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Abstract. Choosing a response surface design to fit certain kinds of models is a difficult task. 

Extensive research comprising a collection of efficient second-order response surface designs 

from which a researcher may choose to best fit his/her needs has been conducted, which are based 

solely on a widely-accepted assumption of a completely randomized error structure of 

statistically-designed experiments. However, this assumption is not feasible in industrial 

experiments, which are often split-plot in nature and for which randomization of some factors have 

to be restricted due to certain constraints. The performance of such experimental designs depends 

strongly on the relative magnitude (d) of the whole-plot and sub-plot error variances. This work 

focuses on reduced second-order models having one, two, or all of their quadratic and/or 

interaction terms removed from the full models of some chosen candidate split-plot central 

composite designs (CCDs). It investigates the effects of model reduction on efficiency of these 

designs by computing the relative D-efficiencies for the formulated reduced models with respect to 

their corresponding full designs and assessing the efficiency losses under specific values of d. The 

study revealed a significant loss of D-efficiency in these designs, which depend strongly on the 

removed term(s) and increases, across all values of d, as the number of whole-plot factors 

increases.  
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1. Introduction 

Experiments are performed by researchers in industry, manufacturing, engineering and 

physical sciences so as to uncover and model relationships between design (input) and 

output variables of a process and to identify optimal operating conditions for a system 

under study. The techniques of response surface methodology (RSM) are often employed 

in such experimental situations. Often when individual parameters in the proposed fitted 

model of a designed experiment are tested, some terms may not be significant. In such 

situations, the experimenter will decide to use a reduced model containing only the 

significant terms from the fitted original model. In RSM research and applications, 

statistically-designed experiments have a widely-accepted assumption of a completely 

randomized error structure. Under this assumption, extensive research comprising a 

collection of efficient second-order designs from which a researcher may choose to best fit 

his/her needs, has been conducted. Some authors have studied the design-selection 

Index to information contained in this paper 

1. Introduction 

2. Materials and methods 

3. Results and discussion  

4. Conclusions 



2                                Y. Yakubu et al./𝐼𝐽𝑀2𝐶, 11 -03 (2021) 1-11. 

problem when the proposed approximating model is an underparameterized 

approximation of the true response surface, of which the low-order polynomial is 

commonly used when a higher-order polynomial is a better approximating function (see, 

for example [2, 3, 9]). With regard to the design-problem, many authors have studied the 

mean squared error (MSE) and have used the integrated mean squared error (IMSE) as a 

design comparison criterion, see [4, 10, 14], for details on this. MSE = 𝑉 + 𝐵, where 𝐵 =
𝑁𝛺

𝜎2 ∫ [𝐸(�̂�(𝑥) − 𝜂(𝑥)]2 𝑑𝑥
𝑅

 is the systematic (squared) bias resulting from 

underestimation of the true response surface with the fitted low-order model and V =
𝑁𝛺

𝜎2 ∫ 𝑉𝑎𝑟[�̂�(𝑥)] 𝑑𝑥
𝑅

 is the prediction variance with Ω−1 = ∫ 𝑑𝑥
𝑅

 Borkowski and Elsie 

[1] studied the robustness against many classes of model misspecification for which the 

proposed approximating model is an overparameterized approximation of the true 

response surface. The authors presented the D, G, A, and V efficiency plots of their 

misspecified models against their corresponding numbers of parameters using the number 

of squared terms in the model as the plotting symbol. They showed that design optimality 

criteria can be sensitive to deviations from the full second-order response surface model, 

and that the CCD is robust with respect to the set of reduced models as well as across the 

four optimality criteria considered. Chomtee and Borkowski [6] used D- and G- optimality 

criteria to compare reduced models of seven response surface designs in a spherical region 

using only D- and G-optimality criteria to evaluate them. Their results suggest that 

replication affects different criteria in different ways. That is, what improves one criterion 

may be detrimental to another. 

