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Abstract. In this paper we study the covid-19 disease with treatment and control to spread
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equations for age structured populations. The existence,positiveness,boundedness and sta-
bility of equilibria are studied as they depend on the prey’s natural carrying capacity. The
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utilised.Finally the result of this model prey predator where numerical examples using maple
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1. Introduction

Mathematical modelling is one way to explain many of the ideas and concepts in the
sciences discussed [14]. Predator-prey interaction and competition are often viewed
as the two main building blocks in mathematical population models [13]. Catering
to the necessities and comforts of human beings invariably robs the ecological
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structure of the nature [8]. Mathematical models have been used to explain the
dynamics of diseases use a similar underlying methodology based on theaged group
population. Cushing investigated many equations derived from the Mc Kendrick
model for age-structured populations [1].
Having pointed out the three prey populations with different age group as

i) First prey population age from infant to 14 years.
ii) Second prey population age from 15 to 39 years.
iii) Third prey population age from 40 and above.

In the first and second prey population the infection of disease will be less because
of the high level of immunity and take some remedial measures as mentioned below
in constant U . In the case of third prey population age group 40 and above, they
need adequate nutrient is another important way to help reduce the risk and impact
of virus infections, as well as to build a more resilient immune system. We consider
the constant τ as strengthining the immunity power either by natural medicine or
vaccination given by the government.
The model we consider in this paper is an improved model by the inclusion

of time dependent control parameters(social distance, facemask,hand wash, elbow
cough,self quarantine) and with the assumptions that the covid-19 individuals can
also transmit the disease recklessly [3]. Our main goal are: We investigate the model
under the assumption that the control measures are constants (social distance,
facemask, hand wash, elbow cough, self quarantine) avoid to infect and spread the
disease. We denote the constant τ as vaccination or natural medicine to boost the
immunity level of prey population those who are under aged persons like 40 and
above.
Based on the seminal work of Lotka and Volterra, different prey models are be-

ing developed, describing various physical interaction between prey and predator
species [12]. Here we are applying the control strategies for third prey and preda-
tor population and carrying capacities for all the three preys [4]. We analyse the
direction and stability of the Hopf-bifurcation arising the boundary equilibrium
point [10]. In this paper the system are obtained and criteria for local stability and
global stability of the system derived [2]. We present results from the exploration of
three preys interact with one predator model including vaccination and treatment
options like natural medicine under varying rates for incidence and disease related
death [3]. Finally, we present the results of numerical simulations for each model
under various parameter values.

2. Method for selection of parameter values

The model subdivides the total human population at time t, [9] denoted by N(t)
into the following sub-populations of three prey population N1(t), N2(t), N3(t) and
one predator population N4(t). We consider the 4D model system given below, ob-
tained by coupling the RM model with the Leslie-Gower model, which is schemat-
ically. Let us consider the following three prey one predator model given by

dN1

dt = aN1

(
1− N1

k1

)
− αN1N4

dN2

dt = bN2

(
1− N2

k2

)
− β N2N4

dN3

dt = cN3

(
1− N3

k3

)
− γ N3N4 − eN3 + Uτ N3

dx3

dt = η N1N4 + δ N2N4 + µN3N4 − fN4 − Uτ N4

(1)
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with initial densities

N1(0) > 0, N2(0) > 0, N3(0) > 0, N4(0) > 0. (2)

Here, N1(t),N2(t),N3(t) and N4(t) denote the first prey, second prey, third prey
and predator respectively and parameters are all positive.
Model parameters are described below:

a,b,c are the intrinsic growth rate of first, second, third prey respectively.
k1,k2,k3 are the carrying capacities of first, second, third prey respectively.
α,β,γ are the interaction of three preys (N1, N2, N3) respectively by the predator.
e is the natural death of third prey population.
U denotes the control measures given in the above Figure 1.
τ denotes the rise of immunity power either by vaccination or take natural
medicine.
η, δ,µ are the conversion coefficient of predator from three preys population.
f is the natural death of predator.

Figure 1. Control measure for Corona virus.

