportion of Hospitalized individuals  0.7 Assumed 

 

Figure 2. Graphs of Transmision of covid-19 with vaccination. 

   From the figure 2, we observe that with time the susceptible and vaccinated population 

increases, exposed will constant, infected decreases and both hospitalized and recovery 

population become almost zero.  

 

Figure 3. Effect of 𝜺 on Susceptible individuals. 

Figure 3, showing the effects of the rate of vaccination on the susceptible population, we 

see that as the rate of vaccination increases, the susceptible population also increases. 
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Figure 4. Effect of 𝜺 on Vaccinated individuals. 

Figure 4, showing the effect of rates on the vaccinated population, we see that as the rate 

of vaccination increases, the vaccinated population also increases as expected. Because the 

susceptible population are aware of vaccination of covid-19 and they enter in to vaccinated 

population and it reduces the spread of the diseases. 

 

Figure 5. Effect of 𝜷𝟏 on Susceptible individuals. 

Figure 5, it shows the effect of asymptomatic infection rate on the susceptible population. 

We see that as the rate of asymptomatically infected decreases, the susceptible population 

also increases and vice versa. 
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Figure 6. Effect of 𝜷𝟏 on Infected people with symptoms. 

Figure 6, it shows the effect of asymptomatically infected rate on the infected population. 

We see that as the rate of asymptomatically infected population increases, the infected 

population increases as assumed. 

4.1 Impacts of some key parameters on disease control 

Consider that our control parameter is  𝜷𝟏 . The basic control parameter that can 

decrease the spread of the disease is 𝛽1, is the transmission coefficient from susceptible 

people to asymptomatic infected cases. The other parameters are all fixed. The graphical 

representation of the control parameter  𝛽1  versus the basic reproduction number 𝑅0 is 

given below. 

 

Figure 7. The basic reproduction number 𝑹𝟎 versus control parameter 𝜷𝟏graph. 

Figure 7 shows that when  𝛽1 is less than 0.04, the basic reproduction number 𝑅0 is less 

than unity, and when 𝛽1 is greater than 0.04,  𝑅0 is greater than unity.  Therefore, the 

value of the control parameter 𝛽1 must decrease(less than 0.04) in order to stop the spread 

of COVID-19. 

Consider that our control parameter is 𝜺. The basic control parameter that can decrease 
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the spread of the disease is 𝜀, is the vaccination rate from susceptible to vaccinated class, 

and the remaining parameters are constant. The graphical representation of the control 

parameter  𝜀 versuse the basic reproduction number 𝑅0 is given below 

 

Figure 8. The basic reproduction number 𝑹𝟎 versus control parameter 𝜺 graph. 

Fig-8 shows that when  𝜀 greater than 0.06, the basic reproduction number 𝑅0 is less 

than unity, and when 𝜀 less than 0.06, 𝑅0  is greater than unity. Therefore, the control 

parameter 𝜀  value must increase (greater than 0.06) in order to stop the propagation of 

COVID-19. 

 

Consider that our control parameter is 𝜽. The basic control parameter that can decrease 

the spread of the disease is 𝜃, is the rate of transmission of asymptomatic infected case to 

the recovered case due the strong immunity and the remaining parameters are constant.  

The graphical representation of the control parameter  𝜃 versus the basic reproduction 

number 𝑅0 is given below. 

 

Figure 9. The basic reproduction number 𝑅0 versus control parameter 𝜃 graph. 

Fig-9 shows that when 𝜃 is greater than 1.8, the basic reproduction number 𝑅0 is less 



M. D. Firdawoke & M. A. Mohammed /𝐼𝐽𝑀2𝐶, 13 -02 (2023) 01-19.                19 
 

 

than unity, and when 𝜃 is less than 1.8, 𝑅0 is greater than unity.Therefore, the value of 

the control parameter 𝜃 needs to be increased (greater than 1.8) in order to stop the spread 

of COVID-19.  

5. Conclusions  

In this study, the dynamics of COVID-19 are presented and explored using a deterministic 

model. The disease-free and endemic equilibrium stability was determined. The basic 

reproduction number (𝑅0) was determined using the next-generation matrix technique. 

According to the model, the disease free equilibrium is unstable when 𝑅0 greater than 

unity, implying that the disease will persist. As the transmission coefficient increases from 

susceptible persons to asymptomatic infected people, infected people with symptoms, and 

carriers of the virus, the basic reproduction number increases. As a result, COVID-19 

transmission will increase. The transmission coefficient from susceptible to infected 

people with symptoms and carriers of the virus was found to be the most sensitive 

parameter affecting COVID-19 transmission in a sensitivity analysis. Furthermore, the 

numerical simulation results show that increasing the vaccination rate decreases the basic 

reproduction number, implying that COVID-19 spread was decreased. 
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