All the previous studies outlined above were based on the assumption of a completely 

randomized error structure. However, this assumption may not be feasible in industrial 

experiments, which are often split-plot in nature and consist of two sets of factors, those 

with levels that are difficult to change or control (termed hard-to-change (HTC) factors) 

due to time or cost constraints, and factors with levels that are easy to control 

(easy-to-change (ETC) factors). See [12, 13, 15], etc., for further details. For response 

surface designs with split-plot structure, design performance depends strongly on relative 

magnitude or ratio (d) of the whole-plot and subplot variance components through the 

variance-covariance matrix V, and so also is the design selection based on optimal 

properties. The four commonly-used optimality criteria for assessing the performance of 

an experimental design are A-, D-, G-, and V- optimality criteria with the following 

respective goals (See [5, 11]): 

𝐷-criterion maximizes |𝑀| = |𝑋′𝑉−1𝑋|, or equivalently, minimizes |(𝑋′𝑉−1𝑋)−1|, 

𝐴-criterion minimizes trace(𝑋′𝑉−1𝑋)−1, 

𝐺 → min
𝜁

[max
𝜁

𝑁𝑓(𝑧, 𝑥)′(𝑋′𝑉−1𝑋)−1𝑓(𝑧, 𝑥)], 

𝑉 → min
𝜉

{
𝑁

𝐾
∫ 𝑓(𝑧, 𝑥)′(𝑋′𝑉−1𝑋)−1𝑓(𝑧, 𝑥)𝑑𝑧 𝑑𝑥

𝑅

}, 

where 𝑋 is the design matrix, 𝑥 is any point in the design region 𝑅, 𝑁 is the design size, 

and 𝑓(𝑧, 𝑥) = [𝑓1(𝑧, 𝑥) … 𝑓𝑝(𝑧, 𝑥)] is a vector of 𝑝 real-valued functions based on the 𝑝 

model parameters while 𝐾 = ∫ 𝑑𝑧𝑑𝑥
𝑅

 is the volume of the region. The variance - 

covariance matrix for the observation vector 𝑦 is  

Var(𝑦) = 𝑉 = 𝜎𝜖
2𝐼𝑛 + 𝜎𝛾

2𝑍𝑍′ = 𝜎𝜖
2(𝐼𝑛 + 𝑑𝑍𝑍′), 



Y. Yakubu et al./𝐼𝐽𝑀2𝐶, 11 -03 (2021) 1-11.                         3 
 

where 𝑑 =
𝜎𝛾

2

𝜎𝜖
2  gives the ratio of the two variance components. The matrix 𝒁𝒁’ is a block 

diagonal matrix with diagonal matrices of 𝐽𝑛1 , 𝐽𝑛2 , …, 𝐽𝑛𝑧 , where 𝐽𝑛𝑖  is an 𝑛𝑖 × 𝑛𝑖  
matrix of 1’s and 𝑛𝑖  is the number of observations in the 𝑖th whole-plot. Under the 

assumption of normal errors, the maximum likelihood estimate (MLE) of the parameters 

of this model is obtained through the generalized least squares (GLS) estimation equation 

�̂� = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑦 with variance Var(�̂�) = (𝑋′𝑉−1𝑋)−1.   

For a k-factor split-plot CCD with given numbers of whole-plot and subplot factors, the 

fitted second-order model is  

𝐸(𝑦) = 𝛽0 + ∑ 𝛽𝑖𝑧𝑖

𝑤

𝑖=1

+ ∑ ∑ 𝛽𝑖𝑗𝑧𝑖𝑧𝑗

𝑤

𝑗=𝑖+1

𝑤−1

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑧𝑖
2

𝑤

𝑖=1

+ ∑ 𝜃𝑖𝑥𝑖

𝑘

𝑖=1

+ ∑ ∑ 𝜃𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1

+ ∑ ∑ 𝛾𝑖𝑗𝑧𝑖𝑥𝑗

𝑘

𝑗=1

𝑤

𝑖=1

+ ∑ 𝜃𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

, 

(1) 

where 𝑦 is the response variable, 𝑧 is the whole-plot factor, 𝑥 is the subplot factor, the 

𝛽′s are the regression coefficients at the whole-plot level, 𝜃′s and 𝛾′s are the regression 

coefficients at the subplot levels ([15]). 

