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Abstract. Given any graph G, its square graph G2 has the same vertex set V(G), with
two vertices adjacent in G? whenever they are at distance 1 or 2 in G. A set S C V(G) is
a 2-distance independent set of a graph G if the distance between every two vertices of S
is greater than 2. The 2-distance independence number a2(G) of G is the maximum cardi-
nality over all 2-distance independent sets in G. In this paper, we establish the 2-distance
independence number and 2-distance chromatic number for C30C¢0C,,, C,OP30P; and
C40C-0C), where m =0 (mod 3) and n,m > 3.
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1. Introduction

Let G = (V,FE) be a finite and simple graph. For any graph G, we denote the
vertex-set and the edge-set of G by V(G) and E(G), respectively. A proper vertex
k-coloring of a graph G is a mapping ¢ : V(G) — {1,...,k}, with the property
that c(u) # c(v) whenever wv € E(G). The smallest k for which there exists
a k-coloring of G, called the chromatic number of G, is denoted by x(G), see
[1, 7] for more details. The square of a graph G, denoted by G2, is a graph with
V(G) = V(G?), in which two vertices are adjacent if their distance in G is at
most two. A 2-distance coloring of G is a vertex coloring of G such that any two
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distinct vertices at distance less than or equal to 2 are assigned different colors.
The 2-distance chromatic number of a graph G is the minimum number of colors
necessary to have a 2-distance coloring of G, which is denoted by x2(G). Hence
x2(G) is equal to x(G?). The 2-distance coloring of graphs was introduced by
Wegner in [16]. The problem of determining the chromatic number of the square
of particular graphs has attracted a lot of attention, with a particular focus on
the square of planar graphs (see, e.g., [4, 5, 8, 10, 15]). The Cartesian product
of graphs G1,Ga,...,G is the graph G1OG.0---0OGE = szlGi with vertex
set {(z1,29,...,2)|x; € V(Gi)} and for which two vertices (x1,xo,...,xx) and
(y1,Y2,...,yr) are adjacent whenever z;y; € E(G;) for exactly one index 1 < i < k
and x; = y; for each index1 < j < k that i # j. The subgraph of GLIH induced by
{u} x V(H) is isomorphic to H. It is called an H-fiber and is denoted by H". A set
S C V(G) is a k-distance independent set of a graph G if the distance between every
two vertices of S is greater than k. The k-distance independence number a(G) of G
is the maximum cardinality over all k-distance independent sets in G. For k = 1, we
use ai(G) as a(G). There are many results for the chromatic number of the square
of the Cartesian product of tree, paths, and cycles (see, e.g., [2, 3, 6, 9, 11, 13]). Shao
\V(G)H
a(G?)
for G = C,,0C,0C) where k > 3 and (m,n) € {(3,3),(3,4),(3,5), (4,4)} or k, m,
and n are all multiples of seven. Moreover, it is shown that the 2-distance chromatic
number of the three-dimensional square lattice is equal to seven and proved the
following theorems.

et al. [12] established that the 2-distance chromatic number of G equals |

Theorem 1.1 [12] If j, k,l > 1, then
as(C7;0C7,0C7;) = 495kl.
Theorem 1.2 [12] If j, k,l > 1, then
x2(C7;0C70C7) = 1.

In this paper, as an extension of Theorems 1.1 and 1.2, we establish the 2-
distance independence number and 2-distance chromatic number for C3Cg1C,,,
C,0P;0P; and C40C70C,, where m = 0 (mod 3) and n,m > 3.

2. Main results

The aim of this section is to find lower and upper bounds and exact val-
ues for the spcial cases 2-distance chromatic number of the families G =
{Cs0C:0C,,, C,O0P0OP;, C40C;0C, where m = 0 (mod 3) and n,m > 3.} The
following two lemmas are essential for proving the main theorems.

Let G be a graph and f be a proper 2-coloring of GG. Since every color class under
f is a 2-independent set, we have the following lemma,

!V(G)H
a(G?)