This model involves certain assumptions which consist of the followings:

(1) The first, second and third prey population the interaction take place by
the predator.

(2) First and second prey population is recovered after the interaction taken
place by the predator because of high immunity power from age group
infant to 39 years.

(3) Lesslie-Gower model applied in the three prey population with intrinsic
growth rate as a,b,c and carrying capacities as k1, k2, k3 and there is no
interaction among these three prey populations.

(4) Only the third prey population is affected by the virus because of the
less immunity power, attained natural death. Also we raise the immunity
power by introduce some constants Uτ as control measure U (Figure 1)
and vaccination or natural medicine as τ .

τ = pepper, turmeric, cuminseeds, ginger, cardamon

(5) In third prey population after we applied the control measure as Uτ then
the affected prey become recovered due to raise the immunity power.
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(6) Predator weakens in the first and second prey population but not in the
third prey.

(7) A Lotka-Volterra functional response is taken to represent the interaction
between prey and predator.

3. Positiveness and boundedness of theorem

In this section, we intend to establish the conditions to get positive as well as
bounded solutions of the system.

3.1 Positivity

Theorem 3.1 Every solution of system (1) with initial conditions (2) exists in
the interval [0,∞) and N1(t) > 0, N2(t) > 0, N3(t) > 0, N4(t) > 0, for all t ⩾ 0

Proof Since the right hand side of system (1) is completely continuous and
locally Lipschitzian on C, the conditions (2) exists and is unique on [0, ξ), where
0 < ξ ⩽ +∞ [11]. From system (1) with initial conditions (2), we have

N1(t) = N1(0) exp[

∫ t

0
{a(1− N1

k1
)− αN4}dt] > 0,

N2(t) = N2(0) exp[

∫ t

0
{b(1− N2

k2
)− βN4}dt] > 0,

N3(t) = N3(0) exp[

∫ t

0
{c(1− N3

k3
)− γN4 − e+ Uτ}dt] > 0,

N4(t) = N4(0) exp[

∫ t

0
{ηN1 + δN2 + µN3 − f − Uτ}dt] > 0,

which completes the proof. ■

3.2 Boundedness

Theorem 3.2 Three preys are always bounded above for a > 0, k1 > 0.

Proof IfN0 = 0 then the result is trivial, if N1(0) > 0 then N1(t) > 0 for all t on
adding equation (1) we obtain dN1

dt ⩽ aN1(1− N1

k1
). Hence, lim

t→∞
(supN1(t)) ⩽ k1,.

similarly, dN2

dt ⩽ bN2(1− N2

k2
) and dN3

dt ⩽ cN3(1− N3

k3
). Hence, lim

t→∞
(supN2(t)) ⩽ k2

and lim
t→∞

(supN3(t)) ⩽ k3. ■

Theorem 3.3 Predator are always bounded above.

Proof If N4(0) = 0, the result is obvious. We obtain the equation (1). If N4(0) > 0,
then dN4

dt < 0 if d1N4 > 1. Thus, lim
t→∞

(supN3(t)) ⩽ 1
d1
. ■

Theorem 3.4 The trajectories of system (1) are bounded.

Proof Define the function N = N1 + N2 + N3 + N4 and take its time derivative
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along the solution of (1).

dN

dt
=
dN1

dt
+
dN2

dt
+
dN3

dt
+
dN4

dt
.

Now

dN

dt
+ ρN = aN1(1−

N1

k1
) + bN2(1−

N2

k2
) + cN3(1−

N3

k3
)

− eN3 − fN4 + ρN1 + ρN2 + ρN3 + ρN4

= (ρ+ a)N1 + (ρ+ b)N2 +
ρ+ c

e
N3 + (ρ− f)N4 −

aN2
1

k1
− bN2

2

k2
− cN2

3

k3

where ρ is a positive constant for ρ > f given ϵ > 0 there exists to such that t on
t ⩾ t0

dN

dt
+ ρN ⩽ m+ ϵ,m = min{(ρ+ a), (ρ+ b), (

ρ+ c

e
), (ρ− f)},

hence,

d

dt
(Neρt) ⩽ (m+ ϵ)eρt ⇒ N(t) ⩽ N(t0)e

−ρ(t−t0) +
m+ t

ρ
(1− e−ρ(t−t0)).