Using the above-outlined optimality criteria, Chukwu and Yakubu [7] studied the 

robustness against many classes of model misspecification in split-plot response surface 

designs under three different ratios (𝑑 = 0.5, 1, and 2) of the variance components, for 

which the proposed approximating model is an overparameterized approximation of the 

true response surface. For each of the variance component ratios (𝑑) considered, the 

authors presented the D, G, A, and V efficiency plots of the misspecified models against 

their corresponding numbers of parameters using the number of squared terms in the 

model as the plotting symbol. They observed that, unlike [1] for completely randomized 

response surface designs, the optimality criteria for these designs strongly depend on the 

ratios (𝑑) of the variance components and are more sensitive to changes in the pure whole 

plot squared terms than the subplot squared terms. This work, however, used a different 

approach to study the robustness against classes of model misspecification in response 

surface designs with restricted randomization. The contribution of each term or 

combination of terms in the full (proposed) second-order model in (1) to design efficiency 

is better investigated by studying the efficiency of the misspecified (reduced) models 

relative to that of the full model. In such a study, loss in efficiency of the design in question 

due to each misspecified model can clearly be quantified. This work therefore investigates 

the effect of model misspecification on relative D-efficiency of split-plot response surface 

designs under specific ratios (𝑑) of the whole plot and subplot variance components.    

2. Materials and methods 

The designs considered include the 𝑘  = three, four, and five-factor split-plot central 

composite designs (CCD's). The three-factor split-plot CCD consists of one whole plot and 

two subplot factors (here denoted as D12) with 24 points (4 center points); the four-factor 

split-plot CCD consists of two whole plot and two subplot factors (denoted as D22) with 

40 points (4 center points), while the five-factor split-plot CCD consists of three whole plot 

and two subplot factors (denoted as D32) with 64 points (4 center points). Thus, these 

candidate designs have different numbers of whole plot factors but the same number of 

subplot factors and center point replications as given in Table 1 below. 
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Table 1. Candidate designs. 

Design 𝒘 𝒔 𝒌 𝑵 

1 1 2 3 24 

2 2 2 4 40 

3 3 2 5 64 

𝑤 = number of whole plot factors, 𝑠 = number of subplot factors, 𝑘 = total number of 

factors and 𝑁 = number of design points 

The misspecified (reduced) models are then formed from each design by removing 

terms from the corresponding proposed full second-order models in (1) such that:  

1. if a model contains a square (𝑧𝑖
2 or 𝑥𝑙

2) term, then it must contain the corresponding 

linear (𝑧𝑖 or 𝑥𝑙) term. 

2. if a model contains the interaction (𝑧𝑖𝑧𝑗, 𝑧𝑖𝑥𝑙, or 𝑥𝑙𝑥𝑚) term, then it must contain the 

corresponding 𝑧𝑖, 𝑥𝑙 and/or zj term. 