Lemma 2.1 If G is a graph, then x2(G) > [

Let H be a graph, m > 3 and f denote a proper t-coloring of (C,,[JH)2.
We denote by f;p,0 < ¢ < m —pand 1 < p < m, the restriction of f to
V(H?Y),...,V(H"P=1), The following lemma is a natural generalization of [11,
Lemma 1].
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Lemma 2.2 Let m,n,p > 3,5 > 1 and let f be a proper t-coloring of (Cp, (OH)?.
If fo, is a proper t-coloring of (C,00H)?, then

X((Cm+(s—1)pDH)2> <t

Proof Let f': V(Cpy(s—1)p00H) — {1,2,...,k} be a function and f; the restric-
tion of f’ to V(H?). We define the function f’ by

fz/:{fz Z:<m7

f(z—m) modp Zm.

Consider first the vertex (j,m). In this case vertex (j,m) is adjacent to
{j = 1l,m —1);l € {0,1,—-1}} and (j,m — 2) in the subgraph induced by
V(HY),..,V(H™ 1), as illustrated in Figure 1. By definition f/ we have
f'(j,m) = £(j,0). Since f is a proper t-coloring of (C,,[JH)? and (j,0)
is adjacent to {(j — I,m — 1);l € 0,1,—1} and (j,m — 2) in (C,OH)?
this case is settled. Similarly for any two adjacent vertices (x,y) and
(& y') € {Gm + 1), Gom+ sp), Gy m + sp+ 1), 5 > 1} of V(Coys o1y DH)?, we
have f'(x,y) # f'(«',y') and can be proved analogously. Therefore the proof is
completed.

G+1,m—-1)
o o .

(3, m —1)
(4,0) @G,m—=2) @G,m)

e o .. e O e -+ .+ e

(F—1,m—1)

Figure 1.  vertex-set of (Cm+(571)p|:|H)2 for s > 1.

Before presenting our main results we need to obtain the 2-distance independent
number of families G. We first mention two lemmas that need for proof of next
lemmas. Let H be a graph. If I is a d-distance independent set of Cx[1H, then, for
i=0,....,k—1, weset I' := I NV (H?), that is, I is the subset of I induced by
the vertices of H.

Lemma 2.3 [12] Let H be a graph, k,p > 3 and s > 1. If I is a d-distance
independent set of Ct,OH and I°UI'U---UIP~L is a d-distance independent set of
CpOH such that |14 |1+ --+[I1P~1] = 1, then aq(Cry (s—1)py0H) = [I|+(s—1)L.
Lemma 2.4 [12] Let H be a graph, k > 3,k > q> 1 andd > 1. Then ay(CxOH) <
kog(P,0H)

. )
Lemma 2.5 If k is an integer, then as(C30Cs[1Cs;,) = 6k.
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Proof By computer calculations, we have ao(C30Cs0C3) = 6 and
a(C30CsOP;) = 6. Thus by Lemma 2.4 and since ax(C300CsP3) = 6 , we
have,

3ka2(03DC'6DP3)
3

OZQ(CgDCGDCgk) < = 6k.

To prove the lower bound, it is enough to find a 2-independent set with cardinality
6k for graph (C30Cs0Csg).
We define S as follows,

S = {(i (mod 6),i (mod 3),1), (i + 3 (mod 6),i (mod 3),1), i=0,1,...,3k—1}.

It is obvious that the cardinality of set S is 6k. We show that S is a 2-distance
independent set of (C30Cs0Csy). Let A = (21, z2, x3) and B = (2, 2, z%) be two
arbitrary vertices in S. We show that the distance between them is greater than 2.
Then we consider the following cases.

Case 1: If x3 = 2§, then by the definition of Cartesian product, |[A — B| = |z; —
x| + |xe — x4| = 3. Thus the distance between A and B is greater than 2.

Case 2: If z3 — 2% = 1, then there are 2 cases for A and B vertices.

(1) If both A and B are (i (mod 6),i (mod 3),1), or (i + 3 (mod 6),i (mod 3),1)
then |[A — B| = |z1 — 2| + |x2 — xh| + 1 > 3.

(2) If Ais (i (mod 6),i (mod 3),i), and B is (i + 3 (mod 6),7 (mod 3),i) then
|A—B|=|z; — x|+ |zg — 25| +1 > 6.

