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A Method for Solving Nonsmooth Pseudoconvex Optimization
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Abstract. In this paper, a two layer recurrent neural network(RNN) is shown for solving
nonsmooth pseudoconvex optimization . First it is proved that the equilibrium point of the
proposed neural network(NN) is equivalent to the optimal solution of the orginal optimization
problem. Then, it is proved that the state of the proposed neural network is stable in the sense
of Lyapunov, and convergent to an exact optimal solution of the original optimization. Finally
two examples are given to illustrate the effectiveness of the proposed neural network.
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1. Introduction

Non linear programming problems(NLPP) is applicable in scientific and engineer-
ing. RNN is used for solving optimization problem in past years. The first RNN
method for solving linear programming problems has been used by Tank and Hop-
field in [14], which is turning point for extension of neural networks . A novel
RNN for nonlinear convex programming presented by Xia and Wang [15] .While
most researchers like to study on convex problems, they concluded that nonconvex
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programming is more applicable than convex programming. Pseudoconvex pro-
gramming are more significiant than other nonconvex programming. Hu and Wang
[5] used (NN) to solve pseudo monotone problems. Solving a one-layer RNN pseu-
doconvex optimization has been proposed by Liu et al. [9] . A two-layer RNN for
solving nonsmooth convex optimization problems has been proposed by Qin and
Xue [13]. Qingfa Li and his coworkers [7], proposed neural network(NN) for solving
nonsmooth pseudo convex programming. Qin and his coworkers [12], used one-layer
RNN for solving nonsmooth pseudoconvex programming with linear constraints.
Guocheng Li et al. [8], proposed one-layer NN for solving nonconvex program-
ming, Their method based on penalty function. Xue and Bian [16], proposed a
RNN based on gradient method. Cheng et al. [3], proposed a (RNN) for solving
convex problems. Bian and his coworkers [1], proposed RNN for solving pseudo-
convex optimization problems with nonsmooth constraints.In this paper, it is used
a new (RRN) method for solving pseudoconvex optimization problems with gen-
eral constraints. Differential inclusion are used to solve nonsmooth pseudoconvex
programming subject to general constraints. Our method has two layer structure.
Compared with other exisiting neural network methods, The Rate of convergence
is fast in this proposed neural network, Because it is not used any penalty func-
tion in it’s structure. This method is applicable for vast various of pseudoconvex
optimization problems.

In this section,some definition and lemmas are considered,which is applicable in
this paper.

Definition 1.1 ([11]) Suppose a given point zo € R”, and f be Lipschitz near this
point and © is other vector in R™. Directional derivative of f at x¢ in the direction
O, denoted f(xo;0), is defined follows:

The clarke subdifferential of f at xzq is given by

Of(xg) ={£€R"” : f(zg;0) > (£,0), VO eR"}

Definition 1.2 ([11]) f is regular at = when for all © € R", the usual one-sided
fly+10) — f(y)
t

directional derivative f'(x;D) exist and f (z;0) = tli%l+ sup
%
So f'(%;9) = f(x;D).

Regular-function has a very well known property, which has been used in many
papers.

Lemma 1.3 ([13]). If D : R" — R s regular and z(t) : R — R" is continuous,
then, z(t) and D(z(t)) : R" — R are differentiable,which is defined as follows:

D(:z:(t)) =<, &(t)> Vo edD(z(t)) fora-e- tel0,+00).

2. RNN design

Definition 2.1 ([11]). Suppose X C R" is a nonempty convex set, for any distinct
points a,b € X, pseudoconvex function f: X — R on X is defined if

Juedf(x) : ul(b—a)=0= f(b) > fla).



M. Bala Seyed Ghasir et al./ IJM?C, 12 - 01 (2022) 15-25. 17

Consider the following nonlinear optimization problem:

min  f(x)
subject to  gi(x) <0 (1)
Ax =b

where z is the optimization variable, f is the objective function, g;(i = 1,2, ...,m)
are the inequality constraint functions.

Suppose that the objective function f : R™ — R and the constraint functions
g : R® — R are continuously differentiable at a point x*. If * is a local optimum
and the optimization problem satisfies some regularity conditions, then there ex-
ist constans k(i = 1,...,m) and A\;(j = 1,...,{) called K.K.T multipliers, primal
feasibility is defined as follows min f(z):

_Vf Z’izvgz +Z)\3V x_b
gi(z") <0, for i=1,2,..,m (2)
Ar—b=0
For writing Dual feasibility, we define k; > 0, for i =1,2,...,m.