Letting t→ 0 then letting ϵ→ 0,

lim
t→∞

(supN(t)) ⩽ m

ρ
.

On the initial conditions, the system (1) are bounded. ■

4. Existence and stability analysis of equilibrium points

In this section we will study the existence and stability behaviour of the system (1)
at equilibrium points [11].

• The trivial equilibrium point E1(0, 0, 0, 0) is saddlepoint.

• The axial equilibrium points E3(k1, 0, 0, 0) and E6(0, k2, 0, 0) are saddle point.

• The planar equilibrium points E2(0, 0,Θ1,Θ2), E4(Θ3, 0,Θ4,Θ5),
E9(0,Θ10,Θ11,Θ12) and E10(Θ13,Θ14, 0,Θ15) are unstable.

• The planar equilibrium of E5(Θ6, 0, 0,Θ7), E7(k1, k2, 0, 0), andE8(0,Θ8, 0,Θ9)
are locally asymptotically stable.
We will analyze the equilibrium point E5, E7, E8 and interior equilibrium point
E11.
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The jacobian matrix of the system (1) at equilibrium point E =
(N1(t), N2(t), N3(t), N4(t)) is given by

J11 =


m11 0 0 −N1α

0 m22 0 −N2β

0 m32 m33 −N3γ

N4η N4δ N4µ m44

 ,

where m11 = a − 2 aN1

k1
− αN4, m22 = b − 2 bN2

k2
− βN4, m32 = −N3c

k3
, m33 =

c− cN2

k3
− γN4 − e+ Uτ , m44 = −Uτ + δN2 + ηN1 + µN3 − f .

Based on the nature of eigen values, the dynamical system (1) gets stable when
all four eigen values are negative in case of real roots or negative real parts in
case of complex roots of the characteristic equation for the above jacobian matrix.
otherwise the dynamical system is unstable.

Theorem 4.1 The dynamical system (1) is locally asymptotically stable at equilib-
rium point E5 {N1 = Θ6, N2 = 0, N3 = 0, N4 = Θ7} provided that λ1 < 0, λ2 < 0
with the conditions aβηk1 > Uaβτ + αbηk1 + aβf,
aηγk1 + αηek1 > Uαηjk1 + Uaγτ + αηck1 + afγ and λ3, λ4 have negative real
parts.

Proof The jacobian matrix is

E5 =



a− 2 a(Uτ+f)
η k1

+ a(Uτ−η k1+f)
η k1

0 0 − (Uτ+f)α
η

0 b+ aβ (Uτ−η k1+f)
αη k1

0 0

0 0 c+ γ a(Uτ−η k1+f)
αη k1

− e+ Uτ 0

−a(Uτ−η k1+f)
αk1

−a(Uτ−η k1+f)δ
α η k1

−a(Uτ−η k1+f)µ
αη k1

0


.

Now the eigenvalues are

λ1 =
Uaβ τ−aβ η k1+α bη k1+aβf

α η k1
,

λ2 =
Uαη τ k1+Uaγ τ−aη γ k1+α cη k1−αeηk1+afγ

α η k1
,

λ3 = 1/2 −Uaτ−fa+
√
Θ11

ηk1
, λ4 = −1/2Uaτ+fa+

√
Θ11

ηk1
,

where

Θ11 = 4U2aητ2k1 − 4Uaη2τk1
2 + U2a2τ2 + 8Uaηfτk1−4aη2fk1

2 + 2Ua2fτ

+ 4aηf2k1 + a2f2,

hence, the above equilibrium point is locally asymptotically stable if aβηk1 >
Uaβτ + αbηk1 + aβf, aηγk1 + αηek1 > Uαηjk1 +Uaγτ + αηck1 + afγ and λ3, λ4
have negative real parts. ■

Theorem 4.2 The dynamical system (1) is locally asymptotically stable at equilib-
rium point E7 {N1 = k1, N2 = k2, N3 = 0, N4 = 0} provided that λ1, λ2 have nega-
tive real parts and λ3 < 0, λ4 < 0 with the conditions ck2 + ek3 > Uτk3 + ck3,
Uτ + f > δk2 + ηk1.
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Proof The jacobian matrix is

E7 =


−a 0 0 −k1α

0 −b 0 −k2β

0 0 c− ck2

k3
− e+ Uτ 0

0 0 0 −Uτ + δ k2 + η k1 − f

 .