Case 3: If x3 — 2% = 2, it is clear that the distance between A and B is equal or
greater than 3. This implies that ag(C30CsCs,) > 6k and the proof is completed.
|

Lemma 2.6 Oéz(CgDC@k) =3k and Oég(CgDP@k) = 3k.
Proof Since ay(C30Ps) = 3, then
042(03E|P6k) < Ozg(CgDPG) x k = 3k.
To reach the lower bounds, we define the set S as follows,
S ={(64,0),(1,2+61),(2,4+6i)]i =0,1,--- ,k—1}.
By definition of the Cartesian product, if (g,h) and (¢',h’) are vertices of S,
deon((g,h), (¢, 1)) = da(g,9") + du(h,h’) > 3, hence S is a 2-distance inde-
pendent set of (C30Pgy) with cardinality 3k. Therefore ao(C30Pgy) > 3k and this
completes the proof of the first statement. To prove the second part, by Lemma
2.4 we have,
a2(03DC6k) < (XQ(CgDP(gk) S kOéQ(CgDPG) = 3k.

Also, since as(C30Cs) = 3, Lemma 2.3 implies

Ozg(CgDCGk) =3+ (S — 1) X 3 = 3s.

Lemma 2.7 Let G = C,OPs0P;s and k = 3t, then as(G) = bt.
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Proof We obtain,
ag(PsOP30Ps) = 5, ap(C3OPs0Ps) = 5, an(CsdPsOP;) = 10, aa(CodPs0OP;) = 15
by a computer search. Since k = 3¢, then Lemma 2.4 implies

ag(C30P0Ps) < an(Ps:OP0Ps) < tag(P3OP3OP;) = bt.

In order to prove the lower bound when k& = 3¢, from Lemma 2.3 and since
as(C30OP30P;) = 5, depicted in Fig. 2 we have,

ag(CgtD.PgDPg) =5+ (t — 1)5 = bt.

This assertion completes the proof. |

Figure 2. 5 vertices of 2-distance independent set of (C50Ps[0P3)

Lemma 2.8 If G = C,0C:0C,, n = 4k then as(G) = 14k

Proof Using a computer program, we have oo (Cy0C7) = 4, aa(C4,O0C;0OPy) = 14,
az(C40C70OCy) = 14. Since n = 4k, then by Lemma 2.4 we have

CYQ(C4DC7|:|C4k) S Ozg(C4DC7|:|P4k) § kag(C4|:|C7E|P4) = 14k.

To reach the lower bounds, we found fourteen vertices of 2-distance independent
set of (C4OC70OCy) depicted in Fig. 3. Therefore, by Lemma 2.3 we have,

Figure 3. 14 wvertices of a 2 — distance independent set of(C,0C;0C4)

az(C4C70C k) = a2 (C4OC7OC Y (1-1)a) 2 [I|+ (k—1)]i] = 14+ (k—1)14 = 14k,

which completes our proof. |

Given two integers x and y, let S(x,y) denote the set of all nonnegative integer
combinations of x and y defined as follows,
S(z,y) = {ax + By : o, B are nonnegative integers}.

Lemma 2.9 [14] Let x and y be relatively prime integers greater than 1, then
n e S(x,y) foralln > (x —1)(y —1).

Theorem 2.10 Ifk > 1, then

X(CgDCGDC;),k)Z =09.
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Proof Fig. 4 presents a proper 9-coloring of (C300Cs(0C3)%. By Lemmas 2.2 and
142365 736892 895143

251487 689751 473629
367514 914238 528976

Figure 4. A proper 9 — coloring of x2(Cs0CsC3).

2.9 we have,

X((C50C6)0Cs (k-1y3)” = x((C30Cs)0C3,)* < 9,

where k > 1. It is sufficient to show that y(C30Cs0C3;)? > 9. By Lemmas 2.1
and 2.5, we have,

X2(CgDC6D03k) > [V(CgDOﬁDCgk)/OQ(C3DCGD03]€)—| = [(3 X 6 X 3k)/6k—| =09.

|
Theorem 2.11 Ifk > 1, then x2(C,OPs0P3) > 6 if n = 3k and

7 n =3k,
X2(Cr,OPsOP;) < (8 n=3k+1,
9 n=3k+2.

Proof Let n = 3k, by Lemmas 2.1 and 2.7 we have,
x2(CsOP30P3) > [V(C3,OP30Ps) /a(C3,OP30Ps) | = [3k x 3 x 3,/5k] = 6.

For an upper bound, Fig. 5 presents a proper 7-coloring of (C300P3[0Ps3)2. By

123 345 561
456 217 732
371 563 145

Figure 5. A proper 7 — coloring of x2(CsOP;0P3).

Lemmas 2.2 and 2.9, we have x2(Cs;O0P30P3) < 7. Therefore,

6 < x2(C3,0P30P3) < 7.