The reduced models were formed from the full second-order models of the candidate 

split-plot CCDs in Table 1 by removing one term (whole-plot/sub-plot interaction or 

squared term), two terms (whole-plot/sub-plot interactions or squared terms), all 

interaction and squared terms (pure linear model), all squared terms (linear model and 

interaction terms), and all interaction terms (linear model and squared terms) from the full 

models of the given candidate designs.  The formulated reduced models are given in 

Tables 2, 3, and 4, respectively. Table 2 contains the 9 models considered for a one 

whole-plot variable/two sub-plot variables CCD; Tables 3 and 4 contain, each, the 11 

models considered for a two whole-plot variables/two sub-plot variables CCD and a three 

whole-plot variables/two sub-plot variables CCD, respectively. Columns indicate the 

number of model parameters (𝑝) and the number of design variables (𝑑𝑣) present in the 

model. The 1s and 0s in the 𝐿, 𝑄, and 𝐶 columns indicate, respectively, the presence or 

absence of that term in the reduced model, while 𝑙, 𝑞, and 𝑐 indicates, respectively, the 

number of pure linear terms, the number of pure quadratic terms, and the number of cross 

product terms in the reduced model.  

We denote the determinant of the information matrix of a reduced design by 

|𝑋′𝑉−1𝑋|𝑟 and that of the full design by |𝑋′𝑉−1𝑋|𝑓, then the relative D-efficiency of the 

reduced design compared to the full design is given as 

𝑅𝐸𝐷 =
|𝑋′𝑉−1𝑋|𝑟

|𝑋′𝑉−1𝑋|𝑓
 (2) 

For each of the candidate designs, the D-criterion values were first computed for the 

proposed full model and for the formulated misspecified (reduced) models under specific 

ratios (𝑑) of the whole plot and subplot error variances, where we have chosen 𝑑 = 0.5, 

1.0, 1.5, 2.0, and 2.5, to indicate the situations that the whole plot error variance is half, 

same, one and a half, two, and, two and a half, times the subplot error variance, 

respectively. The D-criterion values were computed using Maple software (Maple15). 

Next, the effect of model misspecification on the design was quantified by computing the 

relative D-efficiencies for the given reduced models in Tables 2 to 4 with respect to their 

corresponding full designs under the given values of 𝑑. A relative D-efficiency less than 

one indicates that the design fitted with the full model is better than the one fitted with the 

reduced model in terms of D-optimality. This also implies that the design has been 

adversely affected by the role change of the full model. Losses in D-efficiency of these 

designs (due to the misspecification) were investigated.  
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Table 2. Reduced models (𝑲 = 𝟑, 𝒘 = 𝟏, 𝒔 = 𝟐). 

Model 𝑷 𝒅𝒗 𝑳 𝑸 𝑪 𝒍, 𝒒, 𝒄 

1 9 3 (1,1,1) (1,1,1) (1,0,1) (3,3,2) 

2 9 3 (1,1,1) (1,0,1) (1,1,1) (3,2,3) 

3 9 3 (1,1,1) (0,1,1) (1,1,1) (3,2,3) 

4 8 3 (1,1,1) (1,1,1) (0,1,0) (3,3,1) 

5 8 3 (1,1,1) (1,0,0) (1,1,1) (3,1,3) 

6 8 3 (1,1,1) (0,0,1) (1,1,1) (3,1,3) 

7 4 3 (1,1,1) (0,0,0) (0,0,0) (3,0,0) 

8 7 3 (1,1,1) (0,0,0) (1,1,1) (3,0,3) 

9 7 3 (1,1,1) (1,1,1) (0,0,0) (3,3,0) 

NOTE: 𝑷 = no. of model parameters; 𝒅𝒗 = no. of design variables appearing 

in the reduced model. 

Model terms: 𝑳 = (𝒛𝟏, 𝒙𝟏, 𝒙𝟐);  𝑸 = (𝒛𝟏
𝟐, 𝒙𝟏

𝟐, 𝒙𝟐
𝟐); 𝑪 = (𝒛𝟏𝒙𝟏, 𝒛𝟏𝒙𝟐, 𝒙𝟏𝒙𝟐) 

Table 3. Reduced Models (𝑲 = 𝟒, 𝒘 = 𝟐, 𝒔 = 𝟐). 