Now the eigenvalues are λ1 = −a < 0, λ2 = −b < 0, λ3 = Uτ k3−ck2+ck3−ek3

k3
, λ4 =

−Uτ + δ k2+η k1−f . Hence, the above equilibrium point is locally asymptotically
stable if λ1, λ2 have negative real parts and λ3 < 0, λ4 < 0 satisfies ck2 + ek3 >
Uτk3 + ck3, Uτ + f > δk2 + ηk1. ■

Theorem 4.3 The dynamical system (1) is locally asymptotically stable at equilib-
rium point E8 {N1 = 0, N2 = Θ8, N3 = 0, N4 = Θ9} provided that λ1 < 0, λ2 < 0
with the conditions αδbk2 > Uαbτ + βδak2 + αbf , Uβτck2 + δγbk2k3 + ek2k3βδ +
cfk2β > Uk2k3βδτ+Ubk3γτ+ck2βδk3+bfk3γ and λ3, λ4 have negative real parts.

Proof The jacobian matrix is

E8 =



a+ α b(Uτ−δ k2+f)
β δ k2

0 0 0

0 b− 2 b(Uτ+f)
δ k2

+ b(Uτ−δ k2+f)
δ k2

0 − (Uτ+f)β
δ

0 0 c− c(Uτ+f)
δ k3

+ γ b(Uτ−δ k2+f)
β δ k2

− e+ Uτ 0

− b(Uτ−δ k2+f)η
β δ k2

− b(Uτ−δ k2+f)
k2β

− b(Uτ−δ k2+f)µ
β δ k2

0


.

Now the eigenvalues are

λ1 =
Uαbτ+aβδk2−αbδk2+αbf

β δ k2
,

λ2 =
Uβδτk2k3+Ubγτk3−Uβcτk2−bδγk2k3+βcδ k2k3−βδek2k3+bfγk3−βcfk2

βδk2k3
,

λ3 = 1/2−Uτb−bf+
√
Θ12

δk2
, λ4 = −1/2Uτb+bf+

√
Θ12

δk2
,

where

Θ12 = 4U2bδτ2k2 − 4Ubδ2τk2
2 + U2b2τ2 + 8Ubδfτk2−4bδ2fk2

2 + 2Ub2fτ

+ 4bδf2k2 + b2f2,

Hence, the above equilibrium point is locally asymptotically stable if αδbk2 >
Uαbτ+βδak2+αbf , Uβτck2+δγbk2k3+βδek2k3+βcfk2 > Uβδτk2k3+Ubγτk3+
βδck2k3 + bfγk3 and λ3, λ4 have negative real parts. ■

Theorem 4.4 The interior equilibrium point (N1 = N∗
1 , N2 = N∗

2 , N3 = N∗
3 ,

N4 = N∗
4 ) is locally asymptotically stable.

Proof The variation of the Jacobian matrix is

JE11 =


m11 0 0 −N∗

1α

0 m22 0 −N∗
2β

0 m32 m33 −N∗
3γ

N∗
4 η N

∗
4 δ N

∗
4µ m44

 ,



8 Faniran et al./ IJM2C, 11 - 04 (2021) 1-13.

where m11 = a − 2 aN∗
1

k1
− αN∗

4 , m22 = b − 2 bN∗
2

k2
− β N∗

4 , m32 = −N∗
3 c
k3

,

m33 = c − cN∗
2

k3
− γN∗

4 − e + Uτ , and m44 = −Uτ + δ N∗
2 + η N∗

1 + µN∗
3 − f . The

characteristic equation is Λ(λ) = λ4 +A3λ
3 +A2λ

2 +A1λ
1 +A0 where

A3 = −(m11 +m22 +m33 +m44) = 4I − (m11 +m22 +m33 +m44),

A2 = 5I2 − (3m11 + 3m22 + 3m33 + 3m44)I + m22m33 + m22m44 + m33m44 +
m11m22 +m11m33 +m11m44 −N∗