With an extra multiplier ko > 0, which may be zero as long as (kg, k, A) # 0, in
front of 7 f(z*), the K.K.T stationary conditions turn in to

ko 7 f(z +ZHZV91 +Z>\Jv Az —b)

ki.gi(z*) =0,i=1,2,....m (3)

Which are called the fritz john conditions, This optimality conditions holds with-
out consraint qualifications and it is equivalent to the optimality condition K.K.T.
The K.K.T conditions belong to a wider class of the first-order necessary conditions
which allow for nonsmooth functions using. According to the K.K.T conditions, x*

is a solution of (1) if and only if there exist \* and x* such that (z*, \*, k*) satisfies
the following conditions:

(Vf(@)+vg(@)R) + ATA =k =0 (4)
Ar=1b

>0,k>02Tk=0 (5)
from (4), we have x = x — v f(z) — vg(z)k — ATX + k, That is
Ar = Az — Ay f(z) — Ay g(x)k — AATA + Ak = b.
Thus

ATA = AT(AAT) Az - b) — AT(AAT) AT f(2) + RV g(2) — k) =k (6)
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Substituting (6) in (4), we have:
(VF(@) + vg(@)i — k) + AT(AAT) " (Az = b) = 0 (7)

Let Q = AT(AAT)™1A and a = AT(AAT)~!, then the above equation can be
written as:

(I = Q)(vf(z) +vg(r)k — k) + a(Az —b) =0 (8)

In addition, by the projection theorem,(5) is equivalent to solving the following
equations:

(k.g(z) —2)" — K.g(x) =0 (9)

So, solving the problem (4) is equivalent to solving the following equations:

(I =Q)Vf(x)+EVg(x)+alAr—b) =0
{(ﬁ—x)+—/1+:0 (10)
Where (k)T = ([r1] 7, [k2] T, ..., [ka] )T, (k)T = max{k;,0}.
Based on (10), we proposed a new neural network for solving (5) as follows:
{U—vaﬂw+RVg@»+aMw—w=o m
A(t) = —k(t) + (k(t).g(x(1))

From above analysis, it is easy to see that if (z*,x*) is an equilibrium of system
(11), then x* is an optimal solution of (5). So, the proposed two-layer RNN for
solving nonsmooth optimization has the following structure:

{x‘(t) € —(I - Q)0f (x(t)) + dg(x(t)) k] — AT (Ax(t) — b) 12)
R(t) = —k(t) + R(t)

where #(t) = (k(t).(g(z(t))), I is the identity matrix, Q@ = AT x (AAT)7! x A,
Ag(z(1))" = (g1 (x(t))), g2 ((2)), ..., Bgy(x(t)))" and (£)T = max{t, 0}.

For any initial point x(0) = kg, z(0) = xo,t € [0,T). There exist at least a state
(z(2), Kl(t))T of neural network

R
g B —+Fr—Z) fi
- R() +
k)J—=_" {—F
B, - b - B .
]. 7 S0) +
e
r e

Figure 1. Block diagram of F by circuits [13].
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Figure 2. Block diagram of (12) for optimization problem (1) [13].

3. Convergency

In this section convergency of proposed RNN is analysed. it is shown that the
state of RNN is exponentially convergent and stability in the sense of Lyapunov is
discussed.

Assumption 1. Let f : R™ — R is regular and pseudoconvex and A € R™*"™ ig
full-rank and rank(A) = m < n.

Theorem 3.1 If Assumption 1 is being established, The proposed (RNN) to the
feasible region X = {x € R™ | Ax = b, g(x) < 0} is exponentially convergent.

Proof Since 0f(z), Og(x) are upper semicontinious with non empty convex com-
1
pact values, then for any initial point zo € R"™. Let R(z) = 5HA$ — b3

Obviously, R(z) is convex, differentiable, and VR(x) = AT (Az — b). According to
the chain rule and by (20), we have:

%R(x(t)) = VR - i) = (Az — b)T x Ai(t) (13)

%R(w(t)) = (Az = 0)" x A[~(I - Q)(0f(2) + dg(2)" x k) — AT (Ax(t) - b)),

then there exist u(t) € 9f(x(t)), q(t) € 0g(x(t)), where

%R(x(t)) < sup(Az = 0)TA[—(I - Q)(u(t) + ¢" &) — AT (Az - b)].
Since,
AT - Q)= A(I — AT(AAT)1A)=A—-A=0 (14)
= —(Az — b)TAAT (Az — b) < A (AAT)||Az — b||?
= _2>\m(AAT)R($(t))7

where \,,(AAT) is the maximum eigenvalue of AA”. It is obvious that
Am(AAT) > 0, since A is a full row-rank matrix. Then,

R(z(t)) < e (A R(z) (15)
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If xg € X, then R(z9) =0. So R(x(t)) =0 for t > 0. [ |

Theorem 3.2 If Assumption 1 is hold, then for any initial point xo € X, It is
proved that the state of the proposed (NN) is stable in the sense of Lyapunov, and
convergent to an exact optimal solution of the original optimization.

