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Abstract. Tensors as vector fields structures and manifolds as great geometrical-topological
structures have many applications in the fields of big data analysis. Types of norms, metrics,
and scalable structures have been defined from various aspects. Nowadays, the hybrid meth-
ods between tensorial algorithms and manifold learning (MaL) methods have been attracted
some attention. In image and signal processing, from image recovery to face recognition,
these methods have appeared very excellent. According to our experiments by MATLAB
R2021a, the hybrid algorithms are powerful other than algorithms based on the efficient
popular parameters.
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1. Introduction

Matrix and tensor completion methods have many applications in various fields
of big data analysis, prediction based on collected data, image processing, and
computer vision. Incomplete, distorted, and noisy data has always been a major
challenge in the field of big data analysis, especially image processing [5]. This prob-
lem appears in digital images as a variety of noise and image distortion. Matrix and
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tensor completion methods have the ability to compensate to a significant degree
(up to 90 percent distortion) [12]. On the other hand, manifold learning methods
based on a manifold theory with the ability to reduce the dimension and eliminate
noise and outliers data, significantly increase computational efficiency [4]. Today,
the use of hybrid methods has become very common. By combining these large
mathematical structures in geometry (manifolds) and algebra (tensors), advanced
and precise methods can be achieved that, while having high efficiency with signif-
icant detection and recovery rates, also have high computational efficiency [13].

In this paper, we introduce tensorial manifold learning methods and applications
to image processing and computer vision. our experiments show the high power,
efficiency, and computational cost of these hybrid methods in various fields from
image recovery to face recognition.

The rest of the paper is organized as follows: In section 2, some preliminaries and
basic concepts from tensor and manifold theory are proposed, the hybrid method
between tensor and manifolds are introduced in section 3, and finally, results and
conclusions are considered in section 4.

2. Basic concepts

In this section, we briefly state some preliminaries from tensor, tensor calculus,
tensor completion, and manifold theory.. For more details and information, please
refer to [5], and [12].

Definition 2.1 A tensor is a multidimensional array, The dimensionality of it is
described as its order. An Nth-order tensor is an N-way array, also known as N-
dimensional or N-mode tensor, denoted by X. We use the term order to refer to the
dimensionality of a tensor (e.g., Nth-order tensor), and the term mode to describe
operations on a specific dimension (e.g., mode-n product) [1]. We denote the set of
all n-dimensional tensors of order m by 7}, ,,. For a tensor A, if all of a;, . ;, are

invariant under any permutation of indices, then A is called a symmetric tensor.
We show the set of all real n-dimensional symmetric tensors of order m with S, .

Tensors are simply mathematical objects that can be used to describe physical
properties. In fact, tensors are merely a generalization of scalars, vectors, and
matrices; a scalar is a zero rank tensor, a vector is a first-rank tensor and a matrix
is the second rank tensor [12].

Definition 2.2 The inner product of two tensors X and Y of the same size is
defined as < X,Y >. Unless otherwise specified, we treat it as dot product defined
as follows [8]:

I I In
<X)Y >i= Z Z T Z Xi17i27"'77;Nyi17i27"'7iN (1)

Definition 2.3 Generalized from matrix Frobenius norm, the F-norm of a tensor
X is defined as [5]:

Il IQ IN
IX|lp=V<X,X>= > Y > X2, . (2)
11=114,=1 in=1

Definition 2.4 The well-known optimization problem for matrix completion as
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Figure 1. The representation of tensors as a generalization of other linear algebraic struc-
tures.

follows:
. 1 2
Minx : §\|X—MHQ
(s.t.) rank(X)<r,
where X, M € RP*Y, and the elements of M in the set 2 are geven while the

remaining are missing. We aim to use a low rank matrix X to approximate the
missing elements [2].
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Figure 2. The comparison scheme of matrix vs tensor completions.

Definition 2.5 The tensors is the generalization of the matrix concept. Given a
low-rank tensor 1" with missing entries, the goal of completing it can be formulated
as the following optimization problem [3]:

) 1
meziux—yu%

(s.t.) || X||<¢
Yo =Tqn

where X, Y, T are n-mode tensors with identical size in each mode.

Figure 2 shows the The comparision between matrix and tensor completion prob-
lems.