3N
∗
4µγ +N∗

1N
∗
4 ηα,

A1 = 4I3 − (3m11 + 3m22 + 3m33 + 3m44)I
2 + (2m22m33 + 2m22m44 + 2m33m44 +

2m22m11 + 2m33m11 + 2m44m11 + 2N∗
4N

∗
3γµ + 2N∗

1N
∗
4αη + N∗

2N
∗
4 δβ)I −

(m22m33m44 + m22m33m11 + m22m44m11 + m33m44m11 + N∗
3N

∗
4m22γµ +

N∗
3N

∗
4m11γµ+N∗

2N
∗
4m11δβ +N∗

1N
∗
4m22αη +N∗

1N
∗
4m33αη),

A0 = I4− (m11+m22+m33+m44)I
3+(m11m22+m11m33+m11m44+m22m33+

m33m44+m22m44−N∗
3N

∗
4γµ−N∗

2N
∗
4βδ−N∗

1N
∗
4αη)I

2−(m11m22m33+m11m22m44+
m11m33m44 + m22m33m44 + m11N

∗
3N

∗
4γµ + m22N

∗
3N

∗
4γµ + m11N

∗
2N

∗
4βδ +

m33N
∗
2N

∗
4βδ +m32N

∗
2N

∗
4βµ+m22N

∗
1N

∗
4αη +m33N

∗
1N

∗
4αη)I +m11m22m33m44 −

m11m22N
∗
3N

∗
4γµ−m11m33N2N4βδ −m11m32N

∗
2N

∗
4βµ−m22m33N

∗
1N

∗
4αη.

By Routh Hurwitzs criterion, all the eigenvalues of j11 have negative real parts
if

(i) A3 > 0,
(ii) A3A2 > A1,
(iii) A3A2A1 > A2

1 +A2
3A0.

Therefore the given system of the nonlinear differential equation (1) is locally
asymptotically stable around the positive equilibrium point N1 = N∗

1 , N2 = N∗
2 ,

N3 = N∗
3 , and N4 = N∗

4 if the conditions stated in the theorem holds. ■

4.1 Global stability analysis

We perform a global analysis of the system (1) around the positive equilibrium
point G(N∗

1 , N
∗
2 , N

∗
3 , N

∗
4 ) of the coexistence. The following theorem of Lyapunov

function V is considered [6].

Theorem 4.5 Let V=1
2(N1−N∗

1 )
2+ 1

2ψ1(N2−N∗
2 )

2+ 1
2ψ2(N3−N∗

3 )
2+ 1

2ψ3(N4−
N∗

4 )
2 where ψ1, ψ2, ψ3 > 0 are to be carefully chosen such that V ′(G) = 0 then

G(N∗
1 , N

∗
2 , N

∗
3 , N

∗
4 ) and V = (N1, N2, N3, N4) > 0 ∀N1, N2, N3, N4|G. If the time

derivative of V is dV
dt ⩽ 0, ∀N1, N2, N3, N4 ∈ Γ+ then it follows that dV

dt = 0,

∀N1, N2, N3, N4 ∈ Γ+ implies that G∗ of the system is Lyapunov stable and dV
dt < 0

∀N1, N2, N3, N4 ∈ Γ+ near implies that G∗ is globally stable.