Proof Let (z*,x*)T be an equilibrium point of proposed neural network, that is,
there exist u* € 0f(z*), ¢* € dg(x*) and n* € (Az* — b) such that

0=—(I-Q)(u*+ ¢ &*) + AT . *
{/%(t) = —w* () + (k* - g(z®)) ", (16)
since (I — Q) = (I — Q)? and
(o(t) — ") @ = (a(#) — 2T - AT(ATA) A (1)
= (Az(t) — Az*)T - (AAT) 1A =0
Construct the following Lyapunov function:
Mz, k) =f(z) — F(a) + gl — 2] + gl - " (18)
(=) " 4 g
for almost all £ > 0. Chain rule is used:
4 (M(x(t). w(1)) (19)

= [u(t) + ¢"& —u* — ¢Tr* + x(t) — 2T (t) — (R — k)
[w(t) +¢"k —u* — ¢ K"+ a(t) — 2] [~ (I = Q)[ult) + ¢" &)
— AT (Az(t) = b)]
= —[I(T = Q)[u(t) + ¢"RIII” — (u* + ¢"T k") (I — Q)(u(t) + ¢" )
— (2(t) = ") — Q)u(t) + ¢" &)
= —[l#(@)[* = (x(t) — =) (ult) — w*) = (2(t) = 2*)(¢"F — ¢" £*) — (E — k)

— @2 ~ K@) - (@(t) - 2*)(u(t) - u*) - (£(t) — 2°) (g % — ¢"" k"),

Since {(x(t) — z*)(u(t) — u*) > 0; (z(t) — 2*)(¢"& — ¢ k) > 0}. Then we have:
%(M(ZL‘(ZS), k(t))) < 0. Since 0 < M (z(t), x(t)) < M (2(0),x(0)) < 400 for t > 0,

Otherwise, since M is bounded, then for any initial point (zq, ko)’ € R x RP, the

state (z(t), m(t))T of neural network (12) is bounded, which shows that (z(t), Ii(t))T
exsit for t € [0, 400).

Next, Convergency to an equilibrium point of neural network (12) is proved.
Suppose

R(z,r) = inf {[|(I = Q)(u(t) +¢"&)||* + %H% — K[} (20)
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It is obvious that R(x,x) = 0. If (z,k) is an equilibrium point of neural net-
work (20). Since (:L'(t),n(t))T is bounded, there exists a convergent subsequence
{(:c(tk),/i(tk))T | 0 <t <t2 < ...}, and t — 400, such that (.T(tk),/i(tk))T —
(z*,k*)T. It is clear that Az* = b.

Next, it is proved that R(z*, x*) = 0, It shows that (z*,x*)T is an equilibrium
point of neural network (12).

Because (z(t), n(t))T is bounded, there exsit L > 0 such that ||Z(¢)|| + ||&(¢)|| < L,

for all t > 0, suppose R(z*,x*) # 0, then
R(z*,k") > 0. (21)
Similarity to proof ([13])

(z,k) € B(z*,k%;0) ={(x,k) e R" xRP : ||z —z*||+ ||k — k*|| <&}, (22)

Since (z(tk), n(tk))T — (2%, k*)T. There exist D > 0, such that

* * 5
||z (tr) — ™| + ||s(tk) — K¥|] < vk > D.

57

) )
For t € [tk - E’tk + E] and k > D, then

l2(8) = ™[] + [[w(t) = &7 < [le(t) = 2(e)l] + [[z(ts) — 27]
+ () = wlt)ll + |l (te) — 7]

Thus

* 3 5
l2(t) — ™[] + [[6(t) = &7|| < LIt =t + 5 < 0. (23)

By (20), R(z(t),x(t)) > € for all t € [ty — i,tk + i] and £ > D, So

45 45
+oo
/R(m(t),m(t))dt > / R(z(t), k(t))dt
’ Vs [ ]
k>D tk*457tk+45
> / edt
Vs [ b ]
k=D |tk 4S7tk+45
)
=Y cre=+x. (24)
o 28

On the other hand, from (19) , there exists My such that lim M (z(t), s(t)) =

t——+o0
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My. So, by (12), we have

“+o00 s

/R(x(t),m(t))dt = SETOO/R(x(t),/{(t))dt (25)
0 0
<= lim M (x(t), K(t))dt
0

= —lim [M ((t), 5(t)) — M (2(0), (0))]
M (z(0), £(0)) — My < +o0.