Definition 2.6 A manifold is a Hausdorff topological space which looks locally
like a Cartesian space, commonly a finite-dimensional Cartesian space R, a topo-
logical space in which case one speaks of a manifold of dimension n or n-fold, but
possibly an infinite-dimensional topological vector space, in which case one has an
infinite-dimensional manifold [6]. The topological manifold of M is called smooth
(differentiable) if M has continuous differentials. In fact, the topological manifold
CY is continuous and the topological manifold whose derivatives of any order are
continuous is called C°° or smooth.
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For example, A circle is a one-dimensional manifold embedded in two dimensions
where each arc of the circle is locally resembles a line segment, Let’s now move onto
2D-manifolds. The simplest one is a sphere. You can imagine each infinitesimal
patch of the sphere locally resembles a 2D-Euclidean plane. Similarly, any 2D-
surface (including a plane) that doesn’t self-intersect is also a 2D manifold [6].
Figure 3 shows some examples.

sphere

lorus
double torus

Cross surface :
/ Klein bottle

Figure 3. Non-intersecting closed surfaces in R? are examples of 2D-manifolds such as a
sphere, torus, double torus, cross surfaces and Klein bottle.

For these examples, you can imagine that each point on these manifolds locally
resembles a 2D-plane.

3. Main results

Real-world data, such as speech signals, digital photographs, or MRI scans, usually
have high dimensionality. In order to handle such real-world data adequately, its
dimensionality needs to be reduced. Dimensionality reduction is the transformation
of high-dimensional data into a meaningful representation of reduced dimensional-
ity [4].

Dimensionality reduction methods are widely used in the machine learning com-
munity for high-dimensional data analysis. Ideally, the reduced representation
should have a dimensionality that corresponds to the intrinsic dimensionality of
the data. The intrinsic dimensionality of data is the minimum number of param-
eters needed to account for the observed properties of the data [13]. As a result,
dimensionality reduction facilitates among others, classification, visualization, and
compression of high-dimensional data. Traditionally, dimensionality reduction was
performed using linear techniques such as Principal Components Analysis (PCA),
factor analysis, classical scaling, and t-SNE [4]. However, these linear techniques
cannot adequately handle complex nonlinear data. In fact, PCA is a statistical pro-
cedure that uses an orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of values of linearly uncorrelated variables
called principal components. Other methods (mentioned above) are generalized
versions of the PCA based on the case study. Thus, manifold Learning methods
have emerged. manifold learning is an approach to non-linear dimensionality re-
duction. Algorithms for this task are based on the idea that the dimensionality of
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many data sets is only artificially high, For more details, see Figure 4 [13].
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Figure 4. The comparision scheme of some manifold learning methods.

In less than 20 years, with the development of dimensional reduction methods,
manifold’s theory has been widely used in the field of artificial intelligence and
has led to the discovery of a new concept called manifold learning. This is a sub-
field of machine learning based on the hypothesis that data lies in the vicinity
of a low-dimensional manifold. We would like to learn the underlying manifold
from data. manifold learning is a subclass of non-linear dimensionality reduction
algorithms. These algorithms attempt to discover the low dimensional manifold
that the data points have been sampled from manifold learning methods are useful
for high dimensional data analysis [4]. Many of the existing methods produce a
low-dimensional representation that attempts to describe the intrinsic geometric
structure of the original data. Typically, this process is computationally expen-
sive and the produced embedding is limited to the training data. In many real-life
scenarios, the ability to produce embedding of unseen samples is essential. In this
space, the Euclidean distance indicates the affinity between the original data points
with respect to the manifold geometric structure [13].

The main idea is that the dimension of the data set or space is artificially high and
with appropriate geometric methods, a low-dimensional manifold can be achieved
that contains valuable and important information of the original data space ( Whit-
ney theorem). This embedded manifold is called the Whitney theorem. The main
goal of manifold learning methods is to reduce the dimension and increase com-
putational efficiency. The concept of a tensor is also presented in the form of a
tensor field, so the combination of tensor methods and manifold learning methods
in recent years is very much in the spotlight and promises the emergence of faster
and more efficient methods for processing all types of big data, especially high-
resolution images. The format of digital images and videos has been changed. In
the field of applications of manifold learning methods, we can mention handwriting
manifold learning through LLE or Isompe methods (in general, Isompe is one of the
most basic methods for manifold learning, which can be considered as MDS and
PCA expansion while maintaining geodesic distances between points). Application
in image processing in the stages of recovery and recognition in medical images
such as brain MRI, face recognition, and high ability to reconstruct human face
images is also one of the important applications [4]. Figure 5 shows the place of
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manifold learning methods between dimensionality reduction methods for big data
analysis.
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Figure 5. The place of manifold learning methods.