Proof dV
dt = (N1−N∗

1 )
dN1

dt +ψ1(N2−N∗
2 )

dN2

dt +ψ2(N3−N∗
3 )

dN3

dt +ψ3(N4−N∗
4 )

dN4

dt
Now by substituting the model equations (1) we get,
dV
dt = (N1 −N∗

1 ){aN1 − aN1
2

k1
− αN1N4}+ ψ1(N2 −N∗

2 ){bN2 − bN2
2

k2
− β N4N2}+

ψ2(N3−N∗
3 ){cN3− cN2

3

k3
−γ N4N3−eN3+Uτ N3}+ψ3(N4−N∗

4 ){η N1N4+δ N2N4+
µN3N4 − fN4 − Uτ N4}.
The above equation becomes
dV
dt = (N1 −N∗

1 ){a− aN1

k1
− αN4}{(N1 −N∗

1 )}+ ψ1(N2 −N∗
2 )

{b− bN2

k2
−β N4}{(N2−N∗

2 )}+ψ2(N3−N∗
3 ){c− cN3

k3
−γ N4−e+Uτ}{(N3−N∗

3 )}+
ψ3(N4 −N∗

4 ){η N1 + δ N2 + µN3 − f − Uτ}{(N4 −N∗
4 )}.
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By rearranging we obtain,
dV
dt = −(N1 −N∗

1 )
2{a− aN1

k1
− αN4} − ψ1(N2 −N∗

2 )
2{b− bN2

k2
− β N4} − ψ2(N3 −

N∗
3 )

2{c− cN3

k3
− γ N4 − e+ Uτ} − ψ3(N4 −N∗

4 )
2{η N1 + δ N2 + µN3 − f − Uτ}.

Thus it is possible to set ψ1, ψ2, ψ3 > 0 such that V ′ ⩽ 0 is an endemic positive
equilibrium point is globally stable. Therefore it is noted that the parameters play
an important roles in controlling the stability aspects of the system [7]. ■

5. Hopf bifurcation

In this section we investigate the Hopf bifurcation around the interior equilibrium
point E11. The parameter c is basic and represent the growth rate of prey N3 is
identified as a bifurcation parameter. Hopf bifurcation occurs provided the jacobian
matrix J(E11) has a pair of purely imaginary eigenvalues and the other eigenvalues
have negative real parts and RE[dλdc ]|c=c0 ̸= 0 [5]. Assume that the characteristic
equation at the interior equilibrium point E11 is as follows:

λ4 +A3λ
3 +A2λ

2 +A1λ
1 +A0 = 0. (3)

For purely imaginary eigenvalues, it is clear that coefficients of characteristic poly-
nomial (4) must satisfy the following condition:

A3A2A1 −A2
3A0 −A2

1 = 0.

Suppose ±iω is a pair of purely imaginary eigenvalues corresponding to c0. We
derive from the characteristic equation (4) relative to c

[4λ3 + 3A3λ
2 + 2A2λ+A1]

dλ

dc
+ (λ3

dA3

dc
+ λ2

dA2

dc
+ λ

dA1

dc
+
dA0

dc
) = 0,

hence,

dλ

dc
= −(

λ3 dA3

dc + λ2 dA2

dc + λdA1

dc + dA0

dc

4λ3 + 3A3λ2 + 2A2λ+A1
). (4)

We substitute iω in to equation (5), we have

dλ

dc
|iω = −(

−iω3 dA3

dc +−ω2 dA2

dc + iω dA1

dc + dA0

dc

−4iω3 − 3A3ω2 + 2A2iω +A1
),

hence,

Re(
dλ

dc
|iω) = −(

[A1 − 3A3ω
2][dA0

dc − ω2 dA2

dc ] + [2A2ω − 4ω3][ω3 dA3

dc − ω dA1

dc ]

[A1 − 3A3ω2]2 + [2A2ω − 4ω3]2
).

Theorem 5.1 Consider parameter c as bifurcation parameter. System (1) under-
goes a Hopf bifurcation provided

([A1 − 3A3ω
2][
dA0

dc
− ω2dA2

dc
] + [2A2ω − 4ω3][ω3dA3

dc
− ω

dA1

dc
]) ̸= 0.
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6. Numerical solution

The system of the nonlinear differential equation (1) for the numerical solution.

(1) First we take the parameter of the system as
(a, b, c, α, β, k1, k2, k3, U, δ, η, µ, τ, γ, e, f) = (1.23, 1.05, 1.450, 2.236, 1.05, 1.25,
0.23, 0.005, 0.545, 1.236, 0.212, 2.024, 1.07, 2.1, 2.05, 2.11) at the population
(N1, N2, N3, N4) = (1.25, 10.46, 10.056, 10.13) The given system is asymptoti-
cally stable.