A proper 8-coloring of (C40P;0P3)? is illustrated in Fig. 6 such that the leftmost
three blocks induce a proper 8-coloring of (C300P3P3)2. Thus, for n = 3k + 1, by
Lemmas 2.2 and 2.9, we get x2(Cs,10P30P;) < 8.

Figure 7 presents a proper 9-coloring of (C50P3[0P3)? and the leftmost three
blocks of Fig. 7 induce a proper 9-coloring of (C3P300P3)%. Hence, by Lemmas
2.2 and 2.9, we have

x2(Cpp20P30Ps) <9,
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123 341 568 875
456 287 732 614
871 563 145 328

Figure 6. A proper 8 — coloring of x2(C,O0P;0P3).
whenever n = 3k + 2. [ |
129 456 938 641 875

347 672 815 723 568
296 138 574 389 412

Figure 7. A proper 9 — coloring of x2(Cs0OPs0P3).

Theorem 2.12 If k > 1 then, x2(C40C70C,) = 8 if n = 4k and,

11 n=4k+1,k#1,
x2(C40C70C,) < {11 n =4k +2,
12 n =4k + 3.

Proof Let n =4k, by Lemma 2.1 and Lemma 2.8 we have,
XQ(C4DC7DCn) 2 [V(C4DC7DCR)/O¢2(C4DC7DCn)-| = [4 X 7 X 4]{/14]{—‘ =8

Fig. 8 presents a proper 8-coloring of (C400C700C4)?, by Lemmas 2.2 and 2.9 we
have x2(C40C70C,,) < 8, therefore,

XQ(C4DC7|:|Cn) =38.

Figure 9 presents a proper 11-coloring of (C400C7[0C9)? such that the leftmost

1234 6587 3412 8765
3412 8765 1234 6587
5678 2143 7856 4321
1234 6587 3412 8765
3412 8765 1234 6587
5678 2143 7856 4321
7856 4321 5678 2143

Figure 8. A proper 8 — coloring of x2(C,0C70CY).

four blocks induce a proper 11-coloring of (C40C70Cy)?. Thus, by Lemmas 2.2
and 2.9, we get for £ > 1,

x2(C40C70Cs 145) = x2(C40C70C 41) < 11.
A proper 11-coloring of (C400C700C6)? is illustrated in Fig. 10 such that the left-
most three blocks of Fig. 10 induce a proper 11-coloring of (C4C7C4)?. Thus,
for n = 4k + 2, by Lemmas 2.2 and 2.9, we get

x2(C40C70C,) < 11.
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110114 69810 3412 8765 1234 6587 9412 81165 3527
9412 8116512346587 3412876512104 10987 11736
56711 10193 7856 43215678 2143 7856 4321 21048
12104 6587 34128765 12346587 3492 11765 9813
34119 8765 12346587 34128765 1234 69810 11527
5978 11143 7856 43215678 2143 7856 43119 26101
7856 4321 5678 2143 7856 4321 5678 9243 101911

Figure 9. A proper 11 — coloring of x2(C,O0C;0Cy).

A proper 12-coloring of (C40C700C7)? is illustrated in Fig. 11 such that the left-

1234 6587 3412 8765 4321 5678
10412 8765 1234 658721910 9856
5910811143 7856 43219641131027
1234 1058734102876910513 6495
31112 8765 1231165872911498106
5678 2143 7856 9321 8765 1234
7856 4321 5678 2143 6587 3412

Figure 10. A proper 11 — coloring of x2(C,0C70Cs).

most four blocks of Fig. 11 induce a proper 12-coloring of (C400C7(0C4)2. Thus, for
n = 4k 4+ 3, by Lemmas 2.2 and 2.9 we have,

x2(C4s0C;0C,) < 12.

This assertion completes the proof. |

11034 6587 34128765 1234 11587 37912
9412 8795 12346587 3412 89105101168
56711 2143 7865432156710 2143 4359
11034 9510734128765 1234 95117 61028
311110 8795 1234 65873101287105 2946
9678 2143 7856 4321 5678 10143 75112
11896 4321 5678 2143 7856 43119 62105

Figure 11. A proper 12 — coloring of x2(C,0C;0C%).

The following theorem summarizes the above discussion.

Theorem 2.13 Let G = C,0C,0C; if k > 1 and (m,n,k) € S =
{(3,6,3t),(4,7,4t),t = 1} then,
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