Model 𝑷 𝒅𝒗 𝑳 𝑸 𝑪 𝒍, 𝒒, 𝒄 

1 14 4 (1,1,1,1) (1,1,1,1) (1,1,1,1,1,0) (4,4,5) 

2 14 4 (1,1,1,1) (1,1,1,1) (0,1,1,1,1,1) (4,4,5) 

3 14 4 (1,1,1,1) (1,1,0,1) (1,1,1,1,1,1) (4,3,6) 

4 14 4 (1,1,1,1) (0,1,1,1) (1,1,1,1,1,1) (4,3,6) 

5 13 4 (1,1,1,1) (1,1,1,1) (0,1,1,1,1,0) (4,4,4) 

6 13 4 (1,1,1,1) (1,1,0,0) (1,1,1,1,1,1) (4,2,6) 

7 13 4 (1,1,1,1) (0,0,1,1) (1,1,1,1,1,1) (4,2,6) 

8 13 4 (1,1,1,1) (0,1,0,1) (1,1,1,1,1,1) (4,2,6) 

9 5 4 (1,1,1,1) (0,0,0,0) (0,0,0,0,0,0) (4,0,0) 

10 11 4 (1,1,1,1) (0,0,0,0) (1,1,1,1,1,1) (4,0,6) 

11 9 4 (1,1,1,1) (1,1,1,1) (0,0,0,0,0,0) (4,4,0) 

NOTE: 𝑷 = no. of model parameters; 𝒅𝒗 = no. of design variables appearing in 

the reduced model. 

Model terms: 𝑳 = (𝒛𝟏, 𝒛𝟐, 𝒙𝟏, 𝒙𝟐);  𝑸 = (𝒛𝟏
𝟐, 𝒛𝟐

𝟐, 𝒙𝟏
𝟐, 𝒙𝟐

𝟐);  𝑪 =

(𝒛𝟏𝒛𝟐, 𝒛𝟏𝒙𝟏, 𝒛𝟏𝒙𝟐, 
 𝒛𝟐𝒙𝟏, 𝒛𝟐𝒙𝟐, 𝒙𝟏𝒙𝟐) 

3. Results and discussion 

In this section, we compare the loss in relative D-efficiency for the sets of reduced models 

in Tables 1 to 3 for the respective candidate split-plot CCDs in Table 1 for the given ratios 

of d.  

3.1 Removing one term from the full model 

The resulting relative D-efficiencies are displayed in Figures 1(a), 1(b), 1(c), and 1(d), 

respectively when one term, (whole-plot/sub-plot interaction or squared terms) are 

removed from the full models of these designs.  
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Removing a subplot interaction term: The resulting relative D-efficiencies when a 

sub-plot interaction (cross product) term is removed from the full model of each of these  

Table 4. Reduced Models (𝑲 = 𝟓, 𝒘 = 𝟑, 𝒔 = 𝟐). 

Model 𝑷 𝒅𝒗 𝑳 𝑸 𝑪 𝒍, 𝒒, 𝒄 

1 20 5 (1,1,1,1,1) (1,1,1,1,1) (1,1,1,1,1,1,1,1,1,0) (5,5,9) 

2 20 5 (1,1,1,1,1) (1,1,1,1,1) (0,1,1,1,1,1,1,1,1,1) (5,5,9) 

3 20 5 (1,1,1,1,1) (1,1,1,1,0) (1,1,1,1,1,1,1,1,1,1) (5,4,10) 

4 20 5 (1,1,1,1,1) (0,1,1,1,1) (1,1,1,1,1,1,1,1,1,1) (5,4,10) 

5 19 5 (1,1,1,1,1) (1,1,1,1,1) (0,1,1,1,1,1,1,1,1,0) (5,5,8) 

6 19 5 (1,1,1,1,1) (1,1,1,0,0) (1,1,1,1,1,1,1,1,1,1) (5,3,10) 

7 19 5 (1,1,1,1,1) (0,0,1,1,1) (1,1,1,1,1,1,1,1,1,1) (5,3,10) 