(2) First we take the parameter ρ of the system as
(a, b, c, α, β, k1, k2, k3, U, δ, η, µ, τ, γ, e, f) = (1.3, 1.05, 1.450, 2.236, 1.05, 1.25,
0.23, 0.005, 0.545, 1.236, 0.212, 2.024, 1.07, 2.1, 2.05, 2.11) at the population
(N1, N2, N3, N4) = (2.35, 3.46, 2.06, 3.13). The given system is asymptotically
stable.

(3) In Figure 4, we take the parameter of the system as mentioned above
in point (1). Then the initial condition satisfies with (N1, N2, N3, N4) =
((1.42, 0.1, 1, 1), (1.3, 0.6, 0.7, 0.2), (1.46, 1.7, 0.1), (1.32, 1.46, 1.7, 1.2)) the con-
tact rate of prey-predator interaction. If we interact the predator with first
prey, only prey 1 and prey 3 will be moving away from predator because of
control measure.

(4) In Figure 5, we take the parameter of the system as mentioned above
in point (1). Then the initial condition satisfies with (N1, N2, N3, N4) =
((1.42, 1.1, 1, 1), (1.3, 1.6, 0.7, 0.2), (1.32, 1.46, 1.7, 0.1), (0.32, 0.46, 1.7, 1)) the
contact rate of prey-predator interaction. If we interact the predator with
second prey, only prey 1 will be moving away from predator, prey 2 will not
affect by the predator because it was absent. But prey 3 will be moving away
from predator after some effort will be taken because of control measure (Uϵ).

(5) In Figure 6, we take the parameter of the system as mentioned above
in point (1). Then the initial condition satisfies with (N1, N2, N3, N4) =
((1.42, 0.1, 1, 1), (1.3, 0.6, 0.7, 0.2), (1.32, 1.46, 1.7, 0.1), (1.32, 1.46, 1.7, 1)) the
contact rate of prey-predator interaction. If we interact the predator with
third prey, prey 1 and prey 3 will be moving away from predator, after we
applied the control measure predator interaction was absent.

(6) In Figure 7, we take the parameter of the system as mentioned above
in point (1). Then the initial condition satisfies with (N1, N2, N3, N4) =
((1.42, 0.1, 1, 1), (1.3, 0.6, 0.7, 0.2), (1.32, 1.46, 1.7, 0.1), (1.32, 1.46, 1.7, 1)) the
contact rate of prey-predator interaction. If we interact the predator with
third prey then the prey 1 and prey 2 was absent only prey 3 will be appear,
the result tends to a periodic.

7. Discussions and Conclusions

In this paper, we developed an eco-epidemiological of three prey one predator
model with disease spread in the third prey population exhibits very interesting
dynamics. Here we assumed that all the three preys grows logistically only the
third prey is not capable of reproduction. So all our important analytical findings
are numerically verified using mapple. The system with time delay undergoes a
Hopf bifurcation around E∗ at c = c∗ taking time delay c as bifurcation parameter.

Finally, we conclude that our system of three prey one predator model only the
third prey disease will spread. After we take some control measure to reduce the
spread of disease. We also noted that the control measure Uτ plays a key role to
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Figure 2. Rossler type of prey-predator is asymptotically stable.

Figure 3. Rossler type of prey-predator is asymptotically stable.

Figure 4. Rossler type of predator interact in the first prey.

control the stability of populations. There must be some time lag called the raise
of immunity power where steps to be taken by the control measure during this
process. At finally the result is periodic with the control measure of Uτ applied in
the third prey.

The equations may exhibit chaotic oscillation and chaotis attractor that may
arise due to Rossler system. Hence we recommend that the predator will spread
in the third prey population should be controlled by using the control measures to
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Figure 5. Rossler type of predator interact in the second prey.

Figure 6. Rossler type of predator interact in the third prey.

Figure 7. Rossler type of predator interact in the third prey with periodic solution.

avoid the infection and disease spread.
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