In our work, we implement 57 tensor completion methods on the image datasets
for some goals such as recovering, reconstruction, and face detection and recogni-
tion. After that, we hybrid these methods with 33 manifold learning methods for
dimensionality reduction and improving some important parameters like recovery
rate, recognition rate, and facial shape recovery ratio. our experiments show that
hybrid methods besides computational costs (time spent for processing and work-
load on processors) have more efficient accuracy. For example, In the facial shape
recovery, our hybrid method could completely extract 3D-facial shape with zero
error. Figure 6 shows the result of algorithm implementation [11].

o=
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Figure 6. The implementation of facial shape recovery by manifold tensorial methods. (a):
original photo, (b): tensor representation output and (c¢): manifold-tensorial representation
output.

In the image recovery, the hybrid method could boost the ability of recovery of
noisy images by missing rates from 70 to 95 percent, for more details, see Figure
7, for more information and details, please see [10].
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Figure 7. Image recovery: (a): Original image, (b): noisy image up to 90 percent (Type:
dissolved), (c): Reconstructed image (after image processing by tensorial manifold algo-

rithm.

In face detection and recognition, a hybrid between tensor completion and PCA
(as a manifold learning or dimensionality reduction method) could improve the
recognition rate from 70 to 91.27 percent and the error is about 107%, for more
details, see Figure 8, for more information, we refer the reader to [9].

3.1 Tips for practical use

There are the following considerations for applying manifold learning methods:

1)

2)

Make sure the same scale is used overall features. Because manifold learning
methods are based on a nearest-neighbor search, the algorithm may perform
poorly otherwise.

The reconstruction error computed by each routine can be used to choose
the optimal output dimension. For a d-dimensional manifold embedded in
a D-dimensional parameter space, the reconstruction error will decrease as
n-components is increased until n-components = d.

Note that noisy data can short-circuit the manifold, in essence acting
as a bridge between parts of the manifold that would otherwise be well-
separated. manifold learning on noisy and/or incomplete data is an active
area of research.

Certain input configurations can lead to singular weight matrices, for ex-
ample when more than two points in the dataset are identical, or when the
data is split into disjointed groups. The easiest way to address this is to use
a singular matrix, though it may be very slow depending on the number
of input points. Alternatively, one can attempt to understand the source
of the singularity: if it is due to disjoint sets, increasing n neighbors may
help. If it is due to identical points in the dataset, removing these points
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Figure 8. Face detection: (a): Original images, (b): Tensorized images, (c): Recognitioned
images (after image processing by tensorial manifold algorithm.

may help.

For defeating these problems, we use tensor and matrix completion methods.
The hybrid method is based on the tensor completion and manifold tools, and
more powerful and efficient than other methods.

4. Conclusions

In this paper, we have introduced new computational methods that lead to ad-
vanced hybrid algorithms for the registration, reconstruction, recovery, and recog-
nition of objects and human images (like faces). Practically, we implement 57 tensor
completion methods on the image datasets for some goals such as recovering, recon-
struction, and face detection and recognition. After that, we hybrid these methods
with 33 manifold learning methods for dimensionality reduction and improving
some important parameters like recovery rate, recognition rate, and facial shape
recovery ratio. According to studies conducted in our experiments, in addition to
computational savings due to reduced dimensions, these methods have high detec-
tion and recognition rates up to 99.9 percent and recovery rates up to 99 percent.
Hence, these methods have suitable computational costs and are more efficient
than other methods. The combination of conventional linear dimensional reduc-
tion methods such as PCA and LDA with tensors and the development of new
algorithms such as MPCA and MLDA is a testament to this claim. In any type of
problem, depending on the case study conditions such as type of images or data
(structured, semi-structured, or unstructured), by choosing the appropriate tensor
analysis method, multiplication and metric, the type of optimization method de-
pending on equal or unequal constraints of the problem, or convexity or concavity,
the best method, and algorithm for achieved a better result, should be selected.
Finally, the hybrid between tensors and manifolds methods result in efficient and
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hopeful methods for big data analysis, especially digital images.
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