Clearly, it contradicts with (24). Since R(z*,k*) = 0, then an equilibrium point
of neural network (12) is (z*, x*)T, and an optimal solution to the nonlinear pseu-
doconvex programming (1) is z* .

There exist u* € df(z*),q* € Og(x*) such that

0= (I - Q) +¢Tw")
0= —* + (s g(a™)* (26)
Az* =0

4. Applications and examples

Two examples are considerd the effectiveness of the proposed neural network.

Example 4.1 ([2]) Consider the following pseudoconvex programming

min (71 — o9 + 23)% + |23 + 23| + |12 — 1] +20(23 — 2)? + 721 7T~
s.t. Ax = b,
g1(w1, 22, 73) = —612 — 423 + x% +0.5elm1 42 < 0,
g2(z1, 29, 23) = 23 — 2 <0,

in which A = [1 3 0.2], b= [1] For solving this model with proposed method,
firstly @ and I — @) are calculated

0.0996 0.2988 0.0199
Q= AT x (AAT)™! x A = [0.2988 0.8964 0.0598 | ,
0.0199 0.0598 0.0040

0.9004 —0.2988 —0.0199
[eij]3x3 =1-0Q=1-0.2988 0.1036 —0.0598
—0.0199 —0.0598 0.9960

It can be seen in Figure 1 that equilibrium of this example is
(0,0.24934,1.2599, —3.6), so the optimal solution of this example is
(0,0.24934,1.2599), f(z*) = 15.4671.

In comparison with differential inclusion-based methods ([10]), it can be concluded
that our new proposed method has the following advantage: As it canbe found,



M. Bala Seyed Ghasir et al./ IJM?C, 12 - 01 (2022) 15-25. 23

X Scope

x1
x2

kapp

0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 3. Transient behavior of the states (x1(t), x2(t), x3(t), k(t)) of the proposed neural
network.

accuracy of the solution and convergence for the penalty method ([10]), depend on
selecting the suitable penalty value. In this example, for penalty value p = 5 state
trajectories converges to an equilibrium point which is not an optimal solution,
otherwise, for p = 15, state trajectories converges to an equilibrium point whith
good accuracy.The new proposed method doesnot need to choose any penalty
value for solving problem. In comparison with differential inclusion-based methods
([2, 10]), shows that our proposed method has more accuracy. It can be seen that
covergence of state trajectories to the optimal solution in our method is faster
than in the penalty-based method ([10]), Because our proposed method has better
performance in CPU run time with the there layer neural network ([2]), According
to table 2 in ([4]),CPU Run time in ([2]) is 5.4 and in ([10]) is 4.5, But in our
method CPU Run time is 1.84.

Example 4.2 Consider the following nonconvex programming

min (z1 + 22)% + cos(z2) + |23 — 23
s.it. (x1 —4)% + 22 < 100,
Ax = b,

in which A = [1 1 1], b= [1} For solving this model, Firstly @ and I — @) are
calculated

0.3333 0.3333 0.3333
Q= AT x (AAT)™! x A= [0.3333 0.3333 0.3333
0.3333 0.3333 0.3333

Y

0.6667 —0.3333 0.3333
[eij]3><3 =1-0Q=|-0.3333 0.6667 —0.3333
—0.3333 —0.3333 0.6667

It can be seen in Figure 2 that equilibrium of this example is
(—4.9,4.3,1.6,—1), so the optimal solution of this example is
(—4.9,4.3,1.6), f(z*) = 0.0232.
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Figure 4. Transient behavior of the states (x1(t), x2(t), x3(t), k(t)) of the proposed neural
network.

5. Conclusion

In this paper, a two layer recurrent neural network(RNN) is shown for solving non-
smooth pseudoconvex optimization . First it is proved that the equilibrium point
of the proposed neural network(NN) is equivalent to the optimal solution of the
orginal optimization problem. Then, it is proved that the state of the proposed
neural network is stable in the sense of Lyapunov, and convergent to an exact
optimal solution of the original optimization. Finally two examples are given to
illustrate the effectiveness of the proposed neural network.In this paper, it is used
a new (RRN) method for solving pseudoconvex optimization problems with gen-
eral constraints. Differential inclusion are used to solve nonsmooth pseudoconvex
programming subject to general constraints. Our method has two layer structure
Compared with other exisiting neural network methods, The Rate of convergence
is fast in this proposed neural network, Because it is not used any penalty func-
tion in it’s structure. This method is applicable for vast various of pseudoconvex
optimization problems.
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