8 19 5 (1,1,1,1,1) (0,1,1,1,0) (1,1,1,1,1,1,1,1,1,1) (5,3,10) 

9 6 5 (1,1,1,1,1) (0,0,0,0,0) (0,0,0,0,0,0,0,0,0,0) (5,0,0) 

10 16 5 (1,1,1,1,1) (0,0,0,0,0) (1,1,1,1,1,1,1,1,1,1) (5,0,10) 

11 11 5 (1,1,1,1,1) (1,1,1,1,1) (0,0,0,0,0,0,0,0,0,0) (5,5,0) 

NOTE: 𝑷 = no. of model parameters; 𝒅𝒗 = no. of design variables appearing in the 

reduced model.  

Model terms: 𝑳 = (𝒛𝟏, 𝒛𝟐, 𝒛𝟑, 𝒙𝟏, 𝒙𝟐); 𝑸 = (𝒛𝟏
𝟐, 𝒛𝟐

𝟐, 𝒛𝟑
𝟐, 𝒙𝟏

𝟐, 𝒙𝟐
𝟐); 𝑪 =

(𝒛𝟏𝒛𝟐, 𝒛𝟏𝒛𝟑, 𝒛𝟐𝒛𝟑, 𝒛𝟏𝒙𝟏, 
 𝒛𝟏𝒙𝟐, 𝒛𝟐𝒙𝟏, 𝒛𝟐𝒙𝟐, 𝒛𝟑𝒙𝟏, 𝒛𝟑𝒙𝟐, 𝒙𝟏𝒙𝟐) 

designs are displayed in Figure 1(a). The plots show a significant loss in D-efficiency of 

the designs across all ratios (d) of the error variance components. These efficiency losses 

were also observed to be periodic, as each loss repeats itself over and over across all values 

of 𝑑, with a period length. The D32 CCD recorded the highest loss in D-efficiency, 

followed by the D22 CCD while the D12 CCD recorded the lowest efficiency loss across 

all values of 𝑑. The D-efficiency loss in the D12 CCD ranges from 75% to 87.5% with a 

period length of 12.5%; the efficiency loss in the D22 CCD ranges from 87.5% to 93.75% 

with a period length of 6.25%, which is half the period length of the loss in the D12 CCD. 

The loss in the D32 CCD ranges from 93.75% to 96.875% with a period length of 3.125%, 

which is also half the period length of the loss in the D22 CCD.     

Removing a subplot or a whole plot squared term: Figure 1(b) and 1(c) show, 

respectively, plots of the resulting relative D-efficiencies when a subplot and a whole plot 

squared term is removed from the full model of these designs. Each of the figures shows a 

significant loss in D-efficiency, which fluctuates but maintains a decreasing trend as 

values of d rises. The D32 CCD turns out to be the most adversely affected in each case by 

this alteration of its full model, as it recorded the highest efficiency loss across all values of 

d. Figure 1(b) shows that when a subplot squared term is removed, the lowest efficiency 

losses for the D12, D22, and D32 CCDs were 12.48%, 40.28%, and 64.21% respectively at 

d = 2.5, while their highest efficiency losses were observed as 75.62%, 84.72%, and 

91.32%, respectively, at 𝑑 = 1.0. Figure 2(c) shows that when a whole-plot squared term 

is removed, the lowest efficiency losses for the D12, D22, and D32 CCDs were 10.03%, 

46.27%, and 67.63% respectively at 𝑑 = 2.5, while their highest efficiency losses were 

observed as 79.55%, 86.94%, and 92.64%, respectively, at 𝑑 = 1.0. This shows that the 

smaller the number of whole-plot variables in these designs, the more the improvement in 

D-efficiency, provided the number of the sub-plot factors is fixed. These results agree 

perfectly with those of Goos and Vandebroek [8] for full split-plot CCDs, which revealed 
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that the largest D-efficiency improvements can be realized as the number of whole-plot 

variables decreases.  

Removing a whole-plot interaction term: Figure 1(d) shows plots of the resulting 

relative D-efficiency when a pure whole-plot interaction term is removed from the full 

model of the D22 and D32 CCDs. From this figure, a significant loss in D-efficiency is 

observed in each design and the losses fluctuate but maintain a decreasing trend as d 

increases. The figure shows that the D22 CCD gains efficiency over the D32 CCD as it 

maintains a lesser loss in D-efficiency across all values of 𝑑.  

  

  

Figure 1. Plots of reduced model relative efficiencies for the one whole-plot variable/two 

sub-plot variables, two whole-plot variables/two sub-plot variables, and three whole-plot 

variables/two sub-plot variables CCDs. Plots (a), (b), (c), and (d) contain relative 

D-efficiencies for the three designs, respectively, when a sub-plot interaction, a sub-plot 

squared, a whole-plot squared, and a whole-plot interaction terms are removed. 

3.2 Removing two terms from the full model 

The resulting relative D-efficiencies are displayed in Figures 2(a), 2(b), 2(c), and 2(d), 

respectively when two terms (whole-plot/sub-plot interaction or squared terms) are 

removed from the full models of the candidate CCDs. 

Removing two sub-plot squared terms: The resulting relative D-efficiencies when two 

sub-plot squared terms are removed from the full model of each of these designs are 

displayed in Figure 2(a). The plots show a significant loss in D-efficiency of the designs 

across all ratios (𝑑 ) of the error variance components. From the figure, the lowest 

D-efficiency losses for the D12, D22, and D32 CCDs were respectively observed to be 

78.88%, 92.93%, and 97.30% at 𝑑  = 2.5, while their highest efficiency losses were 

97.60%, 99.10%, and 99.70%, respectively at 𝑑 = 1.0. Thus, the D32 CCD recorded the 
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highest loss in D-efficiency, followed by the D22 CCD while the D12 CCD recorded the 

lowest efficiency loss across all values of 𝑑.  

Removing a whole-plot and a sub-plot squared terms: Figure 2(b) shows plots of the 

resulting relative D-efficiencies when a whole-plot and a sub-plot squared terms are 

removed from the full model of these designs. From this figure, we observed that the D12 

CCD surpasses the D22 and the D32 CCDs across all values of 𝑑, especially at 𝑑 = 1.5 

and 2.5. The D32 suffers the highest efficiency loss at all values of 𝑑, followed by the D22 

CCD. Each of these designs recorded their lowest and highest D-efficiency losses of 

38.98%, 79.25%, 92.20%, and 96.54%, 98.73%, 99.56%, respectively, at d = 2.5 and 1.0 as 

can directly be seen from the figure. 

(a) 
 

(b) 

(c) (d) 

Figure 2. Plots of reduced model relative efficiencies for the one whole-plot variable/two 

sub-plot variables, two whole-plot variables/two sub-plot variables, and three whole-plot 

variables/two sub-plot variables CCDs. Plots (a), (b), (c), and (d) contain relative 

D-efficiencies for the three designs, respectively, when two sub-plot squared, a whole-plot and 

a sub-plot squared, a whole-plot and a sub-plot interaction, and a two whole-plot squared terms 

are removed. 

Removing a whole-plot and a sub-plot interaction term: Figure 2(c) shows plots of the 

resulting relative D-efficiencies when a pure sub-plot and a whole-plot by sub-plot 

interaction terms are removed from the D12 CCD full model, and when a whole-plot and 
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sub-plot interaction terms are removed from the full models of the D22 and D32 CCDs. 

From this figure we observed that the D32 suffers the highest efficiency loss across all 

values of 𝑑; at 𝑑 = 0.5, the D12 surpasses the D22 in D-efficiency but as d rises, the D22 

takes the lead with lowest loss in D-efficiency. The loss in D12 CCD is periodic and ranges 

from 93.75% to 98.44%, while each of the D22 and D32 CCDs recorded their lowest and 

highest relative D-efficiency losses at 𝑑 = 2.5 and 1.0, respectively. 

Removing two whole-plot squared terms: Figure 2(d) shows plots of the resulting 

relative D-efficiencies when two whole-plot squared terms are removed from the full 

model of the D22 and the D32 CCDs. From this figure we observed that the D22 slightly 

surpasses the D32 in D-efficiency at 𝑑 = 0.5, 1.0, and 2.0, while at 𝑑 = 1.5 and 2.5, a 

significant difference in the efficiency losses could be observed with the D22 maintaining 

the lead. Each of the CCDs recorded their lowest and highest D-efficiency losses of 

84.48%, 94.10%, and, 99.1%, 99.7%, respectively at d = 2.5 and 1.0. 

3.3 Removing all whole-plot/sub-plot interaction and/or squared terms from the full 

model 

The resulting relative D-efficiencies are displayed in Figures 3(a), 3(b), and 3(c), 

respectively, for a pure linear model, a linear model with interaction terms, and a linear 

model with squared terms.  

 
(a) (b) 

 
(c) 

Figure 3. Plots of reduced model relative efficiencies for the one whole-plot variable/two 

sub-plot variables, two whole-plot variables/two sub-plot variables, and three whole-plot 

variables/two sub-plot variables CCDs. Plots (a), (b), and (c) contain, respectively, relative 
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D-efficiencies for the pure linear models, linear models with interactions, and linear models 

with squared terms. 

Pure Linear Models. Figure 3(a) shows relative D-efficiency plots for the pure linear 

models (models without interaction and squared terms) of these designs. It can be rightly 

observed that the three designs clearly maintain equal loss of relative D-efficiency of 

almost 100% across all values of 𝑑.   

Linear Model with Interactions: Figure 3(b) shows the plots of the relative D-efficiencies 

for these designs when all interactions are added to the linear models. The figure shows 

that the D22 and the D32 CCDs maintain equal D-efficiency losses of almost 100% across 

all values of d, while the D12 CCD surpasses them at each value of 𝑑 with its lowest loss 

at 𝑑 = 2.5. 

Linear Model with Squared terms: The plots of relative D-efficiencies when squared terms 

are added to the linear models are given in Figure 3(c). This figure shows that the D22 and 

the D32 CCDs maintain equal D-efficiency loss of almost 100% while the D12 CCD 

slightly surpasses them across all values of 𝑑. 

4. Conclusion 

The paper evaluated the effect of model reduction on D-efficiency of central composite 

designs within a split-plot structure, and thereby revealed the extent of contribution of each 

of the model terms or combination of the terms to the design efficiency. The losses in 

D-efficiency of the formulated reduced designs were highly-significant and found to 

depend strongly on the relative magnitude or ratio (𝑑) of the whole-plot and sub-plot error 

variances. Significant D-efficiency losses were noticed when a whole-plot (squared/ 

interaction) term or a sub-plot squared term, or a combination of the whole-plot and 

sub-plot terms were removed from the full model of these designs. These losses were 

found to increase, across all values of d, as the number of the whole-plot variables is 

increased, provided the number of subplot variables are kept fixed. However, when a 

sub-plot interaction term is removed from the full model, periodic D-efficiency losses 

were observed across all d values, with a period length, which reduces by half, as the 

number of whole-plot factors increases. Fitting a first-order model (with all squared and 

interaction terms removed) resulted in almost 100% loss in D-efficiency while the design 

with one whole-plot variable outperforms other designs with two or more whole-plot 

variables as interaction or squared terms are added to the linear model. Thus, provided the 

subplot variables are kept fixed, the reduced split-plot designs with fewer number of 

whole-plot variables perform better than the ones with higher number of whole-plot 

variables.  
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